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EXISTENCE OF SEAMOUNT STEADY VORTEX FLOWS
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Abstract

In this paper we will study a feature of a localised topographic flow. We will prove existence
of an ideal fluid containing a bounded vortex, approaching a uniform flow at infinity and
passing over a localised seamount. The domain of the fluid is the upper half-plane and the
data prescribed is the rearrangement class of the vorticity field.

1. Introduction

In this paper we will study a localised topographic feature on the half-plane n={x2>0}.
More precisely, we prove the existence of an ideal fluid flow containing a bounded
vortex and approaching a uniform flow — kx2 at infinity, passing over a localised
seamount which is represented by a compactly supported nonnegative function h.
The data prescribed is the rearrangement class of the vorticity field.

It is well known that steady flows can be thought of as critical points of energy.
Therefore, to reach our goal we set up an appropriate energy functional Vk and look
for elements in a given rearrangement class, &, which maximise 4>x. To do this,
we use a standard rescaling to convert the energy ^ into a new parametrised energy
functional 4V We then look for the critical points for 4\- with respect to the rescaled
class of rearrangements &c. The variational problems to be considered suffer two
technical difficulties; firstly the awkward nature of the set of rearrangements (as a set
in Lp) and secondly a loss of compactness arising from the unbounded domain FI.
To overcome these difficulties, we first solve the problem on a bounded domain
using Burton's results [3] on rearrangements. Passage to the unbounded domain is
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76 B. Emamizadeh and F. Bahrami [2]

accomplished by deriving estimates to show (as anticipated in [2]) that a solution valid
in a sufficiently large bounded domain is in fact valid in n .

Similar rearrangement variational approaches have been extensively used recently.
The reader could refer to [5-9].

2. Notation, definitions and statement of the main result

We denote by p an arbitrary fixed number in (2, +oo). For any number r > 1,
r* denotes the conjugate of r; that is, 1/r + 1/r* = 1. Let n denote the upper
half-plane

n = {x = (jr,,jc2) l*2>0},

and for £ > 0 we set

The open disc centred at x with radius R is denoted by BR(x). In this paper we denote
the Green's function for A with homogeneous Dirichlet boundary conditions on n
by G. It is well known that for x, y € R2,

G(x,y) = -L log { i ^ i , (2.1)
In \x-y\

where ~ denotes reflection in the j^-axis. Note that G is positive, G(x, y) = G(y, x)
and

^ ( i^Y (2.2)
\x-y\2

For a measurable function £ on FI and x e K2, we define

f
./n

= f G{x,y)Kiy)dy, (2.3)
./n

whenever the integral exists. For a measurable set A c |R2, we denote the two-
dimensional Lebesgue measure by \A \ and the essential diameter of the set A by

essdiam(A) = inf(/ | A = A'UN for some A' c (R2 with diam(zl') = Z, \N\- 0},

where diam(i4') = sup{|jc — y\ | x, y 6 A'}.
For a measurable function £ on I~I, the strong support of £, denoted supp(£), is

the set [x e U | f (x) > 0}. Let us fix £0 e ^ p ( n ) which is a nonnegative, non-
trivial function with compact support and assume | supp(£0)| = na2, for some a > 0.
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[3] Existence of seamount steady vortex flows 77

Moreover we suppose that ||£0||i = 1- By & we denote the set of rearrangements
of f0 on n which have compact support. By <^"(|) we denote the subset of &
comprising functions vanishing outside FI(£). Let us recall that £ is a rearrangement
of £0 whenever \{x e n | £(*) > a}\ = \{x e Yl \ i;0(x) > a}|, for every a e K.

For a measurable function f on FI, we define the energy functional

= \ f K n + f It -
z Jn Jn

(2.4)

whenever the integrals exist, where A. is a positive fixed number. In (2.4), r\ = Th,
where h € Lp(Tl) is a nonnegative function with compact support. To simplify future
calculations we assume that ||A||i = 1.

We now define the variational problem

A(f) (2.5)

and the corresponding solution set is denoted Ex. In order to introduce the second
variational problem which is a rescaled version of Pk we need first some preparation.
For this purpose fix c > 0 and let £ be a measurable function on FI. We define

iff(JC) = c2t(cx), x en. (2.6)

By &c we denote the set of all rearrangements of ^ f 0 on FI with compact support.
For a measurable function f on FI, c > 0, we define

I ncs- f x2s,
Jn Jn

(2.7)

wheneverthe integrals exist; here rf = T(1fh). Now we define the rescaled variational
problem. For c > 0, we set

Pc : sup *C(S), (2.8)

and the corresponding solution set is denoted by f,c. We also need the following
truncated variational problem:

Pe.t : sup *c(f) , (2.9)

where ^ c f is the subset of &c comprising functions vanishing outside FI(£). In order
to guarantee &C£ is not empty, henceforth we assume £ > 2a, c > 1. The solution
set for Pcf is denoted E r ? . The main result of this paper is the following theorem.
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78 B. Emamizadeh and F. Bahrami [4]

THEOREM 2.1. There exists A.o > 0 such that for A. e (0, Xo), P>, has a solution.
Moreover if£k € T,k and rfrx = T%x +»? — -̂*2» then VOi satisfies the semilinear elliptic
partial differential equation

= <P\°i'k + h (2.10)

almost everywhere in W, where <px is an increasing function unknown a priori.

The steady barotropic vorticity equation is given by

[ij/,(D + h]=0, (2.11)

where \j/ is the stream function, co is the vorticity and h is the height of the bottom
topography; the symbol [•, •] denotes the Jacobian. A weak formulation of (2.11) is
given by

r
(a>+h)[\lr,u] = 0, (2.12)

for all u e C~(n), see for example [13,14]. Writing (2.12) in the context of
Theorem 2.1 we obtain

0, (2.13)
n

for all u € C~(FI). At the end of this paper we will proVe the validity of (2.13).

3. Preliminaries

In this section we present some lemmas which are crucial in our analysis.

LEMMA 3.1. Let 0 < a < oo and 1 < r < oo. Then there are positive constants
M\, Mi, M3 and fi, with ft < 1, such that if£ € Lr(U) and £ vanishes outside a set
of area it a1, then for x e (R2 we have

M 2 l o g W ) i m L W " a ; (3.1)

l*2l<a-

PROOF. See [4]. •

LEMMA 3.2. (i) Suppose 0 < a < oo, then for any £ e LP{T\) vanishing
outside a set of area na2 we have 7*£ 6 C'(K2) and \T${x)\ < A^|JC2| \\K\\P, for all
x € 1R2, where N is a constant depending only on p and a.
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[5] Existence of seamount steady vortex flows 79

(ii) Let 1 < q < oo and U be a bounded open subset ofU. Then T : Lp(lf) ->•
Lq{U) is compact, in the sense that //£„ is a sequence of functions, bounded in Lp (n)
and vanishing outside U, then the sequence T%n | u has a subsequence converging in
the q-norm. Moreover, if% e Lp(Tl) vanishes outside U, then T£ e W^(Tl) and
verifies the Poisson equation

- A H = £ (3.2)

almost everywhere in IL
(iii) Suppose!; e Lp (IT) has bounded support, thenVT$(x) = 0(\x\~2), T£(x) =

0(M- ' ) as \x\ -* +oo andfn |V7£|2 = / n < 7 £ < oo.

PROOF. See [4]. D

LEMMA 3.3. Suppose O : LP(U.(^)) -*• R is a weakly sequentially continuous,
strictly convex functional, then <t> attains a maximum relative to % e ^ (£ ) , for
£ > la. Moreover, if£ is a maximiser and \jt e d<t>(2;), the subdifferential o/<t> at £,
then £ = <p o xj/ almost everywhere in T\(£), for some increasing function <p.

PROOF. See [3]. •

LEMMA 3.4. The problem Pc^ is solvable; moreover, if£C£ € ECif, then

Ka = Vet ° (^c.f + r]c - x2)

almost everywhere in Yi(£)for some increasing function <pcj.

PROOF. Let us begin by noting that T : Lp(n(f)) ->• Z/'(n(£)) satisfies the
conditions

/ vTw = / wTv, / vTv > 0,
Jn Jn Jn

for every non-trivial v, w e Lp(n(^)), which readily follow from the symmetry of G
and Lemma 3.2 (iii). Therefore T is strictly positive, symmetric and by Lemma 3.2
compact. It then follows that 4*c on Lp(n(f)) is strictly convex and weakly sequen-
tially continuous. Now by applying Lemma 3.3 we conclude that Pci is solvable.
Note that ^ c is differentiable and its Gateaux derivative at any £ can be identified with
T£ + r)c — x2- Therefore if £c>£ 6 Ec-f, then by Lemma 3.3 there exists an increasing
function (pcK such that

almost everywhere in n(f) . •
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The following lemma is straightforward.

LEMMA 3.5. For c > 0 , let <£ be defined as in (2.6). Then <g : <?
bijection; moreover, if%€ &', then

(i) | | ^ ||, = c1">'U\\q, 1 <<7<oo,

(iii) 'Sf-^Cx) = (1/c2)^ (x/c).

[6]

&cis a

LEMMA 3.6. There exists C\ > 0 JMC/I r/iaf //c > c\, % > 3a, then for £C£ e

we

(3.3)

where C\ is a constant independent of c, £.

PROOF. Let ^ * denote the Schwartz-symmetrisation of £c>$ with respect to *o =
(0,2a). Then supptf*) = B . / e W c n « ) ; thus *,(&,/) >^*c(?*). We now
proceed to find a lower bound for 4V(£*). From the definition of 4^ we have

1

' Bo/cUo)

= /. - h.

We now estimate /• as follows:

Ba/c(xo)

> —- log — + — log(4a)
4n 2a 4n

1

where we have used ||£*|h = 1. Now we show the limit of the integral in (3.4) is zero
as c tends to infinity:

1

< sup

4a

log
4a

0.

Next we estimate /2. Note that /2 = 2a + /fl> Uo)(
x2 ~ 2a)^*. Hence

f (JC2 - 2a)£* < sup \x2 — 2a\ ——> 0.
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[7] Existence of seamount steady vortex flows 81

Therefore
1 c 1

*£(f *) > -r- log — + — log(4a) -2a + o(l), c - • +oo.
An 2a 4n

This clearly verifies (3.3). •

Let us assume that c > c\ and £ > 3a. From Lemma 3.4 it follows that Pc^
is solvable and if fcf € Ec,£, then there exists an increasing function ^ C | such that
Kc,i = ^c,f ° (TZCJ: -f- r)c — x2) almost everywhere in I~I(£). From this it follows that

= {* e n( | ) | TSe.t + r>c-x2> Ya} (3.5)

for some constant yCif, modulo a set of measure zero. Note that the inequality in
(3.5) can be changed to a strict inequality, since the level sets of T%cj + r)c — x2

(sets on which T£C£ + rf — x2 is constant) on supp(^c^) have measure zero, see [10,
Lemma 7.7].

In Lemma 3.7 we derive a lower bound for yc^ when c and £ are sufficiently large.

LEMMA 3.7. There exist c2 > 0 and £2 > 0 such that ifc>c2 and £ > £2. then

Yd > — log £• + C2, (3.6)
LTC la

where C2 is a constant independent of c and £.

PROOF. If yc^ < 0 then for every x € n ( f ) , with 0 < x2 < |yc,? |, we have

r)c-x2> Ttt + nc ~ I Yc.t I > Yd •

By considering the area of supp(£Cff) it follows that (—2^yc?) < na2/^, then there
exist d2 and Q such that ycf > —1/2, for all c > d2 and £ > %'2. Now we consider

1 f
t) = o /

1 Jn
We then have

\1 L \[ &.*. (3-7)

where u = T£c^ — x2 — yc$ — 1 and u+ = max{«, 0}.
By Lemma 3.2 (iii), T^ci(x) -*• 0 as \x\ -> +oo, since yCi? > - 1 / 2 . Then

u+ € / /o '(n(A/)) for some M = Mc^ > f. From [10, Lemma 7.6] and the divergence
theorem, see for example [11, Theorem 1.5.1], we obtain

I |VM + | 2 < f |V«+|2 = I VM+ • VM = / u+^ = I u+t.t
Jnit) JniM) iniM) Jn<M) Jr\(()

f
v\(M)

([ )

https://doi.org/10.1017/S1446181100009780 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009780


82 B. Emamizadeh and F. Bahrami [8]

From the continuous embedding Wll(T\(%)) —*• L2(I~I(£)), see [1, Lemma 5.14], we
deduce

(f \u+\2) < K ( [ |«+| + | < | + | < | Y (3.9)
\./n«) / \Jnu-) /

where K is the constant depending on the cone determining the cone property of fl (£).
Let us point out that K is independent of c and £. Note that the sets {x € FI(£),
u+(x) > 0} and [x 6 n(£), | Vw+| > 0} are both contained in supp(£Ctf) except for a
set of measure zero. This implies

( L ""O1"s K &Y (L ^ f + ' (L '""•'+'""•|) •
If c > 2Kay/lx then

O r \ > / 2 /na2\l/2 / r \ 1 / 2

Liu+|!) ^ i ^ ) (L<f+i<f) • (31O)

Combining (3.8) and (3.10), we inferar \1 / 2

|VM
+|2 < 4Arv^«ll4Toll2. (3.11)

n«) /

From (3.8), (3.10) and (3.11) we obtain

f n+L,t < P,

where 0 = 16/C2^a2||e:olll f o r c > 4 = max{2Ka^/jT, d2), $ > $'2. Hence

^ (3.12)
From Lemma 3.2 (i) and (iii) it follows that r? is bounded from above so if we set
fjoo = supn r], then

n
c(x) = rj(cx) < noo, x € n . (3.13)

Observe that

yc,( = 2*c(?c > 4) - 24>{.l,O + f *2<c.« - 2 /" ^c^.f •

By Lemma 3.6, (3.12) and (3.13) there exists c2 > maxfc '̂, Ci} such that

for all c > C2 and £ > £2. where C2 is a constant independent of c and £. •
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LEMMA 3.8. There exist c3 > 0 and £3 > 0 such that

& ) c {x e n \x2 < H(c)), | > f3, c > c3, (3.14)

except for a set of measure zero, where H(c) is a positive constant which depends
only on c.

PROOF. Let c2 and £2 be as in Lemma 3.7. Let C3 be a positive constant such that
for c > C3,

1 c
— log — + C2 > 1 + ??oo.
2x 2a

Fix c > c3 = max{c2, 4} ar*d £ > Hi- From (3.5)

supp(£c>{) c {x € n(f) I 7 £ a + r)c - x2 > 1 + rjoo},

except for a set of measure zero. From Lemmas 3.1, 3.5 and (3.13) it follows that for
x e supp(£Cil) we have (M, + M2log(.x2))(c

2/p*||£ollP) - x2 > 1, provided^ > a/c,
so there exists a number H(c), independent of % such that 0 < JC2 < //(c) for all
x € supp(£Ci?) except for a set of measure zero. •

In the next lemma we derive an upper bound for the essential diameter of supp(£c ?),
when c and | are sufficiently large.

LEMMA 3.9. There exist f4 > 0 and c4 > 0 such that

» o%a
essdiam (supp(fc?)J < , f > £4, c > c4, (3.15)

c

vv/iere CT W a positive constant independent of c and %.

PROOF. Let c2 and Hi be as in Lemma 3.7. Then for c > c2 and £ > £2 we have

y c . « > — l o g ^ + C2. (3.16)
27T 2a

Let R > 1. For* g supp(£a) let B(x, %) = {y € n(^) | |y - JC| < /?a/c). Then by
(3.5), (3.13) and (3.16)

1 c
TKc*(*) - ^ - log — > x2 + C2 - ôo,

27r 2a

for almost all * g supp(^cf). Hence

/ log f ̂ ^ i ) Uy) dy + f .og (
2-^f) Uy) dy

C2-r)oo), (3.17)

https://doi.org/10.1017/S1446181100009780 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009780


84 B.EmamizadehandF. Bahrami [10]

for almost all x e supp(£c?). Similarly to the proof of [4, Lemma 1], it can be shown
that there exist constants M(, M'2 and Mj > 0 independent of c and £ such that

f
0\\p, x2>a;

0<x2<a

Note that \x - y\ > Ra/c and \x - y\ < 5 | for y € Y\($)\B(x, £), hence

f log(I^LzIf\LlWdy<([ogm)[ Uy)dy. (3.19)
^n«)\flu.f) \ c\x ~ y\ J \ A /

Then by rearranging the terms in (3.17) and applying the estimates (3.18) and (3.19)
we obtain

[(A/; + M'2\ p - C2 - x2), x2 > a;
-C2-x2), 0<x2<a.

Therefore

where K is a constant independent of c and £. Now we set A* = lO^e2*, thus

(3.20)

We then claim that essdiam (supp(£,.?)) < 2Ra/c. To seek a contradiction suppose
the claim is false. Then supp(^r?) = SU N, where diam(5) > 2Ra/c, \N\ = 0 and
(3.20) holds for all x € S. Choose JC' and x" e S such that B(x', £) n fi(^", £) is
empty, then

< f L^y)dy+ f Zc,
Jn(t)\BU'.s) Jn($)\B(x",$)

which is a contradiction.

To prove Theorem 2.1 we need the following crucial result.

D
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LEMMA 3.10. There exists c0 > 0 such that for all c > c0, we can find £(c) such
that supp(£c,£) C I"I(£(c)), £ > £(c), except for a set of measure zero.

PROOF. Let a, c3 and c4 be as in Lemmas 3.8-3.9. Fix c > c0 = max{c3, c4, Aoa).
For £ > 3a, set d$ = min{£' | supp(£c?) c n(£')> except for a set of measure zero}.
To seek a contradiction suppose the assertion in the lemma is false. Then there
exist sequences {£„} and [d^J which tend to infinity. Choose n0 such that d$n >
max{f3, f4, 2H(c)}, for n > n0. Since £c>?n maximises * c relative to &c,dh and by the
choice of c and d$n, n > «0 and from Lemma 3.9, we have

essdiam ^

Therefore supp(^c-fJ = Sc>fn U Â  where diam(5c fJ < d$J4 and \N\ = 0. If there
exists x 6 SC|£, with |*i | < d$J2, since d$n > 2//(c) , this contradicts the minimality
of rf?n. Thus

s u p p ( ^ n ) c [x e n(rf f j | |x, | > ^ n / 2 } , n > 0,

except for a set of measure zero. We choose a subsequence, again denoted {£„}, such
that

supp(£aJ C [x e n ( ^ J | JC, > d^/2], n > n0,

except for a set of measure zero. Let d(c) be the smallest number such that supp (ffh) c
n(c?(c)) except for a set of measure zero. Note that there exists n\ > n0 such that
d^/2 > 2d(c). If we set k{xux2) = ^(.^ + d(c),x2), then supp(^) c
and by (2.2)

*C(O - * c (^ , ) = ^- / f log
4 7 r / y

7%
\x - y\

*n JnJn \ \x - yy\2

This is a contradiction to the maximality of ^c?n | . •

REMARK. Note that from Lemma 3.10 it follows that Pc is solvable for c > c0.

4. Proof of Theorem 2.1

Let c0 be as in Lemma 3.10 and fix c > CQ. It follows that Ec is nonempty. Now
consider £c e Ec. From Lemma 3.5 (iii), applying (2.3) and (2.6), we deduce that
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where <&~xZc = £x> ^ = 1/c. It is then clear that & maximises 4^ relative to ^"
and supp(£\) <= n(c£(c)), except for a set of measure zero. It is clear that & also
maximises 4^ relative to ^"(c£(c)) for c = I/A.. Now by applying Lemma 3.3, we
can find an increasing function <pk such that

S\ = <Pk o (T£k + r) - kx2),

for almost every x e ri(c£(c)), c = I/A. Notice that we can assume <p>.(s) > 0, for
all 5 6 dom^ji (domain of <pk). Since £x is an increasing function of T^ + r) — AJC2

on FI(/?)» /? > c£(c), there exists a constant ŷ  such that

T$k + T) - kx2 > Yx

almost everywhere on supp(£0 and

almost everywhere in n\n(c^(c)) , c = l/X. Now define

\(Px(s), s 6 donnpx, s >
<p(s) = \

[0, s < Yi.-

Clearly <p is increasing and £y = <p o (T$x + V — ^ 2 ) almost everywhere in FT. Now,
applying Lemma 3.2, we obtain (2.10). Note that Xo = 1/c. This completes the proof
of Theorem 2.1.

Now we show that if A. is sufficiently large, then Pk has no solution.

PROPOSITION 4.1. There exists k\ such that fork > k\ we have sup<e^ ^ ( O = 0;
moreover, this supremum is not attained.

PROOF. By Lemma 3.2 there exists a constant /V depending only on p, \ supp(£0)|
and I supp(/i)| such that for all £ e & we have

*xiK) = \ I KTK+ I ioK-k I
*• Jn Jn Jn

for k > N(||?oll, + \\h\\p)/2. Let k > N(U0\\P + \\h\\p)/2 and let £„ denote a
rearrangement of £0 with bounded support in (x € FT | x2 < l /«). Therefore

|*x(?») = ^ / KnTKn + I r)K - k [ x2!2 Jn Jn Jn

Hence supfe^ *x(£) = 0 but by (4.1) this supremum is not attained. •
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In the remainder of this section we sketch a proof that the solutions of Pk represent
weak solutions of the barotropic equation (2.11).

PROPOSITION 4.2. Let £A be a solution ofPx, then £x is a solution of (2.13).

PROOF. Since £x 4- h has compact support we infer existence of an open set Q c n
such that supp(£x + /0 C £2. Therefore it suffices to prove (2.13) only for test functions
u € C£°(£2). To this end we fix u e C™(Q) and denote by /,(*) the unique solution
of the Hamiltonian system

7,'-
satisfying the initial condition z(0) = x e Q; where Vx = (d/dx2, —d/dxi). It
is well known that the mapping x -> f,{x), t e [-T, T], T small, defines a one-
parameter family of measure-preserving diffeomorphisms of £2, see for example [12].
Now following [13,14] we obtain

*x(& of~l) = * x ( f0 + t [(& + h)[Wx - kx2, u] + o(t), (4.2)
Jn

as t -> 0+. Hence if we set a(t) = Vk(Sk °ft~
l), for t e [- T, T], we infer from (4.2)

that

«'(0) = I (
Jn

Moreover, since £x e Sx and ^ o / ( ' € &, it follows that a has a global minimum
at zero, whence ct'(0) = 0. Thus (2.13) follows. •
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