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Abstract

First-order unification algorithms (Robinson, 1965) are traditionally implemented via general

recursion, with separate proofs for partial correctness and termination. The latter tends to

involve counting the number of unsolved variables and showing that this total decreases each

time a substitution enlarges the terms. There are many such proofs in the literature (Manna &

Waldinger, 1981; Paulson, 1985; Coen, 1992; Rouyer, 1992; Jaume, 1997; Bove, 1999). This

paper shows how a dependent type can relate terms to the set of variables over which they

are constructed. As a consequence, first-order unification becomes a structurally recursive

program, and a termination proof is no longer required. Both the program and its correctness

proof have been checked using the proof assistant Lego (Luo & Pollack, 1992; McBride,

1999).

Capsule Review

Using first-order unification as an example, McBride proselytizes for a style of programming

using structural recursion over indexed families of datatypes. Although this style is not Turing

complete, McBride shows that guaranteed termination and the expressiveness of dependent

types, is a useful and beautiful paradigm.

1 Introduction

Inductive datatypes give more than just a machine representation for data. They

equip it with a natural mode of inspection – case analysis – and a natural mode

of terminating computation – structural recursion. Case analysis allows a function

over an inductive datatype to decompose its input by stripping off the datatype’s

constructor symbols, and structural recursion gives access to the outputs for the

components so exposed. The structure of the computation is explained in terms

of the structure of each input, and the well-foundedness of the latter ensures the

termination of the former.

By contrast, functions defined by general recursion can make whatever recursive

calls they like, regardless of the structure of their input. There is no a priori guarantee

that such functions will ever deliver an output. We may need this extra freedom in

order to write the programs we want, but we pay with the extra work required to

convince ourselves that the structures we exploit, no longer those of the data, really
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are well-founded. Such programs are still “effective procedures” in the sense that

we can order a computer to execute them. They do not, however, fully express the

understanding we have in our minds. What makes general recursion necessary is a

“failure of language”: if we could find the structures we need amongst those we can

express, we could give the machine not just orders, but an “effective explanation”.

Gödel’s incompleteness theorems tell us that this failure is sometimes inevitable

for languages in which all programs terminate: a language restricted to structural

recursion cannot encode its own interpreter. However, despite the fact that we

cannot always write programs via structural recursion, there is no need to conceal

the structural explanations of many common algorithms which do not involve such

spectacular bootstrapping. Indeed, the languages we have today are already enough

to make structural many algorithms where general recursion is popularly considered

essential. The classic example is Quicksort, a non-structural recursion on lists. As

David Turner points out (Turner, 1995), the real structure of Quicksort is the tree-

like call structure between whose branches the partitioning operation distributes the

list elements. If we turn this into a data structure, we acquire exactly the tree-sort

algorithm with which Rod Burstall introduced us to case analysis and structural

recursion (Burstall, 1969).

Nonetheless, there are many algorithms where the structure in play is not a

simple inductive one. For example, first-order unification (Robinson, 1965) is not

structurally recursive on terms, because the terms grow larger each time a variable

is substituted. Typical implementations use general recursion. The termination proof

is usually quite subtle, relying on the “occur-check” to ensure that each substitution

reduces the number of distinct variables remaining in the problem. The usual

representation of terms does not take account of the number of variables involved,

hence this key piece of structure is hidden.

Dependent type systems give us a much richer language in which to describe

data. In particular, we can stratify the type of terms into a family of types, Term n ,

representing terms over a set of n variables. This paper presents a first-order

unification algorithm which is structurally recursive on this n: its correctness proof

is available online (McBride, 2003a). Both program and proof have been coded

and checked in the Extended Calculus of Constructions, as implemented in the

proof assistant Lego (Luo & Pollack, 1992; McBride, 1999) and are avalilable

online (McBride, 2003b). The point is this: dependent types make more recursion

structural because dependent types can express more structure.

2 The programming language in this paper

The programs in this paper are all real terms in a real dependent type theory. The

full Lego development is available online (McBride, 2003b). However, Lego was

not designed for presenting programs, so for reasons of legibility, I have disguised

this type theory as an imaginary functional language. In doing so, I have borrowed

from Haskell and from Standard ML, as well as exploiting the cosmetic potential

of LATEX. Some less superficial aspects deserve more thorough discussion.
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2.1 Datatype declarations and function definitions

Where, in Haskell, we might write

data � = 0 | s �

this paper presents datatypes by a formation rule and constructors, in natural

deduction style:

data
� : Type

where
0 : �

n : �
sn : �

The more familiar notation suggests the form of a typical constructor application,

using a type as a placeholder for its inhabitants – s �, for example. In a simply

typed setting, there is no risk of mistaking s � for an actual application, because

terms and types inhabit separate worlds. Dependent types break this separation, so

there is perhaps less potential for misunderstanding if we avoid writing constructor

declarations which resemble ill-typed expressions. The natural deduction style follows

the same “typical application” idea, but with variables as the placeholders. The s

constructor may still be used in partially applied form: its actual type is � → �,

as one might expect.

Another benefit of illustrating typical usage in a declaration is that we can indicate

that an argument is to be left implicit – and inferred by the machine – by leaving it

as a schematic variable in a rule. Consider, for example

data
T : Type

Maybe T : Type
where

no : Maybe T
t : T

yes t : Maybe T

Here, the actual type of no is a dependent function space: ∀T : Type. Maybe T ,

where the return type depends on the type passed as an argument. However, this

dependency enables the machine to infer the argument of no, given a desired return

type. Similarly, the type of yes is ∀T :Type. T → Maybe T . Here, T → Maybe T

may be used as syntactic sugar for ∀t :T .Maybe T , as t does not occur in its scope.

Correspondingly, we must supply t as an explicit argument when we apply yes,

but we may still hide T . Schematic variables not explicitly declared in the premises

of a rule yield ∀’s in the type of the symbol declared in the conclusion, but the

corresponding arguments are left implicit in applications. This notation only gives

explicit types to the explicit objects. Arguments which are usually implicit will be

written as subscripts if they deserve attention.

Function definitions are introduced by the keyword “let”, with a type signature

also in natural deduction style, then an equational presentation of the function.

For example, here are two function-transforming operations capturing the monadic

behaviour which Maybe supports:

let
f : S → T

f : S → Maybe T
f �→ yes · f

f : S → Maybe T
f : Maybe S → Maybe T

f no �→ no

f (yes s) �→ f s

The · symbol stands for function composition. Less conventionally, I write �→ to

indicate a directed computation rule, keeping = for equational propositions like
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this one:

fact (f · g) s = ((f ) · g ) s

This is a proposition – indeed, a type – which I assert with the keyword ‘fact’, and

which we might prove for every f , g and s , but it is not a rule used for evaluating

. Dependent types give us ready access to a logic for reasoning about programs. I

use this programming language to define logical notions and its type system to state

theorems. The typechecker also checks proofs!

Every monad gives rise to a functor composing two ‘half-lifting’ operations – those

defined for Maybe above. By careful choice of operator precedence, we may write

the full functorial lifting of some f by ‘bracketing’ it thus: f . It is also possible to

generalise to a n operation which lifts an n-ary function to its n-ary Maybe

counterpart. The entire family can be defined once for all by recursion on n , but it

is not worth the trouble here, as the largest n used in this paper is 2.

let
f : R → S → T

f 2 : Maybe R → Maybe S → Maybe T
. . .

2.2 Inductive families, pattern matching

Dependent types systems allow us to talk about collections of types in a systematic

way by creating type families, typically with a signature resembling this:

t : T
F t : Type

We say that F is a family indexed by T . We may refer to a particular instance of

the family by applying F to a particular t , yielding F t . We may abstract over the

whole family by abstracting over all t ’s, as in ∀t : T .F t → · · ·. We may abstract

over a section of the family by applying F to an expression containing abstracted

variables, thus ∀s :S .F (g s) → · · ·.
Type families support fine analysis of data structures. Many common datatypes

can be redesigned as carefully stratified families, with their operations acquiring

more precise types. For example, indexing matrices by their dimensions allows a

multiplier whose type requires that the column-count on the left equals the row-

count on the right. The termination of unification relies on an analysis of the number

of variables over which terms are constructed: later, we shall make that analysis

explicit by indexing the representation of terms.

Let us first look more closely at how to declare type families and define operations

over them. Most dependent type systems allow the introduction of families by

inductive definition, although there is considerable variation in the styles supported.

Systems like Lego, Coq and ALF (Luo, 1994; Pfenning & Paulin-Mohring, 1990;

Magnusson, 1994) adopt minor variations on the scheme set out in (Dybjer, 1994).

They view an inductive family as a collection of mutually defined datatypes, with

each choice of index yielding a branch of the definition. We declare a formation rule

for the new family, together with constructors which are free to target and to source

their recursive arguments from any section of it. For example, we may declare a
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family of finite types, Fin n – the index n gives the size of each instance:

data n : �
Fin n : Type

where
f0n : Fin sn

x : Fin n
fsn x : Fin sn

The fs constructor embeds Fin n as the “old” elements of Fin sn , whilst f0 makes

a “new” element: the indices n are details which can be inferred mechanically, so I

shall usually omit the arguments which I have subscripted above. Observe that both

constructors target a restricted section of the family – the types with at least one

element. Fin 0 is quite rightly uninhabited.

The ability to restrict the target sections of constructors makes pattern matching

over inductive families both more complex and more powerful than the standard

notion found in Hindley–Milner languages. If we are defining a function whose

domain is a particular section of a family, then, in principle, we need only write

patterns for those constructors which target that section. The machine determines

which these are by attempting to unify the target indices of each constructor with the

indices of the section being matched. Unification is undecidable in general, but we

still get a very powerful language when we restrict to decidable first-order problems.

Whenever a constructor’s target section does not overlap the function’s domain, we

do not need to write a pattern for it. For example, given that no constructor targets

Fin 0, we can define the following function with a type signature but no equations!

let
empty : Fin 0 → T

The designers of dependently typed languages continue to debate which notions

of inductive family it is sensible to support. This paper exploits one particular choice,

but it is reasonable to consider others. Both Cayenne and Agda (Augustsson, 1998;

Coquand & Coquand, 1999) are at present less liberal. Whilst they still allow a

family’s constructors to source recursive arguments from any section, they demand

that every constructor targets the whole family. This removes the complexity from

pattern matching: no matter which section of the family we match over, every

constructor always applies. However, it substantially restricts the families we can

readily define. The above definition of Fin, for example, is no longer available.

Fortunately, there is an alternative in this case – we may compute a type of size n ,

using Maybe and the empty type, ⊥:

let n : �
Fin′ n : Type

Fin′ 0 �→ ⊥
Fin′ (sn) �→ Maybe (Fin′ n)

One can also imagine systems which allow an even more liberal notion of inductive

family than that used in this paper. Inductive-recursive definitions (Dybjer & Setzer,

1999) allow datatype families and operations over them to be mutally defined. We

might even allow inductive families to be defined mutually with the types which

index them. Making structure explicit and precise is habit forming – failure to

express oneself brings a ready hunger for more language!

2.3 Structural recursion

Pattern matching gives us access to the components from which a function’s inputs

are constructed. Structural recursion gives us access to the function’s outputs for the
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components so exposed. It is, perhaps, helpful to view the constructors of a datatype

as building larger “new” elements from smaller “old” ones. Structural recursion

can be rationalised correspondingly as computing “new” outputs for larger inputs,

given that we can already see the “old” outputs for smaller inputs. The fact that

recursive calls are initiated after the call which requires them is a consequence of

the “just in time” mechanisms which sensible implementations employ. It is this

shift, interpreting recursion not as “seeing prior results” but as “doing subsequent

computations”, which can also give a meaning to general recursion.

Rod Burstall (1987) describes a variation of ML which restores the “seeing”

interpretation. Each pattern variable x standing for a subterm of the input is

automatically accompanied by its “inductive hypothesis”, a variable $x bound to

the output for x . There are no recursive calls – return values are built from objects

already known and named. The resulting programs may look a little odd, but they

make their structural behaviour, and hence guaranteed termination, clear to behold.

We can present structural recursion with a more conventional notation if we

restrict the arguments on which recursive calls can be made. In particular, we must

be able to identify an argument position for which the recursive calls on the right

use only strict subterms exposed by pattern matching on the left. For example, the

first argument in the following definition of “reversing append”:

let
xs , ys : List T

revapp xs ys : List T
revapp [] ys �→ ys

revapp (x :: xs) ys �→ revapp xs (x :: ys)

We may extend this notion to cover datatypes with higher-order constructors (e.g.

Brouwer ordinals, infinitely branching trees, etc.) by considering a functional pattern

variable to expose everything in its image. We may liberalise further, allowing nested

structural recursion. Here we identify a sequence of argument positions, where

recursive calls may preserve the first n positions as long as the argument in position

n + 1 decreases – Ackermann’s function is a typical example:

let
m , n : �

ack m n : �
ack 0 n �→ sn

ack (sm) 0 �→ ack m (s0)

ack (sm) (sn) �→ ack m (ack (sm) n)

Structural recursion thus delivers more functions than primitive recursion (in its

original first-order sense). Further, allowing recursive calls on any exposed subterm

loosens primitive recursion’s requirement to peel off exactly one constructor at

each step. The direct (but inefficient) definition of the Fibonacci function is thus

permitted:

let n : �
fib n : �

fib 0 �→ 0

fib (s0) �→ s0

fib (s(sn)) �→ fib n + fib (sn)

A dependent type system such as Lego’s, which only provides higher-order

primitive recursion, can nonetheless support all the programs definable by pattern
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matching and structural recursion in the above sense. The full translation procedure

is given in my thesis (McBride, 1999), but the basic idea is to use primitive recursion

to build an auxiliary data structure memoizing all “prior” outputs for each input –

the original function’s recursive calls are replaced by look-up operations on this

structure. “Doing” becomes “seeing”, just as in Burstall’s language!

Dependent types add more than just detail to the class of structurally recursive

function definitions. An inductive family indexed by a datatype has two notions of

structural recursion: the constructors of the index type give one, and the constructors

of the family itself give another. The two may have quite different behaviours, and

they may be combined by nesting. Inductive families thus allow us to avoid general

recursion in situations where we can see how to turn hidden recursive structure

into the explicit inductive structure of an index type. That is how we shall write

first-order unification by structural recursion.

3 First-order terms, renaming and substitution

Let us begin our development of unification with a type of terms over n variables:

data n : �
Term n : Type

where x : Fin n
ι x : Term n leaf : Term n

s , t : Term n
s fork t : Term n

Here Fin n represents the variable names, embedded into Term n with the ι

constructor. We may compute on Term n by nesting recursion, first on n (allowing

us to grow the terms if we eliminate a variable), then on the terms themselves.

Building the number of variables into the definition of terms explains the structure

by which unification operates.

We can represent a renaming by a function between variable sets, and a substitution

by a function from one variable set to terms over another. Substitution has a

monadic behaviour and renaming is the associated functor. Just as we did with

Maybe, we may define a pair of half-lifting operators, with turning a renaming

into a substitution, and applying a substitution to a term. The functorial map is

again given by “bracketing”, .

let r : Fin m → Fin n
r : Fin m → Term n

r �→ ι · r

f : Fin m → Term n
f : Term m → Term n

f (ι x ) �→ f x

f leaf �→ leaf

f (s fork t) �→ (f s) fork (f t)

The same substitution, in terms of effect, can have different functional encodings.

We shall need to work with a pointwise (or extensional ) equality for substitutions:

let
f , g : Fin m → Term n

f
.
= g : Type

f
.
= g �→ ∀x :Fin m . f x = g x

All of the reasoning in this paper relies only on the pointwise behaviour of

substitutions. I shall omit the details and freely rewrite with “equations” of the form

f
.
= g .
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Inspecting the definition of , we can see that ι plays the rôle of the identity

substitution. We may define the usual composition and check useful monadic

properties:

let
f : Fin m → Term n g : Fin l → Term m

f � g : Fin l → Term n
f � g �→ ( f ) · g

fact ι t = t ( f � g) t = f (g t) f � ( r)
.
= f · r

4 The occur-check, through thick and thin

The notion of occurrence plays a key rôle in both the termination and correctness of

first-order unification. If we are attempting to unify a variable x with a non-variable

term t, then we must check whether x is used in t . If so, there is no unifier; if not,

then the substitution “t for x” is not only a most general unifier, but it is also a

means to eliminate x from the remaining parts of the problem: the corresponding

reduction in the number of variables is sufficient to guarantee termination, even if

the substitution enlarges the terms. The usual boolean occur-check does not expose

this aspect of the algorithm: that is the crux of the problem this paper solves.

Our more stratified representation gives us the extra structure we need. If x : Fin sn

and t : Term sn , then any unifying substitution f : Fin sn → Term n would yield

terms with structurally smaller indices. This section, presents an occur-check re-

designed more positively and informatively as the search for such a substitution –

the effective witness that x does not occur in t .

The boolean occur-check is built from the boolean equality test on variable names.

A more informative occur-check needs a more informative equality test, returning

a witness when its arguments are different. Hence we need a more concrete way to

describe difference in variable sets. If x : Finsn , we may collect the other n elements

of Fin sn as the image of an embedding, thin x from Fin n , “diluting” Fin n with x :

let
x : Fin sn y : Fin n

thinn x y : Fin sn
thinn f0 y �→ fs y

thinsn (fs x ) f0 �→ f0

thinsn (fs x ) (fs y) �→ fs (thinn x y)

The indices are highly significant in the pattern-matching behaviour of thin: in

order to type the recursive call, we must ensure that there really is an s to strip from

the index. However, there is no need for a thin0 (fs x ) . . . case, as there is no such x .

The following diagram illustrates thin’s behaviour:

f0

fs f0

fs (fs f0)

fs (fs (fs f0))

x

f0

fs f0

fs (fs f0)

fs (fs (fs f0))

fs (fs (fs (fs f0)))

thin (fs (fs f0))
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The key properties of thinning are as follows:

fact
thin x y = thin x z

y = z
thin x y �= x

x �= y
∃y ′. thin x y ′ = y

In effect, every y apart from x is the image under thin x of a unique y ′. Hence

the terms t without x are exactly those expressible as thin x t ′. The search for

a unifying, variable-removing substitution thus reduces to the search for such a t ′.

This reduces in turn to finding the appropriate y ′ for each variable y we encounter

in t . The refinement of boolean equality we need is thus the partial inverse to thinx ,

here named thick x .

let
x , y : Fin sn

thickn x y : Maybe (Fin n)
thickn f0 f0 �→ no

thickn f0 (fs y) �→ yes y

thicksn (fs x ) f0 �→ f0

thicksn (fs x ) (fs y) �→ fsn (thickn x y)

An induction on x shows that thick really is the partial inverse of thin:

fact
thick x y = r∨ {

y = x ∧ r = no

∃y ′. y = thin x y ′ ∧ r = yes y ′

We can see thickx as a “failure-prone renaming”. The occur-check just propagates

thick x monadically through the structure of terms:

let x : Fin sn t : Term sn
check x t : Maybe (Term n)

check x (ι y) �→ ι (thick x y)

check x leaf �→ yes leaf

check x (s fork t) �→
(check x s) fork 2 (check x t)

If check x t returns no, then x occurs in t; if we get yes t ′, then thin x t ′ = t .

We may now define the corresponding unifer, t ′ for x .

let x : Fin sn t ′ : Term n
t ′ for x : Fin sn → Term n

(t ′ for x ) y �→ case thick x y

of yes y ′ ⇒ ι y ′

no ⇒ t ′

As t ′ for x “thickens” everything apart from x itself, we may show that

fact t ′ for x · thin x
.
= ι

Hence, t ′ for x really does unify x with t:

fact
check x t = yes t ′

t ′ for x t = t ′ for x ( thin x t ′) = (t ′ for x · thin x ) t ′ = t ′

= (t ′ for x ) x

5 A refinement of substitution

In order to exploit recursion on n when unifying over Term n , we need to know

that each step of the substitution we accumulate really does get rid of a variable.

It is not obvious how a functional substitution breaks down into individual steps,

but we can define an inductive representation of substitutions built by solving for a
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sequence of variables in the manner described above.

data
m , n : �

AList m n : Type

where
anil : AList n n

σ : AList m n t ′ : Term m x : Fin sm
σ asnoc t ′/x : AList sm n

Looking just at the indices, AList m n behaves very like m � n . Looking at the

data, we see that AList m n stores association lists, linking each x with a t ′ over

the set with x removed, until the number of variables has been whittled down from

m to n . The family AList m n captures exactly the subset of Fin m → Term n we

shall actually use, and in a form which admits structural decomposition, not just

application. We can easily recover the functional form:

let σ : AList m n
sub σ : Fin m → Term n

sub anil �→ ι

sub (σ asnoc t ′/x ) �→ sub σ � t ′ for x

Observe that anil gives a concrete name to the identity substitution (for each n).

We can also define composition:

let
ρ : AList m n σ : AList l m

ρ ++ σ : AList l n

ρ++ anil �→ ρ

ρ++ (σ asnoc t/x ) �→ (ρ ++ σ) asnoc t/x

It is easy to check that sub respects ++ in the appropriate way:

fact sub (ρ ++ σ)
.
= sub ρ � sub σ

That is, the AList m n form a category whose objects are just those types in the

image of Term and whose collections of arrows are a subset of the usual function

spaces over those objects – just those functions in the image of () · sub .

The most we can say in advance about the unifying substitution we hope to find

for two terms in Termm is that it inhabits AListm n for some n . We can express this

existential notion via dependent pairing, which generalizes the cartesian product, ×,

in the same way that ∀ generalizes →.

data
T : S → Type

∃T : Type
where s : S t : T s

〈s , t〉 : ∃T

If we wish to express existential propositions, we may regard the ∃x : S . T as

syntactic sugar for ∃(λx :S . T ). The non-sugared syntax is also useful: ∃(AList m) is

exactly the type of “substitutions for some target”.

Let us overload asnoc / with its “uncurried” counterpart, extending substitu-

tions paired with their targets:

let
a : ∃(AList m) t ′ : Term m x : Fin sm

a asnoc t ′/x : ∃(AList sm)

〈n , σ〉 asnoc t ′/x �→ 〈n , σ asnoc t ′/x .〉

The effect of ∃ here is to hide AList’s “target” index. Would it not be simpler, one

might reasonably ask, to define AList with just a “source” index in the first place?
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Given such a definition, we could still compute the target, should we need it:

data m : �
AList′ m : Type

where
anil′ : AList′ m

σ : AList′ m t ′ : Term m x : Fin sm
σ acons′ t ′/x : AList′ sm

let σ : AList′ m
targ σ : �

targ anil′m �→ m

targ (σ acons′ t ′/x ) �→ targ σ

However, this would make types which do not involve targets marginally less

complex at the cost of complicating those which do:

σ : AList′ σ
sub′ σ : Fin m → Term (targ σ)

ρ : AList′ (targ σ) σ : AList′ m
ρ ++′ σ : AList′m

Moreover, commuting interpretation with composition now changes the type of

the resultant substitution:

sub′ (ρ ++′ σ) : Fin m → Term (targ (ρ ++′ σ))

sub′ ρ � sub′ σ : Fin m → Term (targ ρ)

It requires a proof by induction to show that the targets will be equal for all values

of ρ and σ. Not all programs exploit the same structural aspects of a datatype. It

costs us little to discard explicit structure with ∃; it costs rather more to recover

structure which we have failed to express.

6 First-order unification

We are now ready to write the first-order unification algorithm. It takes two terms

s and t and attempts to find a most general unifying substitution f . That is, f must

satisfy:

1. f s = f t
2. If g s = g t then, for some h , g

.
= h � f

In particular, if s , t : Termm , then f should be subσ where σ : AListm n for some

n . Hence we may give unification the type signature

let
s , t : Term m

mgum s t : Maybe (∃(AList m))

One might wonder whether this type for mgu is a little tight, in that it apparently

forces s and t to “have the same number of variables”, but that is not what the type

means. The point is that s and t are expressed over a common set of unknowns,

not all (or indeed any) of which they are obliged to mention. It only makes sense to

unify expressions from a common language.

Let us employ the usual technique of introducing an accumulator:

let
s , t : Term m acc : ∃(AList m)

amgum s t acc : Maybe (∃(AList m))

mgum s t �→ amgum s t 〈m , anil〉
The idea behind the accumulator technique is to proceed optimistically, guessing

that the unifier is the most general solution to the subproblems examined thus far.
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We thus initialize the accumulator with the identity substitution and extend it only

when disillusioned. This optimism is justified: once we have a most general unifier

for part of the problem, we can show that extending it just enough to solve the

rest yields a most general unifier for the whole thing. An abstract justification of

optimistic optimization can be found in my thesis. However, the correctness proof,

available online, illustrates the technique.

As suggested above, amgu works by nested structural recursion, first on m , then

on s . There is no reason why amgu should perform its case analyses in that order.

Traditional primitive recursors and fold operators make a tight connection between

recursion and case analysis, in that they force recursion on some x to be conducted

via case analysis on x exactly once and first of all. In fact, amgu does case analysis

on s and t , and then only if a variable is encountered will it examine acc. If acc is

〈n , σ asnoc r/z 〉, then we know we can get rid of z . That is, although our outermost

recursion is on m , we never examine m directly – the constructor types of AList tell

us that nontrivial substitutions have nonempty domains.

I have written amgu with prioritized patterns, saving space by combining clauses

of the case analysis which operate uniformly. The algorithm is fairly straightforward,

dividing unification problems into three classes:

• Rigid-rigid problems: each term begins with leaf or fork. Like constructors

yield subproblems for corresponding subterms; otherwise, unification fails.

• Flexible problems: at least one term is a variable and the accumulator holds

anil. The appropriate helper function solves these immediately.

• Postponed problems: at least one term is a variable, but the accumulated σ

might instantiate that variable. We peel off one step from σ and expand the

terms – removing one variable justifies a recursive call. If successful, we glue

the step back on to the resulting substitution.

let
s , t : Term m acc : ∃(AList m)

amgum s t acc : Maybe (∃(AList m))

amgum leaf leaf acc �→ yes acc

amgum leaf (t1 fork t2) acc �→ no

amgum (s1 fork s2) leaf acc �→ no

amgum (s1 fork s2) (t1 fork t2) acc �→
amgum s2 t2 amgum s1 t1 acc

amgum (ι x ) (ι y) 〈m , anil〉 �→ yes (flexFlexm x y)

amgum (ι x ) t 〈m , anil〉 �→ flexRigidm x t

amgum t (ι x ) 〈m , anil〉 �→ flexRigidm x t

amgusm s t 〈n , σ asnoc r/z 〉 �→
λσ. σ asnoc r/z amgum (r for z s) (r for z t) 〈n , σ〉

x , y : Fin m
flexFlexm x y : ∃(AList m)

flexFlexsm x y �→ case thick x y

of yes y ′ ⇒ 〈m , anil asnoc ι y ′/x〉
no ⇒ 〈sm , anil〉

https://doi.org/10.1017/S0956796803004957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004957


First-order unification by structural recursion 1073

x : Fin m t : Term m
flexRigidm x t : Maybe (∃(AList m))

flexRigidsm x t �→ case check x t

of yes t ′ ⇒ yes 〈m , anil asnoc t ′/x〉
no ⇒ no

Prioritizing the patterns has saved us six lines in all: the two lines which call

flexRigid apply whether the non-variable argument is a leaf or a fork, whilst the

last line applies in each of the five postponed cases.

flexFlex and flexRigid each take a variable x (perforce from a nonempty set)

and attempt to express their other argument as an image of thin x . If successful,

we have found a unifier. Otherwise, in the flexFlex case, the two variables were

already the same, so the identity substitution suffices, and in the flexRigid case, the

occur-check has failed, so there is no unifier.

The online supplement to this paper (McBride, 2003a) contains a proof that the

answer returned by this program, either a substitution or an indication of failure,

is correct. It follows the same lines as the traditional proofs of partial correctness

found in many papers about first-order unification, but with two modest novelties:

• The step cases of the algorithm are justified by a proof technique which I

call optimistic optimization. The algorithm works by recursively decomposing

a problem and refining an over-general approximation to its solution only

when absolutely necessary. The key lemma in the proof shows that this

strategy produces most general solutions because unifiers are closed under

post-composition.

• The notion of occurrence has a data representation, inspired by Huet’s notion

of “zipper” (Huet, 1997). This allows a more direct characterization of check,

showing exactly its relationship to unification, and comparing favourably with

the collection of variable-counting lemmas previously required.

The major novelty is that there is no need for a termination proof: by expressing

the structure which unification exploits, mgu becomes a recognizable program in a

language of total functions.

7 Discussion

This development of unification is another in a long line. From Zohar Manna

and Richard Waldinger’s pioneering hand-synthesis (Manna & Waldinger, 1981),

through Larry Paulson’s machine verification in LCF (Paulson, 1985) to the more

recent work in diverse proof systems (Coen, 1992; Rouyer, 1992; Jaume, 1997;

Bove, 1999), all have faced the same inherent problem of explaining programs which

simply could not and did not make all of the sense which their makers had in mind.

Understanding the size of the variable signature over which terms are constructed

is crucial to the termination of first-order unification. All the above treatments have

been forced to fill in this missing structure after the fact, with complex lemmas

relating substitution, the occur-check and the function which counts the number of

distinct variables used in a term.
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Ana Bove’s treatment (Bove, 1999), like mine, yields a unification function which

is an executable term in a strongly normalising type theory. She sets out to show that

a standard Haskell function using general recursion can be imported systematically

into type theory, acquiring an extra “termination” argument (a proof of termination

for the actual input) and a proof obligation (that there is such a proof for each

input). The extra argument belongs to an inductive family whose constructors and

indices reflect exactly the case analyses and recursive calls in the algorithm: the

function is thus a structural recursion on termination proofs. The original Haskell

code survives almost intact, but the real work now lies in the proof obligation, and

it is here that the usual variable-counting lemmas reappear. The “program” is still

missing its explanation, but Bove’s inductive presentation of termination proofs adds

it very cleanly, with the bonus of providing exactly the right induction principle with

which to prove partial correctness!

A dependent type system thus serves well as an “explanation language” for a

standard, simply-typed, general recursive program. However, this paper gives strong

evidence that dependent types can be used to improve the language of programs

themselves, reducing the amount of subsequent explanation required by making

more structure explicit in advance. This is not just the shifting of a comparable

burden from proof to program: it is genuinely easier to exploit structure which is

present in data than to recover structure which is absent.

What I hope this paper shows is that the apparent need for general recursion

is evidence not that structural recursion is a flawed ideal, but rather that we need

a better language with which to express structure. With dependent types, we can

express our understanding, not just our procedure. That is the very purpose of

declarative programming – to make it more likely that we mean what we say by

improving our ability to say what we mean.
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