The Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nearly sharp Lang-Weil bounds for a hypersurface

Kaloyan Slavov©

Abstract. We improve to nearly optimal the known asymptotic and explicit bounds for the number of \mathbb{F}_{q}-rational points on a geometrically irreducible hypersurface over a (large) finite field. The proof involves a Bertini-type probabilistic combinatorial technique. Namely, we slice the given hypersurface with a random plane.

1 Introduction

Let $n \geq 2$ and $d \geq 1$, and let \mathbb{F}_{q} be a finite field. Let $X \subset \mathbb{P}^{n}$ be a geometrically irreducible hypersurface of degree d over \mathbb{F}_{q}. Lang and Weil [4] have established the bound

$$
\begin{equation*}
\left|\# X\left(\mathbb{F}_{q}\right)-\# \mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)\right| \leq(d-1)(d-2) q^{n-3 / 2}+O_{n, d}\left(q^{n-2}\right), \tag{1.1}
\end{equation*}
$$

where the implicit constant can depend only on d and n (but not on q or X). We prove that, in fact, the implicit constant can be taken to be an absolute constantindependent of n and d altogether-in the regime of interest $q \gg_{d} 1$.

Theorem 1.1 Let $X \subset \mathbb{P}_{\mathbb{F}_{q}}^{n}$ be a geometrically irreducible hypersurface of degree d. Then

$$
\begin{aligned}
& \left|X\left(\mathbb{F}_{q}\right)\right| \geq q^{n-1}-(d-1)(d-2) q^{n-3 / 2}-O_{d}\left(q^{n-5 / 2}\right) \quad \text { and } \\
& \left|X\left(\mathbb{F}_{q}\right)\right| \leq q^{n-1}+(d-1)(d-2) q^{n-3 / 2}+\left(1+\pi^{2} / 6\right) q^{n-2}+O_{d}\left(q^{n-5 / 2}\right)
\end{aligned}
$$

Example 1.2 (Cone over a maximal curve) Let $\left(d, q_{0}\right)$ be such that there exists a (nonsingular) maximal curve $C=\{f=0\}$ in \mathbb{P}^{2} over $\mathbb{F}_{q_{0}}$ of degree d. Let q be a power of q_{0}, and let $X=\{f=0\} \subset \mathbb{P}_{\mathbb{F}_{q}}^{n}$ be a projective cone over C. Then

$$
\# X\left(\mathbb{F}_{q}\right)=q^{n-1} \pm(d-1)(d-2) q^{n-3 / 2}+q^{n-2}+q^{n-3}+\cdots+1
$$

with \pm depending on whether q is an odd or an even power of q_{0}. Thus, the constant $1+\pi^{2} / 6$ in the upper bound exhibited in Theorem 1.1 cannot possibly be improved by more than $\pi^{2} / 6$, and the constant 0 in the lower bound in Theorem 1.1 cannot be improved by more than 1 .

[^0]In most of this article, we work in affine space. For a geometrically irreducible hypersurface $X \subset \mathbb{A}_{\mathbb{F}_{q}}^{n}$ of degree d, [4] states that

$$
\begin{equation*}
\left|\# X\left(\mathbb{F}_{q}\right)-q^{n-1}\right| \leq(d-1)(d-2) q^{n-3 / 2}+C_{d} q^{n-2}, \tag{1.2}
\end{equation*}
$$

where C_{d} can depend only on d and n. Our notation highlights the more important dependence of C_{d} on d and suppresses the dependence on n (usually one thinks of n as being fixed from the beginning).

The problem of giving explicit versions of (1.2) and of improving the dependence of C_{d} on d has a long history, which we now briefly summarize. See [2] for a more detailed account.

- Schmidt has shown that in the case of the lower bound, one can take $C_{d}=6 d^{2}$ for $q \ggg_{n, d} 1$ (see [5]) and in the case of the upper bound, one can take $C_{d}=4 d^{2} k^{2^{k}}$, where $k=\binom{d+1}{2}$ (see Theorem 4C on page 208 and Theorem 5A on page 210 in [6]).
- Ghorpade and Lachaud [3] use ℓ-adic étale cohomology techniques to prove that one can take C_{d} to be a polynomial in d (of degree that depends on n) in the case of the upper bound as well. Explicitly, one can take $C_{d}=12(d+3)^{n+1}$ in (1.2).
- Cafure and Matera [2] prove that one can take $C_{d}=5 d^{13 / 3}$ in (1.2); moreover, if $q>15 d^{13 / 3}$, one can take $C_{d}=5 d^{2}+d+1$ (this is a polynomial whose degree does not grow with n).
- The author [7] has established the lower bound (for any $\varepsilon>0$)

$$
\left|X\left(\mathbb{F}_{q}\right)\right| \geq q^{n-1}-(d-1)(d-2) q^{n-3 / 2}-(d+2+\varepsilon) q^{n-2}
$$

for $q \gg_{\varepsilon} 1$.

- The author's Theorem 8 in the preprint [8] implies that for every $\varepsilon>0$ and $\varepsilon^{\prime}>0$, we have

$$
\left|X\left(\mathbb{F}_{q}\right)\right| \leq q^{n-1}+(d-1)(d-2) q^{n-3 / 2}+\left((2+\varepsilon) d+1+\varepsilon^{\prime}\right) q^{n-2}
$$

as long as $q \gg_{\varepsilon, \varepsilon^{\prime}} 1$.

- When $\operatorname{dim} X=1$ (equivalently, $n=2$), Aubry and Perret have proved (apply Corollary 2.5 in [1] to the closure of X in \mathbb{P}^{2}) that one can take $C_{d}=d-1$ in the case of the lower bound and $C_{d}=1$ in the case of the upper bound:

$$
\begin{equation*}
q-(d-1)(d-2) \sqrt{q}-d+1 \leq\left|X\left(\mathbb{F}_{q}\right)\right| \leq q+(d-1)(d-2) \sqrt{q}+1 . \tag{1.3}
\end{equation*}
$$

1.1 Upper bounds

The affine version of the asymptotic upper bound in Theorem 1.1 reads as follows.
Theorem 1.3 Let $X \subset \mathbb{A}_{\mathbb{F}_{q}}^{n}$ be a geometrically irreducible hypersurface of degree d. Then

$$
\begin{equation*}
\left|X\left(\mathbb{F}_{q}\right)\right| \leq q^{n-1}+(d-1)(d-2) q^{n-3 / 2}+\left(1+\pi^{2} / 6\right) q^{n-2}+O_{d}\left(q^{n-5 / 2}\right), \tag{1.4}
\end{equation*}
$$

where the implied constant depends only on d and can be computed effectively.
We can give an explicit bound, as in the following theorem.

Theorem 1.4 Let $X \subset \mathbb{A}_{\mathbb{F}_{q}}^{n}$ be a geometrically irreducible hypersurface of degree d. Suppose that $q>15 d^{13 / 3}$. Then

$$
\begin{equation*}
\left|X\left(\mathbb{F}_{q}\right)\right| \leq q^{n-1}+(d-1)(d-2) q^{n-3 / 2}+5 q^{n-2} \tag{1.5}
\end{equation*}
$$

Example 1.5 (Cylinder over a maximal curve) Let $d \geq 3$ be such that $d-1$ is a prime power. Let q be an odd power of $(d-1)^{2}$. Consider the curve $C=\left\{y^{d-1}+y=x^{d}\right\}$ in $\mathbb{A}_{\mathbb{F}_{q}}^{2}$. It is known (see, for example, [9]) that $\# C\left(\mathbb{F}_{q}\right)=q+(d-1)(d-2) \sqrt{q}$. Then the number of \mathbb{F}_{q}-points on $C \times \mathbb{A}^{n-2}$ is $q^{n-1}+(d-1)(d-2) q^{n-3 / 2}$. Thus, the constant 5 in (1.4) cannot possibly be improved by more than 5 .

Remark 1.6 While the cylinder $C \times \mathbb{A}^{n-2}$ in Example 1.5 is nonsingular, its Zariski closure in \mathbb{P}^{n} has a large (in fact, $(n-3)$-dimensional) singular locus. In general, let $X \subset \mathbb{A}^{n}$ be a geometrically irreducible hypersurface such that $\# X\left(\mathbb{F}_{q}\right) \geq q^{n-1}+$ $(d-1)(d-2) q^{n-3 / 2}-O_{d}\left(q^{n-2}\right)$ for large q. Theorem 6.1 in [3] implies that the Zariski closure of X in \mathbb{P}^{n} must have singular locus of dimension $n-3$ or $n-2$.

We exhibit a forbidden interval for $\left|X\left(\mathbb{F}_{q}\right)\right|$ that improves Theorem 4 in [7]. The statement below does not require X to be geometrically irreducible.

Theorem 1.7 Let $X \subset \mathbb{A}_{\mathbb{F}_{q}}^{n}$ be a hypersurface of degree d. If

$$
\begin{equation*}
\left|X\left(\mathbb{F}_{q}\right)\right| \leq \frac{3}{2} q^{n-1}-(d-1)(d-2) q^{n-3 / 2}-\left(d^{2}+d+1\right) q^{n-2} \tag{1.6}
\end{equation*}
$$

then in fact

$$
\begin{equation*}
\left|X\left(\mathbb{F}_{q}\right)\right| \leq q^{n-1}+(d-1)(d-2) q^{n-3 / 2}+12 q^{n-2} \tag{1.7}
\end{equation*}
$$

Remark 1.8 Let us write $g(d)+\cdots$ for an effectively computable $g(d)+g_{1}(d)$, where $g_{1}(d)=o(g(d))$ for $d \rightarrow \infty$. Theorem 1.7 has content when the right-hand side of (1.6) exceeds the right-hand side of (1.7), which takes place for $q>16 d^{4}+\cdots$. Thus, in the presence of Theorem 1.4, Theorem 1.7 addresses the range $16 d^{4}+\cdots<$ $q<15 d^{13 / 3}$. Notice that in the Lang-Weil bound (1.2), the approximation term q^{n-1} dominates the error precisely when $q>d^{4}+\cdots$. This is why it is reasonable to frame the entire discussion of the Lang-Weil bound in the range $q>d^{4}+\cdots$. For example, any lower Lang-Weil bound is trivial for q below this threshold.

1.2 Lower bounds

The proof of Theorem 4 in [7] actually gives a lower bound which is tighter for $q \gg 1$ than the one stated in [7].

Theorem 1.9 Let $X \subset \mathbb{A}_{\mathbb{F}_{q}}^{n}$ be a geometrically irreducible hypersurface of degree d. Then

$$
\begin{equation*}
\left|X\left(\mathbb{F}_{q}\right)\right| \geq q^{n-1}-(d-1)(d-2) q^{n-3 / 2}-d q^{n-2}-O_{d}\left(q^{n-5 / 2}\right) \tag{1.8}
\end{equation*}
$$

where the implied constant depends only on d and can be computed explicitly.
We give a version with an explicit lower bound as well.

Theorem 1.10 Let $X \subset \mathbb{A}_{\mathbb{F}_{q}}^{n}$ be a geometrically irreducible hypersurface of degree d. Suppose that $q>15 d^{13 / 3}$. Then

$$
\begin{equation*}
\left|X\left(\mathbb{F}_{q}\right)\right| \geq q^{n-1}-(d-1)(d-2) q^{n-3 / 2}-(d+0.6) q^{n-2} . \tag{1.9}
\end{equation*}
$$

Example 1.11 As in Example 1.5, let $d \geq 3$ be such that $q_{0}:=d-1$ is a prime power. The curve $\left\{y^{d-1} z+y z^{d-1}=x^{d}\right\}$ in \mathbb{P}^{2} over $\mathbb{F}_{q_{0}}$ intersects the line $x=0$ at d distinct points defined over an extension $\mathbb{F}_{q_{1}}$ of $\mathbb{F}_{q_{0}}$. Let q be an even power of q_{1}. Then the affine curve $C:=\left\{y^{d-1} z+y z^{d-1}=1\right\}$ in $\mathbb{A}_{\mathbb{F}_{q}}^{2}$ satisfies $\# C\left(\mathbb{F}_{q}\right)=$ $q-(d-1)(d-2) \sqrt{q}-d+1$. Consequently, the number of \mathbb{F}_{q}-points on the hypersurface $C \times \mathbb{A}^{n-2}$ in \mathbb{A}^{n} is $q^{n-1}-(d-1)(d-2) q^{n-3 / 2}-(d-1) q^{n-2}$. Therefore, the constant $d+0.6$ in (1.9) cannot possibly be improved by more than 1.6.

We can elaborate on (1.8) by pushing the implied constant further down.
Corollary 1.12 Let $X \subset \mathbb{A}_{\mathbb{F}_{q}}^{n}$ be a geometrically irreducible hypersurface of degree d. Then

$$
\begin{align*}
\left|X\left(\mathbb{F}_{q}\right)\right| & \geq q^{n-1}-(d-1)(d-2) q^{n-3 / 2}-d q^{n-2}-2(d-1)(d-2) q^{n-5 / 2} \\
& -\left(2(d-1)^{2}(d-2)^{2}+d^{2} / 2+d+2+\pi^{2} / 6\right) q^{n-3}-O_{d}\left(q^{n-7 / 2}\right) . \tag{1.10}
\end{align*}
$$

A lower Lang-Weil bound can be useful in proving that a geometrically irreducible hypersurface $X \subset \mathbb{A}_{\mathbb{F}_{q}}^{n}$ has an \mathbb{F}_{q}-rational point. It is known (see Theorem 5.4 in [2] and its proof) that if $q>1.5 d^{4}+\cdots$, then $X\left(\mathbb{F}_{q}\right) \neq \varnothing$. Notice that the approximation term q^{n-1} in (1.10) dominates the remaining explicit terms already for $q>d^{4}+\cdots$. Based on this heuristic, we state the following conjecture.

Conjecture 1.13 There exists an effectively computable function $g_{1}(d)=O\left(d^{7 / 2}\right)$ as $d \rightarrow \infty$ with the following property. Let $X \subset \mathbb{A}_{\mathbb{F}_{q}}^{n}$ be a geometrically irreducible hypersurface of degree d. Then $X\left(\mathbb{F}_{q}\right) \neq \varnothing$ as long as $q>d^{4}+g_{1}(d)$.

Remark 1.14 In contrast to the upper bounds, all lower bounds in the affine cases above (including (1.3) and Example 1.11) contain a d in the coefficient of q^{n-2}. This is an artifact of affine space; the discrepancy disappears in projective space (Theorem 1.1).

1.3 Outline

This paper builds upon the author's earlier work [7] and is inspired by Tao's discussion [10] of the Lang-Weil bound through random sampling and the idea of CafureMatera [2] to slice X with planes (a plane is a two-dimensional affine linear subvariety of $\left.\mathbb{A}_{\mathbb{F}_{q}}^{n}\right)$. If $H \subset \mathbb{A}_{\mathbb{F}_{q}}^{n}$ is any plane, then $\#(X \cap H)\left(\mathbb{F}_{q}\right)$ is either $q^{2}, 0$, or $\approx k q$, where k is the number of geometrically irreducible \mathbb{F}_{q}-irreducible components of $X \cap H$. For $0 \leq k \leq d$, we exhibit a small interval $I_{k}=\left[a_{k}, b_{k}\right]$ containing $k q$ so that if we also define $I_{\infty}=\left\{q^{2}\right\}$, then each $\#(X \cap H)\left(\mathbb{F}_{q}\right)$ belongs to $\cup I_{k}$.

The problem when it comes to the upper bound is that when k is large, planes H with $\#(X \cap H)\left(\mathbb{F}_{q}\right) \in I_{k}$ contribute significantly toward the count $\# X\left(\mathbb{F}_{q}\right)$. However, it turns out that the number of such H 's decreases quickly as k grows.

2 A collection of small intervals

Lemma 2.1 [5, Lemma 5] Let $C \subset \mathbb{A}_{\mathbb{F}_{q}}^{2}$ be a curve of degree d. Let k be the number of geometrically irreducible \mathbb{F}_{q}-irreducible components of C. Then

$$
\left|\# C\left(\mathbb{F}_{q}\right)-k q\right| \leq(d-1)(d-2) \sqrt{q}+d^{2}+d+1 .
$$

It will be crucial to give a refined upper bound when $k=1$.
Lemma 2.2 Let $C \subset \mathbb{A}_{\mathbb{F}_{q}}^{2}$ be a curve of degree d. Suppose that C has exactly one geometrically irreducible \mathbb{F}_{q}-irreducible component. Then

$$
\left|C\left(\mathbb{F}_{q}\right)\right| \leq q+(d-1)(d-2) \sqrt{q}+1
$$

Proof Let C_{1}, \ldots, C_{s} be the \mathbb{F}_{q}-irreducible components of C. Suppose that C_{1} is geometrically irreducible, but C_{i} is not for $i \geq 2$. Let $e=\operatorname{deg}\left(C_{1}\right)$. Note that $(d, e) \neq(2,1)$.

Using the Aubry-Perret bound (1.3) for C_{1} and Lemma 2.3 in [2] for each C_{i} with $i \geq 2$, we estimate

$$
\begin{aligned}
\left|C\left(\mathbb{F}_{q}\right)\right| & \leq\left|C_{1}\left(\mathbb{F}_{q}\right)\right|+\sum_{i=2}^{s}\left|C_{i}\left(\mathbb{F}_{q}\right)\right| \\
& \leq q+(e-1)(e-2) \sqrt{q}+1+\sum_{i=2}^{s}\left(\operatorname{deg} C_{i}\right)^{2} / 4 \\
& \leq q+(e-1)(e-2) \sqrt{q}+1+(d-e)^{2} / 4 \\
& \leq q+(d-1)(d-2) \sqrt{q}+1
\end{aligned}
$$

to justify the last inequality in the chain, note that it is equivalent to

$$
(d-e)\left((d+e-3) \sqrt{q}-\frac{d-e}{4}\right) \geq 0
$$

and holds true because either $e=d$, or else $d-e>0$, and we can write

$$
(d+e-3) \sqrt{q}-\frac{d-e}{4} \geq(d+e-3) \sqrt{2}-\frac{d-e}{4} \geq \frac{(4 \sqrt{2}-1) d+(4 \sqrt{2}+1) e-12 \sqrt{2}}{4}>0
$$

(using that $e \geq 1$ and $d \geq 3$ on the last step).

$$
\text { Let } a_{0}=0, b_{0}=d^{2} / 4, a_{1}=q-(d-1)(d-2) \sqrt{q}-d+1 \text {, and } b_{1}=q+(d-1)
$$ $(d-2) \sqrt{q}+1$. For $2 \leq k \leq d$, set $a_{k}=k q-(d-1)(d-2) \sqrt{q}-d^{2}-d-1$ and

$b_{k}=k q+(d-1)(d-2) \sqrt{q}+d^{2}+d+1$. Finally, set $a_{\infty}=b_{\infty}=q^{2}$. Define $I_{k}:=$ $\left[a_{k}, b_{k}\right]$ for $k \in\{0, \ldots, d\} \cup\{\infty\}$.

Lemma 2.3 Let $X \subset \mathbb{A}_{\mathbb{F}_{q}}^{n}$ be a hypersurface of degree d. Let $H \subset \mathbb{A}_{\mathbb{F}_{q}}^{n}$ be a plane. Then $\#(X \cap H)\left(\mathbb{F}_{q}\right) \in I_{k}$ for some $k \in\{0, \ldots, d\} \cup\{\infty\}$.

Proof If $X \cap H=\varnothing$, then $\#(X \cap H)\left(\mathbb{F}_{q}\right)=0 \in I_{0}$. If $H \subset X$, then $X \cap H=H$ and $\#(X \cap H)\left(\mathbb{F}_{q}\right)=q^{2} \in I_{\infty}$. Suppose that $X \cap H \neq \varnothing$ and $H \notin X$. Let k be the number of geometrically irreducible \mathbb{F}_{q}-irreducible components of the degree d plane curve $X \cap H \subset H \simeq \mathbb{A}_{\mathbb{F}_{q}}^{2}$. Then $0 \leq k \leq d$. If $k=0$, the proof of Lemma 11 in [7] gives $\#(X \cap H)\left(\mathbb{F}_{q}\right) \leq d^{2} / 4$. If $k=1$, we use Lemma 2.2 and the lower bound from (1.3) applied to a geometrically irreducible \mathbb{F}_{q}-irreducible component (necessarily of degree $\leq d$) of X. For $2 \leq k \leq d$, use Lemma 2.1.

Alternatively, one could take $b_{d}=d q$ by the Schwartz-Zippel lemma.
When it comes to giving an upper bound for $\left|X\left(\mathbb{F}_{q}\right)\right|$, it will be more convenient to work with $J_{1}:=I_{0} \cup I_{1}$ and $J_{i}:=I_{i}$ for $i \in\{2, \ldots, d\} \cup\{\infty\}$.

3 Probability estimates

We spell out in detail the proof of Theorem 1.3; the proofs of the remaining results will then require only slight modifications. The implied constant in each O-notation is allowed to depend only on d (a priori, possibly also on n), but not on q or X.

Proof of Theorem $1.3 \quad$ Set $N:=\left|X\left(\mathbb{F}_{q}\right)\right|$. For a plane $H \subset \mathbb{A}_{\mathbb{F}_{q}}^{n}$ chosen uniformly at random, consider $\#(X \cap H)\left(\mathbb{F}_{q}\right)$ as a random variable. Let μ and σ^{2} denote its mean and variance. Lemma 10 in [7] and (1.2) imply

$$
\begin{equation*}
\mu=\frac{N}{q^{n-2}} \quad \text { and } \quad \sigma^{2} \leq \frac{N}{q^{n-2}} \leq q+O(\sqrt{q}) . \tag{3.1}
\end{equation*}
$$

Write

$$
\begin{equation*}
\frac{N}{q^{n-2}}=\mu \leq \sum_{k \in\{1, \ldots, d\} \cup\{\infty\}} \operatorname{Prob}\left(\#(X \cap H)\left(\mathbb{F}_{q}\right) \in J_{k}\right) b_{k} . \tag{3.2}
\end{equation*}
$$

For $k \in\{1, \ldots, d\} \cup\{\infty\}$, denote

$$
p_{k}:=\operatorname{Prob}\left(\#(X \cap H)\left(\mathbb{F}_{q}\right) \in J_{k}\right) .
$$

We can assume that q is large enough so that the intervals J_{1}, \ldots, J_{d} are pairwise disjoint.

Let $k \in\{2, \ldots, d\}$. If H is a plane such that $\#(X \cap H)\left(\mathbb{F}_{q}\right) \in J_{k} \cup \cdots \cup J_{d}$, then

$$
\begin{equation*}
\left|\#(X \cap H)\left(\mathbb{F}_{q}\right)-\mu\right| \geq a_{k}-\frac{N}{q^{n-2}} \geq(k-1) q-O(\sqrt{q}) \tag{3.3}
\end{equation*}
$$

Define t via $(k-1) q-O(\sqrt{q})=t \sigma$; then Chebyshev's inequality and the variance bound (3.1) imply

$$
\begin{aligned}
p_{k}+\cdots+p_{d}=\operatorname{Prob}\left(\#(X \cap H)\left(\mathbb{F}_{q}\right) \in J_{k} \cup \cdots \cup J_{d}\right) & \leq \frac{1}{t^{2}} \\
& =\frac{\sigma^{2}}{((k-1) q-O(\sqrt{q}))^{2}} \\
& \leq \frac{q+O(\sqrt{q})}{((k-1) q-O(\sqrt{q}))^{2}} \\
& =\frac{1}{(k-1)^{2} q}+O\left(q^{-3 / 2}\right) .
\end{aligned}
$$

If H is a plane such that $\#(X \cap H)\left(\mathbb{F}_{q}\right)=q^{2}$, then

$$
\left|\#(X \cap H)\left(\mathbb{F}_{q}\right)-\mu\right|=q^{2}-\frac{N}{q^{n-2}} \geq q^{2}-O(q)
$$

Define t via $q^{2}-O(q)=t \sigma$; then
$p_{\infty} \leq \frac{1}{t^{2}}=\frac{\sigma^{2}}{\left(q^{2}-O(q)\right)^{2}} \leq \frac{q+O(\sqrt{q})}{\left(q^{2}-O(q)\right)^{2}}=q^{-3}+O\left(q^{-7 / 2}\right)$, and hence $p_{\infty} b_{\infty}=O\left(q^{-1}\right)$.
Note that $b_{k}-b_{k-1}=q+O(1)$ for $2 \leq k \leq d$. We now go back to (3.2) and apply the Abel summation formula:

$$
\begin{aligned}
\frac{N}{q^{n-2}}=\mu & \leq\left(p_{1}+\cdots+p_{d}\right) b_{1}+\left(p_{2}+\cdots+p_{d}\right)\left(b_{2}-b_{1}\right)+\cdots+p_{d}\left(b_{d}-b_{d-1}\right)+p_{\infty} b_{\infty} \\
& \leq b_{1}+\frac{1}{1^{2}}+\cdots+\frac{1}{(d-1)^{2}}+O\left(q^{-1 / 2}\right) \\
& \leq q+(d-1)(d-2) \sqrt{q}+1+\pi^{2} / 6+O\left(q^{-1 / 2}\right)
\end{aligned}
$$

Multiply both sides by q^{n-2} to arrive at (1.4).
Going through all the explicit inequalities with an O-term, one can compute explicitly a possible value of the constant implicit in (1.4). In fact, since the CafureMatera bound gives a choice of C_{d} in the Lang-Weil bound that depends only on d and not on n, a second look at all the inequalities written down in the proof above reveals that the implied constant in (1.4) can likewise be chosen not to depend on n.

For the rest of the paper, we follow the notation and proof of Theorem 1.3.
Proof of Theorem 1.9 Say that a plane H is "bad" if \# $(X \cap H)\left(\mathbb{F}_{q}\right) \in I_{0}$ and "good" otherwise. If $H \subset \mathbb{A}_{\mathbb{F}_{q}}^{2}$ is a bad plane, then

$$
\left|\#(X \cap H)\left(\mathbb{F}_{q}\right)-\mu\right| \geq \frac{N}{q^{n-2}}-\frac{d^{2}}{4} \geq q-O(\sqrt{q})
$$

By computations similar to the ones in the proof of Theorem 1.3, the probability that a plane is bad is at most $q^{-1}+O\left(q^{-3 / 2}\right)$. Every good plane contributes at least a_{1} to
the mean. Therefore,

$$
\frac{N}{q^{n-2}}=\mu \geq\left(1-q^{-1}-O\left(q^{-3 / 2}\right)\right)(q-(d-1)(d-2) \sqrt{q}-d+1),
$$

giving (1.8).
Proof of Corollary 1.12 In fact, the proofs of Theorems 1.3 and 1.9 give an algorithm that takes as input a half-integer $r \geq 0$ and constants ${ }^{1} C_{d}^{(j)}$ and $D_{d}^{(j)}$ for each half-integer $1 / 2 \leq j \leq r$ such that
$\left|X\left(\mathbb{F}_{q}\right)\right| \leq q^{n-1}+\sum_{j=1 / 2}^{r} C_{d}^{(j)} q^{n-1-j}+O_{d}\left(q^{n-r-3 / 2}\right) \quad$ (summation over half-integers)
and
$\left|X\left(\mathbb{F}_{q}\right)\right| \geq q^{n-1}-\sum_{j=1 / 2}^{r} D_{d}^{(j)} q^{n-1-j}-O_{d}\left(q^{n-r-3 / 2}\right) \quad$ (summation over half-integers), and returns as output four additional $C_{d}^{(r+1 / 2)}, C_{d}^{(r+1)}, D_{d}^{(r+1 / 2)}$, and $D_{d}^{(r+1)}$ such that $\left|X\left(\mathbb{F}_{q}\right)\right| \leq q^{n-1}+\sum_{j=1 / 2}^{r+1} C_{d}^{(j)} q^{n-1-j}+O_{d}\left(q^{n-r-5 / 2}\right) \quad$ (summation over half-integers) and
$\left|X\left(\mathbb{F}_{q}\right)\right| \geq q^{n-1}-\sum_{j=1 / 2}^{r+1} D_{d}^{(j)} q^{n-1-j}-O_{d}\left(q^{n-r-5 / 2}\right) \quad$ (summation over half-integers).
Initiating the algorithm with $r=0$ and the rather weak version

$$
q^{n-1}-O_{d}\left(q^{n-3 / 2}\right) \leq\left|X\left(\mathbb{F}_{q}\right)\right| \leq q^{n-1}+O_{d}\left(q^{n-3 / 2}\right)
$$

of (1.2), we obtained (1.4) and (1.8). In turn, taking the upper bound for N from (1.4) and the lower bound for N from (1.8) as input, we obtain (1.10).

Proof of Theorem 1.1 We now slice with a random plane $H \subset \mathbb{P}_{\mathbb{F}_{q}}^{n}$. The mean μ of $\#(X \cap H)\left(\mathbb{F}_{q}\right)$ is $N \rho_{1}$, where $N=\left|X\left(\mathbb{F}_{q}\right)\right|$ and $\rho_{1}=\left(q^{3}-1\right) /\left(q^{n+1}-1\right)$ is the probability that a plane passes through a given point. Let ρ_{2} be the probability that a plane passes through two distinct given points. Explicitly (in terms of q-binomial coefficients), $\rho_{2}=\binom{n-1}{1}_{q} /\binom{n+1}{3}_{q}$. One verifies directly that $\rho_{2} \leq \rho_{1}^{2}$ and expresses σ^{2} as in [10]:

$$
N^{2} \rho_{1}^{2}+\sigma^{2}=\mu^{2}+\sigma^{2}=\mu+N(N-1) \rho_{2} \leq \mu+N^{2} \rho_{2}
$$

to deduce $\sigma^{2} \leq \mu$.
We can still take $I_{0}=\left[0, d^{2} / 4\right]$. Use the projective version of (1.3) (Corollary 2.5 in [1]). Adapt I_{1} with $a_{1}=q-(d-1)(d-2) \sqrt{q}+1$. Use $I_{\infty}=\left\{q^{2}+q+1\right\}$. Up to a summand d to account for points at infinity, the remaining a_{k} and b_{k} are unchanged.

[^1]Proceed as in the proof of Theorems 1.3 and 1.9. On the very last step in proving either bound, multiply by $1 / \rho_{1}$ rather than by q^{n-2} and use that $1 / \rho_{1}=q^{n-2}+$ $O\left(q^{n-5}\right)$.

4 Explicit versions

Proof of Theorem 1.4 The statement clearly holds for $d=1$, so assume that $d \geq 2$. We will use the explicit Cafure-Matera bound for N. Replace the variance bound (3.1) by

$$
\sigma^{2} \leq \frac{N}{q^{n-2}} \leq q+(d-1)(d-2) \sqrt{q}+5 d^{2}+d+1 \leq(8.44 / 7.44) q ;
$$

to verify the last inequality above, we argue as follows. For any $c_{1}>0$ and $c_{2}>0$, the function $q \mapsto q /\left(c_{1} \sqrt{q}+c_{2}\right)$ is increasing. Therefore,

$$
\frac{q}{(d-1)(d-2) \sqrt{q}+5 d^{2}+d+1}>\frac{15 d^{13 / 3}}{(d-1)(d-2) \sqrt{15} d^{13 / 6}+5 d^{2}+d+1}
$$

It remains to check that the function $g(d)$ on the right-hand side above satisfies $g(d)>7.44$ for any integer $d \geq 2$. On the one hand, g grows like $d^{1 / 6}$, so one easily exhibits a d_{0} such that $g(d)>7.44$ for $d>d_{0}$. Then a simple computer calculation checks that $g(d)>7.44$ for integers $d \in\left\{2, \ldots, d_{0}\right\}$ as well.

In the same way, one readily checks that the intervals J_{1}, \ldots, J_{d} are pairwise disjoint.

For $k \in\{2, \ldots, d\}$, replace (3.3) by

$$
a_{k}-\frac{N}{q^{n-2}} \geq(k-1) q-2(d-1)(d-2) \sqrt{q}-2\left(3 d^{2}+d+1\right) \geq(5.45 / 7.45)(k-1) q
$$

to check the last inequality, one has to consider only $k=2$ and to argue as above.
For $k \in\{2, \ldots, d\},(3.4)$ is now replaced by

$$
p_{k}+\cdots+p_{d} \leq \frac{(8.44 / 7.44) q}{((5.45 / 7.45)(k-1) q)^{2}}<\frac{2.12}{(k-1)^{2} q}
$$

To bound $p_{\infty} b_{\infty}$, note that $q>15 d^{13 / 3}>15 \times 2^{13 / 3}>302$, so

$$
p_{\infty} b_{\infty} \leq \frac{(8.44 / 7.44) q}{\left(q^{2}-(8.44 / 7.44) q\right)^{2}} q^{2}=\frac{8.44 \times 7.44 q}{(7.44 q-8.44)^{2}}<0.01 .
$$

Since $b_{k}-b_{k-1}=q$ for $3 \leq k \leq d$, but $b_{2}-b_{1}=q+d^{2}+d$, we have to estimate $\left(d^{2}+d\right) / q<\left(d^{2}+d\right) / 15 d^{13 / 3}<0.02$. The Abel summation argument now gives

$$
\frac{N}{q^{n-2}} \leq q+(d-1)(d-2) \sqrt{q}+1+2.12\left(\pi^{2} / 6+0.02\right)+0.01<q+(d-1)(d-2) \sqrt{q}+5
$$

Proof of Theorem 1.7 Again, assume $d \geq 2$. We can assume that the right-hand side of (1.7) is less than the right-hand side of (1.6); i.e.,

$$
4(d-1)(d-2) \sqrt{q}+2\left(d^{2}+d+13\right)<q .
$$

This inequality implies in particular that the intervals J_{1}, \ldots, J_{d} are pairwise disjoint. Note that it is equivalent to $q>r(d)^{2}$, where $r(d)$ is the positive root of the quadratic equation $x^{2}-4(d-1)(d-2) x-2\left(d^{2}+d+13\right)=0$.

Due to (1.6), now we can use the variance bound $\sigma^{2} \leq N / q^{n-2} \leq(3 / 2) q$. Furthermore, (1.6) gives

$$
a_{k}-\frac{N}{q^{n-2}}=k q-(d-1)(d-2) \sqrt{q}-\left(d^{2}+d+1\right)-\frac{N}{q^{n-2}} \geq \frac{k-1}{2} q
$$

for $2 \leq k \leq d$. Therefore, $p_{k}+\cdots+p_{d}$ is now bounded by $6 /\left((k-1)^{2} q\right)$.
We bound $\left(d^{2}+d\right) / q$ by $\left(d^{2}+d\right) /(r(d))^{2}<0.16$ for $d \geq 2$. Finally, note that $q>r(2)^{2}=38$, so $q \geq 41$, and we can bound $p_{\infty} b_{\infty}$ by $6 q /(2 q-3)^{2}<0.04$. Therefore, $\frac{N}{q^{n-2}} \leq q+(d-1)(d-2) \sqrt{q}+1+6\left(\pi^{2} / 6+0.16\right)+0.04<q+(d-1)(d-2) \sqrt{q}+12$.

Proof of Theorem 1.10 As above, assume that $d \geq 2$. We bound the variance as

$$
\sigma^{2} \leq \frac{N}{q^{n-2}} \leq q+(d-1)(d-2) \sqrt{q}+5 d^{2}+d+1 \leq(8.44 / 7.44) q .
$$

Moreover,

$$
\frac{N}{q^{n-2}}-\frac{d^{2}}{4} \geq q-(d-1)(d-2) \sqrt{q}-21 d^{2} / 4-d-1 \geq(6.44 / 7.44) q .
$$

From here, we bound the probability that a plane is bad by $1.6 / q$. Thus,

$$
\frac{N}{q^{n-2}} \geq\left(1-\frac{1.6}{q}\right)(q-(d-1)(d-2) \sqrt{q}-d+1) \geq q-(d-1)(d-2) \sqrt{q}-(d+0.6)
$$

References

[1] Y. Aubry and M. Perret, A Weil theorem for singular curves. In: R. Pellikaan, M. Perret, and S. G. Vlădu (eds.), Arithmetic, geometry, and coding theory, Contemporary Mathematics, 1996, Walter de Gruyter, Berlin-New York, pp. 1-8. https://doi.org/10.1515/9783110811056.1
[2] A. Cafure and G. Matera, Improved explicit estimates on the number of solutions of equations over a finite field. Finite Fields Appl.. 12(2006), 155-185.
[3] S. Ghorpade and G. Lachaud, Étale cohomology, Lefschetz theorems and number of points of singular varieties over finite fields, Moscow Math J. 2(2002), no. 3, 589-631.
[4] S. Lang and A. Weil, Number of points of varieties in finite fields. Amer. J. Math. 76(1954), 819-827.
[5] W. Schmidt, A lower bound for the number of solutions of equations over finite fields. J. Number Theory 6(1974), no. 6, 448-480.
[6] W. Schmidt, Equations over finite fields: an elementary approach, Lectures Notes in Mathematics, 536, Springer, New York, 1976.
[7] K. Slavov, An application of random plane slicing to counting F_{q}-points on hypersurfaces. Finite Fields Appl. 48(2017), 60-68.
[8] K. Slavov, An application of random plane slicing to counting F_{q}-points on hypersurfaces. Preprint, 2021. arXiv:1703.05062v3
[9] H. Stichtenoth, Algebraic function fields and codes, Graduate Texts in Mathematics, 254, Springer, Berlin-Heidelberg, 2009.
[10] T. Tao, The Lang-Weil bound, 2012. Available at https://terrytao.wordpress.com/2012/08/31/the-lang-weil-bound/.
Department of Mathematics, ETH Zürich, Rämistrasse 101, Zürich 8092, Switzerland
e-mail: kaloyan.slavov@math.ethz.ch

[^0]: Received by the editors May 13, 2022; revised October 4, 2022; accepted October 4, 2022.
 Published online on Cambridge Core October 18, 2022.
 This research was supported by the NCCR SwissMAP of the SNSF.
 AMS subject classification: 14G15, 11T06, 14G05, 05 B 25.
 Keywords: Lang-Weil bound, hypersurface, Bertini's theorem, random sampling.

[^1]: ${ }^{1}$ We refer to $C_{d}^{(j)}$ and $D_{d}^{(j)}$ interchangeably as constants or as functions of d depending on the context.

