ISOMORPHISM CLASSES OF SOLENOIDAL ALGEBRAS I

BERNDT BRENKEN

Abstract

Each $g \in \mathbb{Z}[x]$ defines a homeomorphism of a compact space $\hat{\Lambda}_{g}$. We investigate the isomorphism classes of the C^{*}-crossed product algebra B_{g} associated with the dynamical system $\left(\hat{\Lambda}_{g}, \mathbb{Z}\right)$. An isomorphism invariant E_{g} of the algebra B_{g} is shown to determine the algebra B_{g} up to $*$ or $*$ anti-isomorphism if degree $g \leq 1$ and 1 is not a root of g or if degree $g=2$ and g is irreducible. It is also observed that the entropy of the dynamical system $\left(\hat{\Lambda}_{g}, \mathbb{Z}\right)$ is equal to the growth rate of the periodic points if g has no roots of unity as zeros. This slightly extends the previously known equality of these two quantities under the assumption that g has no zeros on the unit circle.

1. To each $g \in \mathbb{Z}[x]$ associate a C^{*}-algebra B_{g}, the crossed product algebra $C\left(\hat{\Lambda}_{g}\right) \rtimes_{\alpha}$ \mathbb{Z}. Here $\hat{\Lambda}_{g}$ denotes the dual group of the discrete abelian group $\Lambda_{g}=\mathbb{Z}\left[x, x^{-1}\right] /(g)$ where (g) is the principal ideal generated by g in the ring $\mathbb{Z}\left[x, x^{-1}\right]$. The action α of \mathbb{Z} on $C\left(\hat{\Lambda}_{g}\right)$ is defined by the action of \mathbb{Z} on Λ_{g} given by multiplication by x. Note that if $g, h \in \mathbb{Z}[x]$ with $g(x)=x^{n} h(x)$ for some $n \in \mathbb{N}$ then $B_{g}=B_{h}$; so assume henceforth that 0 is not a root of g. It is also evident that B_{g} is $*$ isomorphic to B_{-g}. If g is irreducible, degree $g>0$ and g has a positive real root $a \in \mathbb{R}$ then B_{g} is just the dilation algebra B_{a} introduced in [1].

Define $E_{g}(n)$ to be the cardinality of the set of points in $\hat{\Lambda}_{g}$ fixed by $\alpha^{n},(n \in \mathbb{N})$. The sequence $\left\{E_{g}(n) \mid n \in \mathbb{N}\right\}$ is a sequence of isomorphism invariants of the C^{*}-algebra B_{g} [3], [1]. The proof of Proposition 3 in [1] yields the following result (cf. [5]).

Proposition 1.1. Let $g \in \mathbb{Z}[x]$ and $n \in \mathbb{N}$. Let $\left\{r_{1}, \ldots, r_{d}\right\}$ be the (complex) roots of g, a_{d} the leading coefficient of g and f_{m} the m-th cyclotomic polynomial.
(a) If f_{m} does not divide g for all m with $m \mid n$ then

$$
E_{g}(n)=\left|\prod_{j=1}^{n} g\left(\exp \left(2 \pi i j n^{-1}\right)\right)\right|=\left|a_{d}\right|^{n} \prod_{k=1}^{d}\left|1-r_{k}^{n}\right| .
$$

(b) If $f_{m} \mid g$ for some $m \mid n$ then $E_{g}(n)$ is infinite.

If g has no roots of unity as a zero then by Proposition 1.1 a) the growth rate of the periodic points $G(g)=\lim _{n \rightarrow \infty} n^{-1} \log \left(E_{g}(n)\right)$ exists and equals $\log \left|a_{d}\right|+\sum_{\left|r_{k}\right|>1} \log \left|r_{k}\right|$.

This latter number is known to be the topological entropy of the automorphism α of the compact group $\hat{\Lambda}_{g},\left[2\right.$, Section 12]. If $\hat{\Lambda}_{g}$ is connected, i.e., a solenoid, this fact

[^0](namely, the entropy of α is $\log \left|a_{d}\right|+\sum_{\left|r_{k}\right|>1} \log \left|r_{k}\right|$) is due to Yuzvinski, [6]. It is straightforward to see that $\hat{\Lambda}_{g}$ is connected (equivalently that Λ_{g} is torsion free) if and only if the content of $g, \operatorname{cont}(g)$, is one. In fact, the quotient of Λ_{g} by its subgroup of torsion elements is $\Lambda_{g_{0}}$ where $g=\operatorname{cont}(g) g_{0}$.

For the dynamical systems considered here we have shown that the entropy of α equals the growth rate of the periodic points if g has no roots of unity as zeros. This extends what was known previously, namely, that this was true if α was expansive or, equivalently, if g had no zeros on the unit circle, [4], [5].

This may be extended further. Each $g \in \mathbb{Z}[x]$ has only finitely many zeros, so $f_{m} \mid g$ for finitely many m, say m_{1}, \ldots, m_{r}. Since $\mathbb{Z} \backslash\left(\bigcup_{i=1}^{r} m_{i} \mathbb{Z}\right)$ is an infinite set if $m_{i} \neq 1$, one has $\liminf n_{n \rightarrow \infty} n^{-1} \log \left(E_{g}(n)\right)=\log \left|a_{d}\right|+\sum\left|r_{k}\right|>1 \log \left|r_{k}\right|$ which is the topological entropy of α. Thus, if 1 is not a zero of g (equivalently, if α has at most a finite number of fixed points), the growth rate of the finite numbers of periodic points of α is equal to the entropy of α.

For $g=\sum_{j=0}^{d} a_{j} x^{j} \in \mathbb{Z}[x]$ (with 0 not a root of g) define $g^{0} \in \mathbb{Z}[x]$, the opposite of g, by $g^{0}=\sum_{j=0}^{d} a_{d-j} x^{j}$. Thus, $g^{0}(x)=x^{d} g\left(x^{-1}\right)$ and if $\left\{r_{1}, \ldots, r_{d}\right\}$ are the roots of g then g^{0} has roots $\left\{r_{1}^{-1}, \ldots, r_{d}^{-1}\right\}$. Since $|g(0)|=\left|a_{d} \Pi_{k=1}^{d} r_{k}\right|$ it follows that $E_{g}=E_{g^{0}}$, so the invariant E_{g} cannot distinguish between the C^{*}-algebras B_{g} and $B_{g^{0}}$. These algebras are, however, * anti-isomorphic.

Proposition 1.2. For $g \in \mathbb{Z}[x]$, the C^{*}-algebra $\left(B_{g}\right)^{\text {op }}$ is $*$ isomorphic to $B_{g^{0}}$.
Proof. The map $x \rightarrow x^{-1}$ defines a ring automorphism of $\mathbb{Z}\left[x, x^{-1}\right]$ mapping the ideal (g) to the ideal $\left(g^{0}\right)$. This yields a group isomorphism of Λ_{g} with $\Lambda_{g^{0}}$ which intertwines the \mathbb{Z} action defined by α on Λ_{g} with the \mathbb{Z} action defined by α^{-1} on $\Lambda_{g^{0}}$. The C^{*}-algebras B_{g} and $C\left(\hat{\Lambda}_{g^{0}}\right) \rtimes_{\alpha^{-1}} \mathbb{Z}$ are thus $*$ isomorphic. The latter is, however, $*$ antiisomorphic to the C^{*}-algebra $C\left(\hat{\Lambda}_{g^{0}}\right) \rtimes_{\alpha} \mathbb{Z}=B_{g^{0}}$ via a map ψ with $\left.\psi\right|_{C\left(\hat{\Lambda}_{g^{0}}\right)}$ the identity map and $\psi(U)=U^{-1}$ where U is the unitary in $B_{g^{0}}$ implementing the automorphism α on $C\left(\hat{\Lambda}_{g^{0}}\right)$.
2. If $g \in \mathbb{Z}[x]$ has degree 0 , i.e., $g \in \mathbb{Z}$ then $E_{g}(m)=|g|^{m},(m \in \mathbb{N})$. Thus, B_{g} is * isomorphic to B_{h} for $h \in \mathbb{Z}$ if and only if $|g|=|h|$. Note that $G(g)=\log |g|$ in this case.

Consider $g \in \mathbb{Z}[x]$ of degree 1 , so $g(x)=a x+b$. The only possible roots of modulus 1 for g are either 1 (if $a=-b$) or -1 (if $a=b$). In the first case E_{g} is always infinite valued; so, for different values of $m=(a, b)$, the algebras B_{g} cannot be distinguished by means of the invariant E. In the second case, $E_{g}(2 n)$ is infinite for $n \in \mathbb{N}$ and $E_{g}(1)=2|a|$. Thus, if $g, h \in \mathbb{Z}[x]$ with degree $g=$ degree $h=1$ and -1 is a root of g then B_{g} is $*$ isomorphic to B_{h} if and only if $g=h$ or $g=-h$.

If $g \in \mathbb{Z}[x]$ has degree one with no zeros of modulus 1 then $G(g)=\max \{\log |a|$, $\log |b|\}$ and $E_{g}(1)=|a+b|$. Define $h \in \mathbb{Z}[x]$ by $h(x)=A x+B$ with $A=\exp (G(g))=$ $\max \{|a|,|b|\}$ and B the unique element in \mathbb{Z} with $-A<B<A$ and $|A+B|=E_{g}(1)$. Then $g= \pm h$ or $g= \pm h^{0}$.

We have shown that if $g, h \in \mathbb{Z}[x]$ with degree g and degree $h \leq 1$ and 1 is not a zero of g then B_{g} is $*$ isomorphic or $*$ anti-isomorphic to B_{h} if and only if $g= \pm h$ or $g= \pm h^{0}$.

The following result uses the simple observation that knowledge of $E_{g}(n)$ for $n=$ $1,2,4$ is equivalent to knowledge of the values $|g(1)|,|g(-1)|$ and $|g(i)|$. Since $g(1)$ and $g(-1) \in \mathbb{R}$, knowledge of $E_{g}(1)$ and $E_{g}(2)$ leaves only two possible values for each of $g(1)$ and $g(-1)$.

THEOREM 2.1. If $g, l \in \mathbb{Z}[x]$ are degree two and irreducible then B_{g} is $*$ isomorphic or $*$ anti-isomorphic to B_{l} if and only if $l= \pm g$ or $l= \pm g^{0}$.

Proof. Proposition 1(b) shows that the invariant E distinguishes the algebras B_{g}, g a cyclotomic polynomial. Assume therefore that g has no roots of unity as zeros. If $g(x)=a_{2} x^{2}+a_{1} x+a_{0}=a_{2}\left(x-r_{1}\right)\left(x-r_{2}\right)$ then

$$
\exp (G(g))= \begin{cases}\left|a_{2} r_{1} r_{2}\right|=\left|a_{0}\right| & \text { if }\left|r_{1}\right|,\left|r_{2}\right|>1 \\ \left|a_{2}\right| & \text { if }\left|r_{1}\right|,\left|r_{2}\right| \leq 1 \\ \left|a_{2} r_{1}\right| & \text { if }\left|r_{1}\right|>1 \text { and }\left|r_{2}\right| \leq 1 \\ \left|a_{2} r_{2}\right| & \text { if }\left|r_{1}\right| \leq 1 \text { and }\left|r_{2}\right|>1\end{cases}
$$

Since g has real coefficients, the roots, if non-real, are a complex conjugate pair and so are equal in modulus. Thus, $\exp (G(g))=\left|a_{2} r_{1}\right|$ (or $\left.\left|a_{2} r_{2}\right|\right)$ only if the roots are real and (since g is irreducible) non rational. Thus, either $\exp (G(g)) \in \mathbb{N}$ or $\exp (G(g)) \notin \mathbb{Q}$, the latter occuring if and only if the roots of g are real and 1 lies between their moduli. Consider these two cases separately.

First assume $\exp (G(g)) \in \mathbb{N}$. Since $\left|a_{2}, r_{1} r_{2}\right|=\left|a_{0}\right|, \exp G(g)=\max \left\{\left|a_{0}\right|,\left|a_{2}\right|\right\}$. Let $A_{0}=\exp (G(g)),|g(1)|=\alpha$ and $|g(-1)|=\beta$. Since a degree two polynomial is uniquely specified by three points on its graph, there are eight possible degree two polynomials l with constant term $\pm A_{0},|l(1)|=\alpha$ and $|l(-1)|=\beta$. We have $l(x)=$ $a_{l} x^{2}+b_{l} x \pm A_{0}$ where $a_{l}=(l(1)+l(-1)) 2^{-1} \mp A_{0}$ and $b_{l}=(l(1)-l(-1)) 2^{-1}$. Note that the possible polynomials with constant term A_{0} are, after multiplying by -1 , just those possible polynomials with constant term $-A_{0}$; so it is enough to consider the four with constant term A_{0}.

Thus, $|l(i)|^{2}=\left(A_{0}-a_{l}\right)^{2}+b_{l}^{2}=4 A_{0}^{2}+\left(\alpha^{2}+\beta^{2}\right) 2^{-1}-2 A_{0}(l(1)+l(-1))$ and since $|l(i)|, A_{0}, \alpha$ and β are all determined by E_{g}, so is $(l(1)+l(-1))$. This specifies exactly one polynomial l unless $\alpha=\beta$, in which case there are two possibilities, namely, $l(1)=\alpha$ and $l(-1)=-\alpha$ or $l(1)=-\alpha$ and $l(-1)=\alpha$. Thus $l(x)=-A_{0} x^{2}-\alpha x+A_{0}$ or $l(x)=-A_{0} x^{2}+\alpha x+A_{0}$. However, one of these is minus the opposite of the other, so the only possible l with $E_{g}=E_{l}$ are $\pm g$ or $\pm g^{0}$.

Now consider the case $\exp (G(g)) \notin \mathbb{Q}$ which occurs if and only if the roots of g are real and 1 lies between their moduli. Since the roots of g have different moduli, $a_{1} \neq 0$. Again, if α, β denote the (non-zero) natural numbers $|g(1)|$ and $|g(-1)|$ respectively, we have $l|(1)|=\alpha$ and $|l(-1)|=\beta$. Since any polynomial l of degree two may be written as $l(x)=a_{l} x^{2}+[l(1)-l(-1)] 2^{-1} x+\left[(l(1)+l(-1)) 2^{-1}-a_{l}\right]$, one has $|l(i)|^{2}=$ $\left(\alpha^{2}+\beta^{2}\right) 2^{-1}+2\left[2 a_{l}^{2}-a_{l}(l(1)+l(-1))\right]$. Note that $l(1)-l(-1) \neq 0$ since the roots of l have different moduli.

Denoting $\exp G(g)$ by e we have $\left|a_{l} \lambda\right|=\exp G(l)=e$ where λ is the real root of l of modulus larger than 1 . Substitute the two possible values (in terms of the coefficients of l) of the roots of l in $e= \pm a_{l} \lambda$ to obtain

$$
4 e \pm(l(1)-l(-1))=\left[(l(1)-l(-1))^{2}-8 a_{l}\left(l(1)+l(-1)-2 a_{l}\right)\right]^{1 / 2} .
$$

Square both sides to obtain

$$
\begin{equation*}
2 e^{2} \pm e(l(1)-l(-1))=2 a_{l}^{2}-a_{l}(l(1)+l(-1)) \tag{1}
\end{equation*}
$$

and substitute this into the above expression for $|l(i)|^{2}$ to conclude the non-zero value

$$
\begin{equation*}
\pm(l(1)-l(1))=\left[|l(i)|^{2}-\left(\alpha^{2}+\beta^{2}\right) 2^{-1}-4 e^{2}\right] 2^{-1} e^{-1} \tag{2}
\end{equation*}
$$

Since $|l(1)|=\alpha$ and $|l(-1)|=\beta$, there are only four different possible values for $\pm(l(1)-l(-1))$, namely, $\alpha+\beta, \alpha-\beta,-\alpha+\beta$ and $-\alpha-\beta$. (If $\alpha=\beta$, one has only two different possibilities, $\alpha+\beta$ and $-\alpha-\beta$, since $l(1)-l(-1)$ must be non zero.) Since the right hand side of equation (2) is completely determined in terms of information contained in E_{g}, one of these four possibilities is determined by E_{g}. We choose one of these four values and show that there are only four possibilities for l, namely, $\pm g$ and $\pm g^{0}$ (the other three cases resolve themselves in an analogous manner).

Suppose the value determined by E_{g} is $-\alpha+\beta$, so $l(1)-l(-1)=-\alpha+\beta$ or $-(l(1)-$ $l(-1))=-\alpha+\beta$. Note that the quadratic (1) allows two possibilities for a_{l} (and thus for l) once the values of $l(1)$ and $l(-1)$ are fixed. If $l(1)-l(-1)=-\alpha+\beta$, the two possibilities for l are

$$
(-\alpha-\beta+\gamma) 4^{-1} x^{2}+(-\alpha+\beta) 2^{-1} x+(-\alpha-\beta-\gamma) 4^{-1}
$$

and

$$
(-\alpha-\beta-\gamma) 4^{-1} x^{2}+(-\alpha+\beta) 2^{-1} x+(-\alpha-\beta+\gamma) 4^{-1}
$$

where $\gamma=\sqrt{\left[(\alpha+\beta)^{2}+8\left(2 e^{2}+(-\alpha+\beta) e\right)\right]}$. If $-(l(1)-l(-1))=-\alpha+\beta$ the possibilities for l are

$$
(\alpha+\beta+\gamma) 4^{-1} x^{2}+(\alpha-\beta) 2^{-1} x+(\alpha+\beta-\gamma) 4^{-1}
$$

and

$$
(\alpha+\beta-\gamma) 4^{-1} x^{2}+(\alpha-\beta) 2^{-1} x+(\alpha+\beta+\gamma) 4^{-1}
$$

Since one of these four is g we conclude that l is $\pm g$ or $\pm g^{0}$.
3. The above result for degree two irreducible polynomials in $\mathbb{Z}[x]$ made use only of $E_{g}(n)$ with $n=1,2,4$ and $G(g)$. Perhaps for higher degree irreducible polynomials more of the information in E_{g} could be used to show a similar result. The techniques employed here are inadequate for this, however, and the results obtained here should mainly be viewed as evidence for a more general result.

Since $E_{h k}=E_{h} E_{k}$, it follows that E cannot distinguish between B_{g} and B_{l} where $g=h k$ and $l=h^{0} k, h, k \in \mathbb{Z}[x]$. For h, k coprime in $\mathbb{Z}[x]$ I have shown that these algebras are $*$ isomorphic (and thus also $*$ anti-isomorphic), lending some weight to the possibility that E is sufficient to distinguish the algebras B_{g} (for g not divisible by cyclotomic polynomials).

References

1. B. Brenken and P. Jorgensen, A family of dilation crossed product algebras, J. Operator Theory 25(1991), 299-308.
2. B. Kitchens and K. Schmidt, Automorphisms of compact groups, Ergod. Th. and Dynam. Sys. 9(1989), 691-735.
3. S. Kawamura, J. Tomiyama and Y. Watatani, Finite dimensional irreducible representations of C^{*}-algebras associated with topological dynamical systems, Math. Scand. 56(1985), 241-248.
4. W. Lawton, The structure of compact connected groups which admit an expansive automorphism, Springer Lecture Notes in Math. 318(1973), 182-196.
5. D. Lind, K. Schmidt and T. Ward, Mahler Measure and Entropy for Commuting Automorphisms of Compact Groups, Invent. Math. (3) 101(1990), 593-629.
6. D. Lind and T. Ward, Automorphisms of solenoids and p-adic entropy, Ergod. Th. and Dynam. Sys. 8(1988), 411-419.

Department of Mathematics
University of Calgary
Calgary, Alberta
T2N 1N4

[^0]: The author acknowledges support, in connection with this research, from the Natural Sciences and Engineering Research Council of Canada.

 Received by the editors June 26, 1992.
 AMS subject classification: Primary: 46L35; secondary: 28D20.
 (C) Canadian Mathematical Society 1993.

