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ISOMORPHISM CLASSES OF SOLENOIDAL ALGEBRAS I 

BERNDT BRENKEN 

ABSTRACT. Each g G Z[x] defines a homeomorphism of a compact space Ag. We 
investigate the isomorphism classes of the C*-crossed product algebra Bg associated 
with the dynamical system (Ag, Z). An isomorphism invariant Eg of the algebra Bg is 
shown to determine the algebra Bg up to * or * anti-isomorphism if degree g < 1 and 
1 is not a root of g or if degree g — 2 and g is irreducible. It is also observed that 
the entropy of the dynamical system (Âg, Z) is equal to the growth rate of the periodic 
points if g has no roots of unity as zeros. This slightly extends the previously known 
equality of these two quantities under the assumption that g has no zeros on the unit 
circle. 

1. To each g eZ[x] associate a C*-algebra #g, the crossed product algebra C(Ag) x^ 

Z. HereA^ denotes the dual group of the discrete abelian group Ag = Z[JC, JC"1 ]/(g) where 

(g) is the principal ideal generated by g in the ring Z[x,x_1 ]. The action a of Z on C(Ag) 

is defined by the action of Z on A^ given by multiplication by x. Note that if g, h 6 Z[x] 

with g(x) = xnh(x) for some n E N then Bg = B^\ so assume henceforth that 0 is not a 

root of g. It is also evident that Bg is * isomorphic to B-g. If g is irreducible, degree g > 0 

and g has a positive real root a G IR then Bg is just the dilation algebra Ba introduced in 

[1]. 
Define Eg(n) to be the cardinality of the set of points in Ag fixed by an, (n G N). The 

sequence \Eg(n) \ n G N} is a sequence of isomorphism invariants of the C*-algebra Bg 

[3], [1]. The proof of Proposition 3 in [1] yields the following result (cf. [5]). 

PROPOSITION 1.1. Let g G Z[x] andn e N. Let { n , . . . , rd} be the (complex) roots 

of g, cid the leading coefficient of g andfm the m-th cy clot omic polynomial, 

(a) Iffm does not divide g for all m with m\n then 

EJn) 
d 

n ^ e x ^ T r y n - 1 ) ) = | a d | « n i l - ^ l 
1 k=\ 7=1 

(b) Iffm\g for some m\n then Eg(n) is infinite. 

If g has no roots of unity as a zero then by Proposition 1.1a) the growth rate of the 

periodic points G(g) = l i m ^ o o / i - 1 \og(Eg(n)^j exists and equals log |a^|+E|^|>i log |r^|. 

This latter number is known to be the topological entropy of the automorphism a 

of the compact group Ag, [2, Section 12]. If Ag is connected, i.e., a solenoid, this fact 
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(namely, the entropy of a is log |a</|+£|rjt|>i log \rk\) is due to Yuzvinski, [6]. It is straight
forward to see that Ag is connected (equivalently that Ag is torsion free) if and only if 
the content of g, cont(g), is one. In fact, the quotient of Ag by its subgroup of torsion 
elements is Ag0 where g = cont(g)go. 

For the dynamical systems considered here we have shown that the entropy of a 
equals the growth rate of the periodic points if g has no roots of unity as zeros. This 
extends what was known previously, namely, that this was true if a was expansive or, 
equivalently, if g had no zeros on the unit circle, [4], [5]. 

This may be extended further. Each g E Z[JC] has only finitely many zeros, so/m |g 
for finitely many m, say m\,..., mr. Since Z \ (U[=i tnïl) *s a n infinite set if mt ^ 1, 
one has liminf„_oo^-1 log(iSg(w)) = log \ad\ + T,\rk\>i l°g kit I which is the topological 
entropy of a. Thus, if 1 is not a zero of g (equivalently, if a has at most a finite number 
of fixed points), the growth rate of the finite numbers of periodic points of a is equal to 
the entropy of a. 

For g = EjLo aJxJ ^ ^M ( w i m 0 not a root of g) define g0 G Z[x], the opposite of g, 
by g° = J2j=0ad^jXj. Thus, g°(x) = xdg(x~l) and if { n , . . . , rd} are the roots of g then 
g° has roots {r^1 , . . . , r^ 1}. Since |g(0)| = \ad u£=l rk\ it follows that Eg = Ego, so the 
invariant Eg cannot distinguish between the C* -algebras Bg and Bgo. These algebras are, 
however, * anti-isomorphic. 

PROPOSITION 1.2. For g E T\x\ the C -algebra (Bg)
op is * isomorphic to Bgo. 

PROOF. The map x —> x~l defines a ring automorphism of Z[x,x_1] mapping the 
ideal (g) to the ideal (g°). This yields a group isomorphism of Ag with Â o which inter
twines the Z action defined by a on Ag with the Z action defined by a~l on A^o. The 
C*-algebras Bg and C(Ago) xa-\ Z are thus * isomorphic. The latter is, however, * anti-
isomorphic to the C*-algebra C(Ago) x a Z = Bgo via a map X[J with ^|C(A 0 ) m e identity 
map and ip(U) = U~l where U is the unitary in Bgo implementing the automorphism a 
on C(Ago). m 

2. If g E l[x] has degree 0, i.e., gel then Eg(m) = |g|m, (m E N). Thus, Bg is 
* isomorphic to Bh for h E Z if and only if |g| = |/i|. Note that G(g) — log \g\ in this 
case. 

Consider g E T[x\ of degree 1, so g{x) = ax+b. The only possible roots of modulus 1 
for g are either 1 (if a = —b) or — 1 (if a = b). In the first case Eg is always infinite valued; 
so, for different values of m = («, &), the algebras Bg cannot be distinguished by means 
of the invariant £. In the second case, Eg(2n) is infinite for n E N and£g(l) = 2|a|.Thus, 
if g, h E Z[*] with degree g = degree h—\ and —1 is a root of g then Bg is * isomorphic 
to Bh if and only if g = /z or g = — /L 

If g E Z[JC] has degree one with no zeros of modulus 1 then G(g) — max{log|a|, 
log|Z?|}and£g(l) = \a + b\. Define h E Z[x] by h(x) = Ax+ # with A = exp(G(g)) = 
max{|a|, |&|} and B the unique element in Z with —A < Z? < A and |A + B\ = £#(1). 
Then g = ±/ Î or g = ±h°. 
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We have shown that if g, h G Z[x] with degree g and degree h<\ and 1 is not a zero 
of g then Bg is * isomorphic or * anti-isomorphic to Bh if and only if g = ±h or g = ±h°. 

The following result uses the simple observation that knowledge of Eg(n) for n = 
1,2,4 is equivalent to knowledge of the values |g(l)|, \g(—1)| and \g(i)\. Since g(l) and 
g(— 1) G R, knowledge of Eg(\) and Eg(2) leaves only two possible values for each of 
g(l)<mdg(-l). 

THEOREM 2.1. //"g, / G Z[x] are degree two and irreducible then Bg is * isomorphic 
or * anti-isomorphic to Bi if and only if I — ±g or I — ±g°. 

PROOF. Proposition 1(b) shows that the invariant E distinguishes the algebras Bg, 
g a cyclotomic polynomial. Assume therefore that g has no roots of unity as zeros. If 
g(x) = a2X2 + a\x + tfo — 02(* ~ n)(* ~ ri) then 

0oI if |ri|, |r2 | > 1 
if k i | , N < 1 
if |r\ | > 1 and \r^\ < 1 
if |n | < 1 and | r^ \ > 1. 

Since g has real coefficients, the roots, if non-real, are a complex conjugate pair and so 
are equal in modulus. Thus, exp(G(g)) = \air\ | (or \a2r2\) only if the roots are real and 
(since g is irreducible) non rational. Thus, either exp(G(g)) G N or exp(G(g)) ^ Q, 
the latter occuring if and only if the roots of g are real and 1 lies between their moduli. 
Consider these two cases separately. 

First assume exp(G(g)) G N. Since |<Z2>n7*21 = \ao\, expG(g) = max{|ao|» \a2\}-
Let A0 = exp(G(g)), \g(l)\ = oc and \g(—1)| = f3. Since a degree two polynomial 
is uniquely specified by three points on its graph, there are eight possible degree two 
polynomials / with constant term =b40, |/(1)| = a and |/(—1)| = (5. We have l(x) — 
aix2 +blx±A0 whereat.= (/(l) + / ( - l ) )2 - 1 T^o and/?/ = (/(l) -l{-\))l-\ Note that 
the possible polynomials with constant term Ao are, after multiplying by —1, just those 
possible polynomials with constant term — Ao; so it is enough to consider the four with 
constant term A0. 

Thus, |/(/)|2 = (A0 - ad1 + b] = 4A2
0 + (a2 + /32)2"1 - 2A0(/(1) + / ( - l ) ) and since 

|/(/)|,Ao, oc and (3 are all determined by Eg, sois (/(l) + /(—1)). This specifies exactly one 
polynomial / unless a = (5, in which case there are two possibilities, namely, /(l) = a 
and /(— 1) = —a or 1(1) = —a and /(—1) = a. Thus l(x) — — AQX2 — ax + Ao or 
l(x) — — Aox2 + ax + Ao. However, one of these is minus the opposite of the other, so the 
only possible / with Eg = E{ are ±g or ±g°. 

Now consider the case exp(G(g)) ^ Q which occurs if and only if the roots of g are 
real and 1 lies between their moduli. Since the roots of g have different moduli, a\ ^ 0. 
Again, if a, j3 denote the (non-zero) natural numbers |g(l)| and \g(—1)| respectively, 
we have /|(1)| = a and |/(—1)| = (3. Since any polynomial / of degree two may be 
written as l(x) = a,*2 + [1(1) - / ( - 1 ) ] 2 - 1 J C + [(/(l) + /(-1))2-1 - at\ one has |/(/)|2 = 
(a2 + /32)2-{ + 2[la2 - at(l(l) + / ( - l ) ) j . Note that Z(l) - Z(-l) ^ 0 since the roots of / 
have different moduli. 

exp(G(#)) = 

\a2r\r2\ 
\a2\ 
\air\\ 
\a2r2\ 
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Denoting exp G(g) by e we have \at\\ — exp G(l) — e where À is the real root of / of 
modulus larger than 1. Substitute the two possible values (in terms of the coefficients of 
/) of the roots of / in e = ±atX to obtain 

4e ± (1(1) - / ( - l ) ) = [(1(1) - / ( - l ) ) 2 - 8fl/(/(l) + / ( - l ) - lat)}1'2. 

Square both sides to obtain 

(1) 2e2 ± e(l(\) - l(-\)) = 2a] - az(/(l) + / ( - l ) ) 

and substitute this into the above expression for |/(/)|2 to conclude the non-zero value 

(2) ±(/(l)-/(l)) = [|/(0|2-(a2 + /32)2-1 -Ae2Yxe-\ 
Since |/(1)| = a and |/(—1)| = /3, there are only four different possible values for 

±(/(l) — /(—1)), namely, a + /?, a — /3, —a + /3 and —a — /}. (If a = /3, one has only 
two different possibilities, a+/? and —a — /3, since /(l) — /(—1) must be non zero.) Since 
the right hand side of equation (2) is completely determined in terms of information 
contained in Eg, one of these four possibilities is determined by Eg. We choose one of 
these four values and show that there are only four possibilities for /, namely, ±g and 
±g° (the other three cases resolve themselves in an analogous manner). 

Suppose the value determined by Eg is — a+/?, so 1(1) — /(—1) = —a+/3 or — (l(l) — 
/(—1)) = —a + /?. Note that the quadratic (1) allows two possibilities for ai (and thus 
for /) once the values of 1(1) and /(—1) are fixed. If 1(1) — /(—1) = —a + (3, the two 
possibilities for / are 

(-a -(3 + 1)A~1^ + (-a + 0)2~lx + (-a - j3 - 7)4 - 1 

and 
(-a-13- 7)4~1x2 + (-a + (3)2~xx + (-<*-/? + 7)4_1 

where 7 = J [(a + f3)2 + %(2e2 + (-a + j3)e) ]. If - ( / ( l ) - Z(-l)) = -a + /3 the possi
bilities for / are 

(a + j3 + 7)4"1x2 + (a - (3)2~xx + (« + / ? - 7)4_I 

and 
(a + /3 - 7)4~1JC2 + (a - /3)2_1x + (a + /3 + 7)4_1. 

Since one of these four is g we conclude that / is ±g or ±g°. • 

3. The above result for degree two irreducible polynomials in Z[x] made use only 
of Eg(n) with n = 1,2,4 and G(g). Perhaps for higher degree irreducible polynomials 
more of the information in Eg could be used to show a similar result. The techniques 
employed here are inadequate for this, however, and the results obtained here should 
mainly be viewed as evidence for a more general result. 

Since E^u = E^E^ it follows that E cannot distinguish between Bg and B\ where 
g — hk and / = h°k, h,k G 1[x\. For h,k coprime in T[x\ I have shown that these 
algebras are * isomorphic (and thus also * anti-isomorphic), lending some weight to 
the possibility that E is sufficient to distinguish the algebras Bg (for g not divisible by 
cyclotomic polynomials). 
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