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ABSTRACT

The multiplicity factor of stellar encounters in the
infinite homogeneous layer with the constant thickness H has
been studied. It is seen that simultaneous effect of Chaoti-
cally distribated distant field stars leads to the convergen-
ce of the collision integral for the great distances in the
plane disk and in the layer of the constant finite thickness.

Many problems of stellar dynamics have the essential
difficulty - the divergence of the collision integral. This
convergence leads to the impossibility to find some express-
ions and values under the account of the distant gravitatio-
nal interactions of the stellar system members. One of the
example of this convergence is the increasing of the probabi-
lity of the stellar encounter of the test star with the field
star, the velocity variation after the encounter being Av2.

Let's denote v =~ the test start velocity, \7:'2' - the mean
square of the field star velocity, B = vz/\'r'f, g = sz/v-f.
Then probability density (the transition function) ¢ (8,9)

. =3 . . . . .
increases as ¢ for g -+ 0, i.e. for faint interaction, in 3-
dimensional stellar system. This result was obtained by
Agekyan (1959) and Henon (1959), Agekyan found the transition
probability for homogeneocus stellar medium with the spherical
Maxwellian velocity distribution of the field stars. And then
he introduced the screening factor for the account of the sim-
ultaneous interaction of the test star by the field stars
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which are at the distance R from the test star,
AR) = Aﬁ'/AFl )

where &F is the mean force from these field stars, &F,-the
arithmetic sum of the force moduls from these stars- {on the
unit mass). That factor takes into account the geometrical
summing of the gravitational forces from all these stars in-
stead of the arithmetical summing, as it was done when the
double encounter probability, ¢ (8,g9)dg, was found (Agekyn,
1961).

Agekyan (1961) found the coefficient of the multipli-
city ) for 3-dimensional medium as the function of N-the
mean mimber of the field stars up to distance R from the test
star, _

. . _2/2n &3/2
X=sin x

A(ff)=“——l;w —r—e ax (2)
X

-1 .
This function increases as 92 when g - 0, as A¢ ~ g ~. This
means that we can £ind the first order and higher moments of

the velocity variation fm gk A¢ dgk > 0), ut can't find

-

the probability of any encounter.

Petrovskaya, Chumak and Chumak (1984) found the double
encounter probability density ¢ (B,g), for the plane (2-dime-
nsional) medium. In that medium the effect of the distant en-
counters is gmaller than in the 3-dimensional system, so

0 '\«g-2 when g - 0.

To £ind the multiplicity factor for the plane case we
must consider the field stars in the ring of small thickness
h( << R). The test star is in the centre of the ring contain-

ed N = "R?D. The arithmetic sum of the forces module from
these stars is

AFl = 2nGm Dh/R 3)
G is the gravitational constant, D the mumber of stars in the
unit of volume. For the mean force from these field stars we
have

- ->
& = [FIWE) - PIw F)IaF 4)
where W({F) is the distribution function of the force from the

whole stellar field,wN(F) is the force moduls distribution
function from the whole stellar field without stars of the
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-N_-N

N°
N! *

functions in (4) may be found by Eltsmark method (Chandra-

sekhar, 1947) using Fourier transformatien of. that func-
tions

ring region (R, R+h), p(N) = The force distrilution

-

> 1 ) P T
WEF) = =5 [xp (=ip” )A (p)dp,
4w

- (5)
> 1 OF >+
WN(F) = 4—“2— Jexp (=ip )AN(p)dp
and + 3
Y = Gmr/r",
R
Alp) = 1lim { o_ J exp (ib’@')di:}u R {6)

N> N i=0
A (3) = %—‘ J exp (iaﬁa’)d;]N exp -D J“” (l-elpw )d;.
i=0 r=R+h
From 1), @B)=(6) we £ird

__]iNi_-{-ﬁ-— 2N +ﬁln

/TP A /AL (e VFOHL)

A (M=

2N
- r
N+ /F— +1

where N is the mean number of stars which are nearer than the
star of the field from which the approach is considered. For

N+ » we have from (7) A v N 1,

+ N 1n 7)

Using the approximate expression for the square velocity vari-~
ation
v = 207, @/ W),

we find XA ~ g2 when N+ @ , or g -+ 0. The product X¢ is
finite when g = 0 in that case.
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The analogous task was decided for the more real system:
the homogeneous layer of finite thickness H. The double encou-
nter probability function founx% for this case by Chumak and
Chumak (1988) is varying as g7« when g + 0. We consider now
the multiplicity factor of encounters in the infinite homoge-
necus layer with the constant thickness H.

Let's consider the stars of equal masses m which are R
to R+h from the test star (h << R). There are two cases (Fig.
1):

1) R < H/2. Then the arithmetic sum of the force modulus
from these stars is

AlF=41erDh 8)

2) R > H/2. Then we add up the force modulus from the part
of spherical layer.

5F = 2T Gm Dh H/R (9)

For &F in (1) we have #)-(6). In the case R < B/2 the volu-
me R < r < R+h is the spherical layer with thickness h, in
the case R > H/2 - the part of spherical layer Fig. 1). The-
refore we find two different expression for the multiplicity

coefficient
- - 22m £3/2
= - 4 X=-sin x 3 7_ /3.1/3 2
X(N)—.n_ of——"‘-re CL+24 I-\?l\t X)dxao)
R < B2, N« N
and
- 3 (2N 1,372 3/2
)\(I\—I)=4——IX-SI§XE 5 o 3No 3
i) [
X
cl1e 2 (2 B 132 2. a1)
T IR X ’

R > W2, §>N°.

where N = -%—D (w2 )3 is the mumber of stars in the sphere

with radius H/2. These expressions are different a little when
R = W2, N= No' because we kept no more than the lowest power

of R/H in the first case, and the lowest power H/R in the sec-
ond case. The difference after integrating is small ( v4R), :
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If E -+ », N + »(f0)changes to the expression (2) for
the 3 -dimensional médium.

One can see from (I1) that A(F) ~ N' when N+ = . As
it was shown for the plane system, N~V g~=2, A ~+ g2 when g + 0,
Therefore simultaneous effect of chaotically distrituted dis-
tant field stars leads to the convergence of the collision
integral for the great distances in the plane disk and in the
layer of the constant finite thickness because in such systems
the transition prokability is a finite value for the infinite-
stimal velocity variations.

In Fig. 2 we show the function X\ (N) for different N_.
Two limit cases are: J-dimensional infinite medium,No = °°,°
and the plane system, N, = O. The value N, = 10% cofresponds
to our Galaxy.
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