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ALMOST FIXED POINT AND BEST APPROXIMATIONS
THEOREMS IN H-SPACES

O. HapZ16

Using the methods of KKM theory, almost fixed point and best approximations
theorems in H-spaces are proved.

1. INTRODUCTION

The notion of an H-space was introduced by Bardaro and Ceppitelli in {1] and
since 1988, many results from Nonlinear Functional Analysis in such spaces have been
obtained [1, 2, 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 18].

In this paper we shall introduce some generalisations of the Zima condition (8,9,
10]) on a subset of an H-space. Some fixed point and almost fixed point theorems for
single-valued and multi-valued mappings f: K — 2X  where X is a not necessarily
locally convex topological vector space and K satisfies the Zima condition, have been
proved in (8, 9, 10].

2. PRELIMINARIES

Let A be a subset of a topological space X. By 24 we denote the family of all
nonempty subsets of A and by F(A) the family of all nonempty finite subsets of A.

In [1] the following two definitions are given.

DEFINITION 1. A pair (X, {T4}) issaid to be an H-spaceif X is a topological
space and {Ta}aecr(x) is a given family of contractible subsets T'4 of X, such that
ACBcCX impliesT4CTp.

DEFINITION 2. A nonempty subset D of an H-space (X, {T'a}) is called H-
convex if for each A€ F(D), T4 C D.

We shall introduce a condition of generalised Zima type in the following way.

DEFINITION 3. Let (X, {T4}) be an H-space with a uniformity V and let K
be a nonempty subset of X. We say that K is of generalised Zima type if for every
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V €V there exists U € V such that for every D € F(K) and every H-convex subset
M of K the following implication holds:

(1) MNU(z)#0, foreveryze D = MnNV(u)#0, for every u € I'p.
REMARK. If K =X and U =V, forevery V € V, then X is of generalised Zima type
if X is al. c. H-space in the sense of [4].

ExAMPLE. Let X be a topological vector space with a fundamental system of neigh-
bourhoods of zero V and let K C X be of Zima type, that is, for every V € V there
exists U € V such that

(2) coU N (K - K)) CV,

where co is the convex hull operation.
We shall prove that (2) implies (1).
Let (2) hold and D € F(K) and M C K, where M is convex. Suppose that

(3) Mn(z+U)#0, for every z € D.
If D = {21, 22,..., 2z}, it follows from (3) that there exists {vi, v2,...,va} C M
such that

vEMN(z+U),ie{l,2,...,n}.

Hence, there exists {w;, wa, ..., wa} C U suchthat v; = z; + w;, 1 € {1, 2, ..., n}.
Ifuel'p=coD then

’IL:ZA"Z;', Ai?O, 1:6{1, 2,...,1).}, ZA,':],
i=1 i=1
and so:
S odwmi=) Xz + ) Awi€utcoUN(K - K))C (utV)NM.

=1 i=1 i=1

From this it follows that M N(u + V) # @, for every u € coD.

Now, we shall give an example of a subset of Zima type in a non locally convex
topological vector space.

Let S(0, 1) be the space of all the equivalence classes of real measurable functions
on [0, 1}, and for every Z € S(0, 1) let

I3 = [ rutan, =0} € =
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Then ||-|| is a paranorm (||| is not homogeneous) and $(0, 1) is a non locally
convex topological vector space in which the fundamental system of neighbourhoods of
zero is given by the family V = {V,}.5¢ where

Ve = {z; [I=]| <e}.
Convergence in this topology coincides with convergence in measure.
Let a >0 and K, C 5(0, 1) be defined by
K. ={z; 7 € §(0, 1); {=(¢)| < a, t € [0, 1]}.
It can be shown that for every s € [0, 1] and every Z, 3 € K,:
(4) ls(Z - )l < (1+2a)s|Z - yll = C(Ka)s |z - 7],
where C(Ky) =1+ 2a > 1. From (4) it follows that
co(Veycixa)) N (Ka — Ka)) C Ve, for every € >0

which means that K, is of Zima type, for every a > 0.

3. AN ALMOST FIXED POINT THEOREM

If (X; {T4}) is an H-space with uniformity V, K C X and F: K — 2X then F
has a V-almost point (V € V) if there exists y € K such that

F(y)nV(y) #0.

THEOREM 1. Let (X; {Ta}) be an H-space with uniformity V and let K be a
nonempty, convex and precompact subset of X. Let F: K — 2X be a lower semicon-
tinuous mapping such that F(z) N K # 0 for every ¢ € K, and F(z) is H-convex for
every z € K. K U F(K) is of generalised Zima type then F has a V-almost fixed

point, forevery V € V.

PROOF: Let V € V and U € V be such that (1) holds for every D € F(K U F(K))
and every H-convex subset M C K U F(K). We shall suppose that every V € V is
open. For every z € K let

G(z)={y,y€ K, F(y)nU(z) = 0}.

Since F is lower semicontinuous and U(z) is open it follows that G(z) is closed for
every £ € K. From the precompactness of K it follows that there exists D, € F(K)

such that

) k¢ | U(z).

z€D,
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Since for every z € K, F(z)NK # 0, it follows from (5) that F(z)N ( U U(z)) #0
zEDl

Hence [) G(z) = 0. From this we conclude that there exists D, C D; such that
z€Dy

I'p, € | G(2).
zeDs
This means that there exists y € I'p, such that y ¢ G(z), for every z € D,, this
means that
F(y)NU(z) #0, for every z € D,.
Since F(y) C K U F(K) and K U F(K) is of generalised Zima type, it follows that
F(y)nV(y) #0, since y € I'p,. Hence y is a V-almost fixed point for F'. 0

4. A BEST APPROXIMATION THEOREM
In this part of the paper we suppose that (X; {['4}) is a metrisable H-space with

metric d.

If0#KCX and F: K — 2% we say that F satisfies the Zs-condition on K if
for every y € K and every € > 0:
(6) co(L(F(y), 6(¢)) N K) C L(F(y), €)
where §: [0, c0) — [0, 00) and for M C X, r >0

L(M,r)={z;z€ X, d(z, M) <r}.

ExAMPLE 2. Let (X, | ||) be a paranormed space, 0 # K C X, F: K — 2X and
suppose there exists C > 0 such that for every s € [0, 1]
(7 |s(uw — v)|| < Cs|lu ~v||, for every u € K, v € F(K).
We shall prove that (7) implies (6) for é(¢) = ¢/C. Let z € co{ L(F(y), 6(¢)) N K). This
means that there exists {21, 23, ..., 2o} € L(F(y), 6(¢)) N K such that z = i Aizi,

=1

A20,i€{l,2,...,n}, T A=1.

=1

Hence z; € K and d(z;, F(y)) < §(¢), for every i € {1,2,...,n}. Hence,
there exists v; € F(y), i € {1,2,...,n} such that |jz; —vi]] < 6(¢), for every
1€{1,2,...,n}.

Then (7) implies

Z Aizs — Z Aiv;
|

i=1

CZ,\ |z — vl < C - -—=

=1

Since F(y) is convex, 2 Awwi € F(y) and so d(z, F(y)) < ”y— Xﬂ: Aivif| < &,
i=1

which means that z € L(F(y), £).
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ExaAMPLE 3. If (X, d, W) is a Takahashi convex metric space (as defined by Takahashi

in [15]) with continuous W and

(a) d(W(z1, 22, A), W(21, 22, A)) < Md(z1, 21) + (1 — A)d(z2, 22)
then for any {z;, z2, ..., zo} C X, any y € cow{z1, Z2, ..., Zn} and any W-convex
set A:
< mi . s
(8) d(y, 4) < Do d(z;, vi)

P

for arbitrary v; € A (i € {1, 2, ..., n}), see [11].

In this case (6) holds for é(¢) = ¢, for every € > 0. Indeed if M is an arbitrary
convex set in X then L{M, €) is a convex set as well. Suppose that z; € L(M, ¢),
1€{1,2,...,n}. Then d(z;, M) < ¢, for every i € {1, 2, ..., n} and so there exists
vi € M, i€ {1,2,...,n} such that d{z;,v;) < e, i € {1,2,...,n}. From (8) it
follows that for every y € cow{z1, 22, ..., Zn}:

dly, M) <e

and so y € L(M, €), which means that L(M, ) is a W-convex set.
In the proof of the next theorem we shall use the following result of Horvath [12]:
Let (M, d) be a complete metric space and let {F;}icr be a family of closed subsets
in M. If the family {F;};c; has the finite intersection property and 1161501(17',) =0,
where o is the Kuratowski measure of noncompactness, then [\ F; is compact and
nonempty. e

THEOREM 2. Let (X; {T4}) be a metrisable H-space with metric d,  # M an
H-convex and complete subset of X , andlet F: M — K(X) (the family of all nonempty
H-convex and compact subsets of X ) be a continuous mapping which satisfies the Zg-

condition on M, where § is continuous and
9) Jnf al{y; y € M, §(d(y, F(y))) < d(=, F(y))}] =0.
Then there exists yo € M such that
B(d(wo, Fwo)) < inf d(z, Flw).
PRrOOF: Let G(z), = € M, be defined in the following way:

G(z) = {y; y € M, §(d(y, F(y))) < d(=, F(y))}-
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We shall prove that G is an H-KKM mapping, that is, that for every D = {21, z2, ..., 2,} C
M

(10) I'p € | G(2).

z€D

Suppose that I'p € |J G(z). Then there exists y € 'p such that y ¢ G(z;) for every
zeD
i€ {1,2,...,n}. This means that

8(d(y, F(y))) > d(z:i, F(y)), foreveryi € {1, 2,...,n},

and so z; € L(F(y), 6(d(y, F(y))))NM, for every i € {1, 2, ..., n}. This implies that

y € co(L(F(y), §(d(y, F(y)))) n M)
C L(F(y), d(y, F(y)))

which means that d(y, F(y)) < d(y, F(y)). This is a contradiction. Hence (10) holds
and G is an H-KKM mapping.

In order to prove that G(z) is closed for every ¢ € M we shall prove that the
mapping y — 6§(d(y), F(y)) (y € M) is lower semicontinuous and for every z € M,
the mapping y — d(z, F(y)) is upper semicontinuous. Let v > 0 and

P, = {y; y € M, §(d(y, F(y))) >~}
Qy ={y; y € M, d(z, F(y)) <7}

We prove that P, and Q. are open.
Since y = (y, F(y)) is upper semicontinuous and

P‘v = {y; yEM, (y, F(y)) Cc {(z’ '”); (z1 v) EMxX; 6(‘1(27 v)) >7}}

it follows that P, is open.

Analogously, since F is lower semicontinuous and
Qv={viy€ M, F(y)n{v; v € X, d(=z, v) < 71} # 0}

therefore Q. is open.
Hence G(z) is closed, for every z € M, and since G is an H-KKM mapping it
follows that {G(z)}zem has the finite intersection property. From (9) it follows that
N G(z)#0.If yo € () G(z) then
z€EM zEM

8(d(yo, F(w))) < Jnf d(z, F(yo))-
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a

CoROLLARY 1. Let (X, d, W) be a Takahashi convex metric space with contin-

uous W such that (a) holds. Let O # M be a convex and complete subset of X and
let F: M — K(X) be a continuous mapping such that

Jnf al{y; y € M, d(y, F(y)) < d(z, F(y))}] = 0.

Then there exists yp € M such that

(1]

(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]

(10]
(11]
(12}

[13]

d(yo, F(yo)) = inf d(z, F (%0))-
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