ON SOME PROPERTIES OF BINARY RELATIONS

KATUZI ONO

Some important notions in the theory of binary relations such as the
relative product of two relations and the converse of a relation are defined in
Whitehead and Russell’s “Principia mathematica” ([1]). McKinsey ([2]) and
Tarski ([3]) gave their systems of postulates for the calculus of relations. Ore
studied on equivalence relations ([4]) and Riguet on closures (fermeture) of
relations ([5] and [6]), and they obtained remarkable results on the structure
of these relations. The purpose of this paper is to examine the relative proper-
ties of some relations to each other, whose notions are closely related to the
notions given by Riguet.

We denote simply by RS the relative product of the relations R and- S, by
R™' the converse of the relation R, and by R[X] the set obtained by operating
R on the set X, ie. R“X of “Principia mathematica.” The notions of the equiva-
lence relation and of the function slightly deviate from the ordinary ones, because
a relation is called here an equivalence relation or a function if it is an equiva-
lence relation or a function on their natural domain. In § 1, definitions of these
notations and notions and some elementary properties are shortly described as
prelimaries.

1. Elementary properties

Let V be the universal class. A class R is said to be a relation when and
only when RS V x V. 1 will write down definitions of fundamental notions and

elementary properties without proof in the following:

(1) Def. R[XI={yl(Ex)(yRx and x&€ X)}.
(2) () (R[{x}1=SKx}]) = R=S,

ie. a relation is perfectly determined by its operator character.

(3) ReS=RIX]JsS[X], XY =RILXIsRIY]
(4) R[kkEJKXk] =kLEJKR[Xk], (kgKRk)[X ] =kgl\’Rk [x]
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(5) R[kQKXk] %kQKR[Xk], (kQKRk)[X] %kQKRk [x].

(6) (R-S)[X1=2rR[X]1-S[X].

(7) (kQKRk)[{x)] =RQKRk[(x}], (R—S)[{x}]=R[{x}]- S[{x}1.

(8) If there is a correspondence X —» ¢(X) between subclasses of V such that
¢ (kUKXk) =kLi¢(Xk) always holds, then there exists a relation R for which
R[i(] =¢ (§ ) always holds.

(9) ()N(R{x}] s S[{x}]) = RES.

(10) Def. R™'={<x, ¥>I{y, x> € R}.

1) (UR)™ =kgKR;‘, (NR)™=NRE, (R- S)'=R'-S71

(12) Def. RS={{z, x>|(Ey)[2Ry and ySx]}.

(13) (RS)[X]=RIS[X]1.

(1) (R°H™ =R, (RS)T=R(ST), (RS)'=S7'R™.

(15) Def. R'=R, R°=RR, R*=RRR, . ...

(16) R™R"=R™", (RM7'=R™MH" (mn=12...)

(17 R€S=R'cS?, RSS=R"sS" n=12,...),

RsS =(RT < ST and TR E TS).

(18) RS{ g{Sk) =ML_:JKRS;¢, S‘ ‘\E_}KRk) S =kgKRk S.

(19) R(kaSk) ngKRSk, E{Q{Rk) S ngKRkS.

(20) (R—-S)T=2RT-ST, R(S—-T)=2RS-RT.

(21) Definition of the identical relation I: I={{x, x>|lx& V}.

(22) IX=XI=X.

23) XNJjX=X1=J=1, (XNXJ=X]=]=1

(24) JsI=J'=]=].

(25) (W[R-{{x, x>} =S+ {x, x>}] =R=S,

([{<x, 2>} * R={x, #>}+S] =R=S.
(26) RR'R2R, R(RTRNI)=(RR'NI)R=R.
(27) R(Vx VIR=S(Vx V)S
=[R'RNI=ST'SNITand RR'NI=SS"'NI1

(28) Def. S is called symmetric if and only if S™'=S.

(29) If Sp is symmetric for every k& K, then kLEJKSk as well as kQKSk are
symmetric.

(30) RUR™, RNR™, R'R, RR™" are symmetric.

(31) Def. T is called transitive if and only if. T? & 7.

(32) If T is transitive, so is also 77"
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If T is transitive and J & I, then T'U J is also transitive.

If T is transitive for every k€ K, so is also kQ{ T,

Def. Fis called a function if and only if FF™' S I

Def. E is called an equivalence relation if and only if E7'E=E.

E is an equivalence relation if and only if E is symmetric as well as

transitive.

Remark. By the definitions (35) and (36), “F is a function” means “F is

a function on its natural domain,” and “E is an equivalence relation” means

“E is an equivalence relation of its natural domain, which is equal to its converse

domain.” For an equivalence relation, reflexivity holds only in the sense
E2IN(ETEUEE™).

(88) If J <= I, then J is an equivalence relation.

(39) If E, is an equivalence relation for every k€ K, then () E; is also an
equivalence relation. =

(40) If F is a function and F = G, then G is also a function. In this case holds
FG'=GF'=GG™.

(41) If F and G are functions, then FG is also a function.

(42) If F. U F; is a function for any pair % /€ K, or if F,F7' € I for any pair
k, 1€ K, then kgKFk is a function.

(43) For any function F hold (RNS)F=RFNSF, F(RNS)=F'RNF'S,
(R-S)F=RF-SF, and F(R-S)=F 'R-F"'S.

(44) For any equivalence relation E and for any function F hold EET'E=E
and FF'F=F.

(45) If F is a function, then F™'F is an equivalence relation. Conversely, any
equivalence relation E can be expressed in the form E= F~'F, where F is
a function.

(46) Def. F is called an one-to-one correspondence if and only if F and F™' are
both functions.

Remark. Evidently hold theorems corresponding to (40)-(44) for one-to-one

correspondences.

(47) Def. P is called a partial order if and only if P is transitive and
PNP'SI

(48) If P is a partial order and J £ 1, then (P ~-1) U ] is also a partial order.
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Remark. By (47), any relation which lies between “<” and “<” is called
here a partial order. P —1I corresponds to “<”. The linear order L (corre-
sponding to “<") of the class C can be defined by “L is a linear order of C if
and only if L is a partial order and LUL'=CxC.”

(49) Def. R is called closed if and only if RRT'R=R.

(50) Any function F and any equivalence relation E are closed.

(51) If R is closed, so is also R™". If R and S are closed, so is also RN S.

(52) For any pair of functions F and G, F~'G is closed. Conversely, any closed
relation R can be expressed in the form R=F~'G, where F and G are
functions.

(53) Def. R =nL§1R(R"R)".

(54) R R=R.

(55) R is closed, ie. RR'R=R.
R R R

is closed if and only if R=R.
(56) S=R, R*'=R™.
(57 UR2URw NR.ENRw

kEK

(58) URe=U Ry

in

wn

in
TR

| =

(59) If R is symmetric, then R= U R" and R is an equivalence relation.

n=1

(60) R is the minimum closed relation including R.

(61) R™'R and RR! are both equivalence relations.

(62) R"'R=R'R=R'R=R7'R, RR"'=RR'=RR'=RR™".

(63) Def. If H is a relation such that H[R] is a relation for every relation R,
then A U"LI;JII-I "[A] for any relation A is called the relation recursively
generated from A by H.

(64) The recursively generated relation from A by H is the minimum relation
F satisfying AU H[F] S F.

Remark. If we take A= {a(a), 0, ad)} and
H={Kb(z %, a), {<x+1, ad, {z, {x, ad>>lx, z& N}, then the condition for
F becomes
f(0, a) = ala),
f(x+1, a)=b(f(x, a), %, a),

where we take N as the set of natural numbers, F = {{f(x, a), {x, a)) |x & N},

and « as a finite sequence of parameters.
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2. Associable system of relations

The domain and the converse domain of R are classified by the equivalence
relations R™'R and RR™' respectively. The relation R is essentially a blockwise
one-to-one correspondence between the classified domain of R and the classified
converse domain of R. I will now define the notion of the associable system of
relations, which enables us to study mutual properties between relations of

different classified domains and converse domains.

Definition

(1) A relation S is called an extension of R, if and only if RS S and
SRT'Sc R

(2) A system of relations is called associable, if and only if they have their
common extension.

TueoreM 1. A necessary and sufficient condition for two relations R and S

to be associable is that the conditions

(RUSYRTMRUS) ER,
(RUS)STHRUS)ES
are both satisfied.

Proof. If T is a common extension of R and S, then (RU §)R"’(F"Q S)
STR™'T < R. Similarly for the other formula. If the two conditions are

satisfied, then RU S is a common extension of R and S.

THEOREM 2.

(1) Any relation is associable with itself.

(2) Any relation R is associable with R.

(3) Any relation is associable with its extension.

(4) If RT'S=RS™'=4¢, ie. if the domains of R and S as well as their

converse domains are disjoint, then R and S are associable.

Proof. (1), (2), (3) Evident.

(4) (RUS)R_I(RUvS) = U V0V1_1Vg .. V;I}I—IV‘.’IHR-IWOVVI_IWIQ PR Wz_rlt—J'Vz = I_\i,
where V’s and W’s stand for R or S. Similarly, (RUS)S™MRUS)=35. g.ed.

TueoreM 3. If R and S are associable, so are also R™' and S7',

Proof. Evident.
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THEOREM 4. If @ system of Ri's (k& K) is associable, so is also the system
of all S¢'s satisfying Re < S, S Ry for every k in K.

Proof. Let T be a common extension of Ry'’s, i.e. R, & T and TR, 'T S R:.
By (33), (56), and (62),
TS TS TS, ' T=TR:'T=TRi;'ReR,'T
=TRy'RRi'T STRW'TT 'T =TRi'T

in

R.= Sk
Namely, T is also a common extension of all S¢’s. qg.e.d.
TaeorREM 5. If R and S are associable, then
RS'=(RNSYRNS)" and R'S=(RNS)RNS).
Proof. Let <{x,v>E RS, i.e. there be such z that {x, z>& R and <y, z)ES,
then

{<x, 20} € {<m 25HKy, 22}, 22} S (RUS)STH(RUS) €5,
similarly <y, z> € R, therefore
(%, y>E(RNSHRNTS)™

We obtain namely RS™' S (RNS)(RNS)™. On the other hand, evidently
RS2 (RNS)RNT)™, Similarly for the other formula. ged.

TueOREM 6. If P and @ resp. Q and R are associable, then

PQ'R=Q.
Proof. By the preceding theorem,
PQR=PNQPNQ'RS(QURI'QUR Q. qed

Tueorem 7. If all pairs of Ri's are associable, then U Ry = U K.

keK KERK

Proof. Evidently AUWR; = UR,. On the other hand, by the preceding
"ER

kERK
theorem

ReRi'RoRi;'Ry, . .. Ri:, Re,,Ri' Ry,
S R,Ri;'RyRi,;'Ry, . . . Ri,L R,

............................

S R Ri;'R.,RL'Ry,
€ Ry Ri;' R,
S R,
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so we have U R: € U Re. q.ed.

EK kEK

THEOREM 8. A necessary and sufficient condition for a system of relations

R, (k€ K) to be associable is that the relations are associable by pairs.

Proof. Necessity is evident. It is also sufficient, because by the preceding
theorem

(URJ)Rk (UR/) = (UR,)RE‘(UR[) =URRy¢'R<EUR=Re. qed.

JEK JEK
lEKR lEK

TuroreM 9. A mecessary and sufficient condition for two equivalence re-
lations C and D to be associable is that CD=C N D.

Proof. Necessity is evident by (39), (50), and the theorem 5. Conversely : if
CD=CND, then (CUD)C(CUD)=UP, ... PnC'Q ... Q.,=CU(CND)
= C, where P’s and @’s stand for C or D. Similarly (CU D)D™(CU D) =
Therefore the condition is also sufficient.

3. Decomposition of the closed relation
and of the transitive relation
Any closed relation can be decomposed into the product of the converse of
a function and a function as shown in (52) (Riguet [5], [6]). In this paragraph,
this theorem is given in a more refined form in some respect, and some appli-

cations of the theorem are given thereafter.

THEOREM 10.

(1) Any closed relation R can be expressed in the form R=F'G, where F
and G are functions. (Proposition (52)).

(2) If R=F'G and F, G are both functions, then generally RR™' S F'F
and RT'RS G'G. We can find out, however, functions F, and G, out
of sub-relations of F and G respectively, for which R=F;'G,, RR™'
=F;'F, and R'R=G;'Gy

(3) If R=F7'G and F, G are functions, then FF™* =GG™ if and only if
RR'=F7'F and R"'R=G"'G.

Proof. (2) RR'=(FT'GYF7'G)"'=F'GG™'F < F'IF = F™'F, similarly

R7'RSG™'G. If we put F,=GG™'F and G,= FF™'G, then F, £ IF=F, G, € IG

=G, Fi'Go=F'GG'FF'G = (F'GF™'G)™F™'G) = RRT'R=R, Fi'F,
=F'GGT'GG'F=F GG™"'GUF'G ' = (F'GF™'G)'=RR™", and G;'G,
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=G 'FF'FF'G=G (FF'F)(F™'G) = (G'F)(F™'G) = R™'R. By (40), F, and
G, are both functions. (3) If R=F7!G, RR"'=F'F, R"'R=G™G. and F and
G are functions,

FF'=IFF'I2GG'FF'GG™'=G(F'G) ™ (F'G)G™
=GR™'RG =GG'GG™' =GG™.

Similarly GG™ 2 FF™!, so FF'=GG™'. Conversely, if R=F'G, FF'=GG™
€ I, then
RR''=(F'G)(F'G)*'=F'GG'F=F Y (FF'F) =F'F,
RT'R=(F'G®)™(F'G)=G ' FF'G=G"(GG™'G)=G'G. qed.

Now, let us take up an equivalence relation C= F~'F, where F is a function
and J=FF™". The class K of all closed relations R, satisfying RR™' = R'R=C,
corresponds one-to-one to the class of transformations T on J. The one-to-one
correspondence is given by T= FRF™' and R=F 'TF. If we denote the corre-

spondence by R<«—> T, we have clearly

(1) Ce—],
(2) I R<—T, then R™'«—T", ,
(3) If R«—>T and S<—>V, then RS«—>TV.

This means that the elements of the class K can be taken as transformations
on C. In our theory, transformations and one-to-one correspondences are most
naturally understood as those on class relations. The theorem 10 shows that any
closed relation can be taken as one-to-one correspondence of classes between

two systems of classes.

THEOREM 11. If R and S are closed relations and R < S, then

(1) RS™'R and SR™'S are closed relations satisfying R< RST'R S SR™'S € S,

(2) R, RS'R, SR™'S, S can be expressed by functions F, G, Fy, Go, Fi, Gy,
H in such a way that R=F;'G,, RS"'R=F;'H 'HG,, SR™'S=Fi'G,,
and S=F™'G, where functions F, G, Fo, Go, F1, G1, H satisfy the con-
ditions FyFs' = GoGy', FiF{'=GiGi'= HR Fs'H ™' = HG\G;'H ™', FF™'
=GG™, F2 F, 2 HF,, G 2 G 2 HG,, FF{'F=F,, GG{'G=G..

Proof. (1) R=RR'RS RS'R=RS'RRR =SS 'SR'S=SR™'S<SS”'S
=S. RS™'Ris closed, because (RS™'R)(RS™'R)"(RST'R)=R(S™'RR'SR™'RS™M)R
S R(S'SST'SST'SSMR=RS'R; and SR'S is closed too, because
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(SR7T'S)(SR™'S)™"(SR™'S) = (SR™'SST'RS™'S)R™'S = (SS™'SS!SS™!'S)R”'S
= SR™'S. (2) By the theorem 10, decompose S into two functions F, G satisfying
S=F"'G, FF'=GG™, which imply SST'=F7'F, S7'S=G'G. G=FS and
F=GS™, because FS=FF'G=GG'G=G,GS ' =GG'F=FF 'F=F. If we put
G=FR F=GR ™, G, =FS,Fi=GS', then F; 2 F and G, 2 G, because F; = GS™
= FRS™ = FF'FRS™ = FSST'RS™' 2 FS(RT'RR™) = FSR™ = GR™' = F, and
similarly G: 2 G. Also F2 F; and G 2 G,, because F=FF 'F=FSS™' 2 FRS™!
= Fy, and similarly G2 Gy. Nextly, £7'G = RG'FR = RS™'R, and F{'G: = SG'F'S
=S(F'G)'S = SRT'SR™'S = SR™'S; because SR™'SR™'S = SR™'S can be
proved as follows: SR™!SR™'S2SR'RR'S=SR™'S, and on the other hand
SRT'SR™'S £ SST'SR™'S = SR™'S. FF™'= GG, because FE™'=GR'RG™
=GG'GR'RG'GG'=F(F'G)R'R(G'F)F ' =FSRT'RST'F '2 FRRT'RR™'F*
=FRR'F'=GG™, and similarly G612 FF™'. By (40), we obtain F F;’
=GG™ and GiGi'=FF™" as follows: FJ’I‘zG‘S"S@“’ = GG'FFT'GG™
=GG'GGIGG =GGTI GG =GGT GG = GG and similarly for the other
formula. Accordingly, we have FiFi'=GGi'= FF™'=GG™, which implies
F'E =(RST'R)(RST'R)™ and G'G = (RST'RY ' (RST'R). Moreover, we can
prove Fi'F=Fi{'F, and Gi'G=Gi'G, as follows: F{'FiE F{'F=SR'F'F
= SR™'SS™ = SRMRR™R(R™'SS™) S SR'SS'RS™ = SR™'FT'FRS™" = F{'F,,
and similarly for the other formula. Accordingly, by making use of (40), we
get FF{'F=F,F{'F=F,F{'Fi=F, and similarly GG{'G = G..

Now, by the theorem 10, R can be decomposed into two functions Fiy, Gy
satisfying R=F;'Go, Fi'Fo=G;'Gy, which imply RR™'=F;'F,, RT'R=G;'G,
Let us define the relation H by H=FF;. H is a function, because
HH™ = FF;'RE™ = FRR'F' € F(RSTRIRST'R)'F™ = FETGGTRE™

A A ~

F'FE ' =FF'c 1, and H= GGy, because c,G,, = GG GG GGy
Gi'FoFy'= FRST'RR™'Fi' = F(RST'RY(RS'RY 'Fi'= FE'FF; ' = FFq!
as RST'RR™' = (RST'RY(RST'R)™" is easily provable. Lastly, we can obtain
= HF,, G = HG, as follows: HF,= FF;'Fy= FRR'=(GR™ )RR '=GR'= F,

and similarly for the other formula. q.ed.

il

ya
aaye

il

il

F
F
H, a

e

TurEOREM 12. If a transitive relation T satisfies the condition T N T
2(TTUTTITYNIY then T can be expressed in the form T = F 'SF, where

b By (33), we can find out for any transitive relation S, a transitive relation 7'= Sul,
which satisfies the condition,
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F is a function and S is a partial order, ie. SSSS and SNS' S L

Proof. If we take H=TNT™', H is an equivalence relation includ-
ing (TT"UT™T) NI because evidently H'=H and H*=(TNT™?
ST*N(T™)*STNT™". By (45), there is a function F such that H=F'F.
If we put S=FTF™, then T=F"'SF; because T2 T*2TH=2T(T™'TNI)
=T by (26), and similarly T=HT, so T= HTH=F 'FTF'F=F"'SF.

Now I prove that S is a partial order. Firstly, S*=FTF'FTF™!
=FTHTF™' € FTTTF™' € FTF™'=S. Secondly, FF'S=FF'FTF™=FTF™
=S and similarly SFF™'=S, FF'S'=S"'FF'=S"". As FF™' and F are
functions, we can compute by (43) as follows: SN S = FF'SN FF'S™
= FF(SNS™)=FF (SFF'NS'FF ") =FF (SNS)FF'=F(F 'SNF'S)FF™!
=F(FI'SFNF'ST'AF'=FTNTYF '=FHF '=FF 'FF'=FF 'S L

q.ed.

By this theorem, we can see that any transitive relation T is essentially a

partial order on the classes classified by a suitable equivalence relation.
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