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Abstract We study the complexities of isometry and isomorphism classes of separable Banach spaces
in the Polish spaces of Banach spaces, recently introduced and investigated by the authors in [14]. We
obtain sharp results concerning the most classical separable Banach spaces.

We prove that the infinite-dimensional separable Hilbert space is characterized as the unique separable
infinite-dimensional Banach space whose isometry class is closed, and also as the unique separable infinite-
dimensional Banach space whose isomorphism class is Fσ . For p∈ [1,2)∪(2,∞), we show that the isometry
classes of Lp[0,1] and �p are Gδ-complete sets and Fσδ-complete sets, respectively. Then we show that
the isometry class of c0 is an Fσδ-complete set.

Additionally, we compute the complexities of many other natural classes of separable Banach spaces;
for instance, the class of separable Lp,λ+-spaces, for p,λ ≥ 1, is shown to be a Gδ-set, the class of
superreflexive spaces is shown to be an Fσδ-set, and the class of spaces with local Π-basis structure is
shown to be a Σ0

6-set. The paper is concluded with many open problems and suggestions for a future
research.

Introduction

Descriptive set theoretic approach to Banach spaces has proved to be a powerful tool

in solving many problems in Banach space theory; for a wide selection of references

Key words and phrases: Banach spaces; descriptive set theory; Hilbert space; Lp spaces; Baire category

2020 Mathematics subject classification: Primary 03E15; 46B04; 54E52

Secondary 46B20; 46B80; 46C15

© The Author(s), 2023. Published by Cambridge University Press. This is an Open

Access article, distributed under the terms of the Creative Commons Attribution licence

(https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and

reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S1474748023000440 Published online by Cambridge University Press

https://orcid.org/0000-0001-6688-8004
https://orcid.org/0000-0003-3675-1378
mailto:cuth@karlin.mff.cuni.cz
mailto:dolezal@math.cas.cz
mailto:doucha@math.cas.cz
mailto:kurka.ondrej@seznam.cz
https://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1474748023000440&domain=pdf
https://doi.org/10.1017/S1474748023000440


1920 M. Cúth et al.

ranging from the earliest ones of Bourgain to the most recent ones see e.g. [3, 4, 5, 8, 12].

Traditionally, and as defined explicitly for the first time in the seminal papers of Bossard

([6, 7]), one considers the standard Borel space of all separable Banach spaces, which
can be defined as an appropriate Borel subspace of the Effros-Borel space of all closed

subspaces of some isometrically universal separable Banach space. Since such defined

space of Banach spaces is not a topological space, it allows us to study Banach spaces
globally only in a Borel way and not topologically, which would be desirable in some cases.

This drawback was addressed in a recent paper [28] of Godefroy and Saint-Raymond,

where they propose to study certain natural topologies on the standard Borel spaces
of separable Banach spaces, and they compute Borel complexities, in these topologies,

of several important classes of Banach spaces. The authors of this paper initiated in

[14] the study of the Polish spaces of norms and pseudonorms on the countable infinite-

dimensional vector space over Q, which have additional further advantages:

• they are almost canonical Polish spaces of separable Banach spaces;
• they have very nice topological properties that are connected to local theory of

Banach spaces, especially to finite representability;
• the computation of Borel complexities of various classes of separable Banach spaces

is usually in these spaces as straightforward as possible, which, in particular, allows
us to improve several estimates by Godefroy and Saint-Raymond;

• this approach to topologizing the space of Banach spaces is somewhat similar to
how metric structures are topologized generally in continuous model theory, which
could connect descriptive set theory of Banach spaces with the model theory of
Banach spaces, which is one of the most developed areas of applications of logic
to metric structures.

This paper is a companion and second part to [14], however, it is completely self-
contained and can be read independently. Its aim is to demonstrate the strength of this

new approach by computing (in many cases, these computations are sharp) complexities

of several classes of Banach spaces, focusing on isomorphism classes, improving several
results of Godefroy and Saint-Raymond, and initiating the research of computing the

complexities of isometry classes.

First, we focus on the undoubtedly most important separable infinite-dimensional
Banach space – the Hilbert space �2(N). We uniquely characterize it by both the

complexity of its isometry class, as well as the complexity of its isomorphism class.

Theorem A.

(1) The separable infinite-dimensional Hilbert space is characterized as the unique
separable infinite-dimensional Banach space whose isometry class is closed (see

Theorem 2.4).

(2) The separable infinite-dimensional Hilbert space is characterized as the unique, up

to isomorphism, separable infinite-dimensional Banach space whose isomorphism
class is Fσ (see Theorem 2.10).

Let us briefly comment on the importance of this result. There are many known

isometric characterizations of inner product spaces, and several of those may be easily seen
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to form a closed condition (see, e.g. the monograph [2]). By our isometric characterization

from Theorem A, there is no other separable infinite-dimensional Banach space, which can

be characterized by a closed condition. Our isomorphic characterization of Hilbert spaces
from Theorem A seems to be even more interesting. Recall that Bossard [7, Problem 2.9]

originally asked whether �2 is the unique space with a Borel isomorphism class. Although

this is known to be false now (see, e.g. [26]), our Theorem A shows that it is arguably
the Banach space with the simplest possible isomorphism class. The only other candidate

possibly having a simple isomorphism class is the Gurarĭı space, which might potentially

have a Gδ isomorphism class (see Proposition 2.11). We conjecture that it is not the
case (in fact, we do not know whether the isomorphism class of the Gurarĭı space is even

Borel), however, we cannot disprove it at the moment.

Moreover, since our coding of Banach spaces is connected to the local theory of Banach

spaces, it is of some interest to notice that there were some attempts to characterize �2
up to isomorphism using its finite-dimensional structure (see, e.g. [33, Conjecture 7.3] for

the conjecture by Johnson et al.). Thus, our setting enables us to formulate and prove a

result similar in a spirit to what was conjectured by Johnson et al. We refer the reader
to Section 6 for more information in this direction.

Next, we continue by studying complexities of isometry classes of other Banach spaces,

that is how easy/difficult it is to define them uniquely up to isometry. There is an
active ongoing research whether for a particular Banach space its isomorphism class

is Borel or not (see, e.g. [26], [36], [22], [27]), while it is known that isometry classes of

separable Banach spaces are always Borel (note that the linear isometry relation is Borel

bireducible with an orbit equivalence relation [44], and orbit equivalence relations have
Borel equivalence classes [34, Theorem 15.14]). Having a topology at our disposal, we

compute complexities of isometry classes of several classical Banach spaces.

Theorem B.

(1) For p ∈ [1,2)∪ (2,∞), the isometry class of Lp[0,1] is Gδ-complete. Moreover, for

every λ≥ 1, the class of separable Lp,λ+-spaces is a Gδ-set and the class of separable
Lp-spaces is a Gδσ-set, improving the estimate from [28] (see Theorems 3.4 and 3.6,

and Corollary 3.7).

(2) For p ∈ [1,2) ∪ (2,∞), the isometry class of �p is an Fσδ-complete set (see

Theorem 4.1).

(3) The isometry class of c0 is an Fσδ-complete set (see Theorem 4.1).

(4) The isometry class of the Gurarĭı space is a Gδ-complete set (see Corollary 3.2).

Let us also present here a few sample results, which involve complexities of more general
classes of Banach spaces.

Theorem C.

(1) The class of all superreflexive spaces is an Fσδ-set (see Theorem 5.3).

(2) The class of all spaces with local Π-basis structure is a Σ0
6-set (see Theorem 5.13).

(3) For a fixed ordinal α ∈ [1,ω1), the class of spaces whose Szlenk index is bounded by

ωα is a Π0
ωα+1-set (see Theorem 5.7).

https://doi.org/10.1017/S1474748023000440 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000440


1922 M. Cúth et al.

1. Preliminaries

In this section, we set up some notation that will be used throughout the paper and recall
the notions and basic results from [14] that we shall need in this paper.

1.1. Notation

Throughout the paper, we usually denote the Borel classes of low complexity by the

traditional notation, such as Fσ and Gδ, or even Fσδ (countable intersection of Fσ

sets) and Gδσ (countable union of Gδ-sets). However, whenever it is more convenient
or necessary, we use the notation Σ0

α, respectively, Π
0
α, where α < ω1 (we refer to [34,

Section 11] for this notation). We emphasize that open sets, respectively, closed sets, are

Σ0
1, respectively, Π

0
1, by this notation.

In a few occassions, for a Borel class Γ, we will use the notion of Γ-hard and Γ-complete

sets. We refer the reader to [34, Definition 22.9] for these notions. For a reader not familiar

with them, let us emphasize that a set A being Γ-hard, for a Borel class Γ, in particular,
implies that A is not of a lower complexity than Γ. Thus, results stating that some set is

Σ0
α-complete means that the set is Σ0

α and not simpler.

Let us also state here the following simple lemma. Although it should be well-known,

we could not find a proper reference, so we provide a sketch of the proof.

Lemma 1.1. Suppose that X is a Polish space and B ⊆X is a Borel set, which is not a

Gδ-set. Then B is Fσ-hard. The same with the roles of Gδ and Fσ interchanged.

Proof. By the Hurewicz theorem (see, e.g. [34, Theorem 21.18]), there is a set C ⊆ X
homeomorphic to the Cantor space, such that C ∩B is countable dense in C. Then

C ∩B is an Fσ-set but not a Gδ-set in the zero-dimensional Polish space C, and so it is

Fσ-complete in C by Wadge’s theorem (see, e.g. [34, Theorem 22.10]). So for any zero-

dimensional Polish space Y and any Fσ-subset A of Y, there is a Wadge reduction of
A⊆ Y to C ∩B ⊆C. But any such reduction is also a reduction of A⊆ Y to B ⊆X, and

so B is Fσ-hard.

The argument with the roles of Fσ and Gδ interchanged is similar.

Moreover, given a class Γ of sets in metrizable spaces, we say that f : X → Y is

Γ-measurable if f−1(U) ∈ Γ for every open set U ⊆ Y .

Given Banach spaces X and Y, we denote by X ≡ Y (respectively, X 
 Y ) the fact
that those two spaces are linearly isometric (respectively, isomorphic). We denote by

X ↪→ Y the fact that Y contains a subspace isomorphic to X. For K ≥ 1, a K-isomorphism

T :X → Y is a linear map with K−1‖x‖ ≤ ‖Tx‖ ≤K‖x‖, x ∈X. If x1, . . . ,xn are linearly

independent elements of X and y1, . . . ,yn ∈ Y , we write (Y ,y1, . . . ,yn)
K∼ (X,x1, . . . ,xn)

if the linear operator T : span{x1, . . . ,xn} → span{y1, . . . ,yn} sending xi to yi satisfies

max{‖T‖,‖T−1‖} < K. If X has a canonical basis (x1, . . . ,xn), which is clear from the

context, we just write (Y ,y1, . . . ,yn)
K∼X instead of (Y ,y1, . . . ,yn)

K∼ (X,x1, . . . ,xn). More-

over, if Y is clear from the context, we write (y1, . . . ,yn)
K∼X instead of (Y ,y1, . . . ,yn)

K∼X.

Throughout the text, �np denotes the n-dimensional �p-space, that is the upper index

denotes dimension.
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Finally, in order to avoid any confusion, we emphasize that if we write that a mapping
is an ‘isometry’ or an ‘isomorphism,’ we do not mean it is surjective if this is not explicitly

mentioned.

1.2. Notions and results from [14]

The most important notion we want to recall is the Polish spaces of Banach spaces. We

refer to [14, Section 2] for a proper introduction.
By V, let us denote the vector space over Q of all finitely supported sequences of rational

numbers; that is, the unique infinite-dimensional vector space over Q with a countable

Hamel basis (en)n∈N, which we may view as the vector space of all finitely supported
rational sequences.

Definition 1.2 [14, Definition 2.1]. Let us denote by P the space of all pseudonorms on

the vector space V. Since P is a closed subset of RV , this gives P the Polish topology
inherited from RV . The subbasis of this topology is given by sets of the form U [v,I] :=

{μ ∈ P : μ(v) ∈ I}, where v ∈ V and I is an open interval.

We often identify μ ∈ P with its extension to the pseudonorm on the space c00, that is,

on the vector space over R of all finitely supported sequences of real numbers.
For every μ ∈ P, we denote by Xμ the Banach space given as the completion of the

quotient space X/N , where X = (c00,μ) and N = {x∈ c00 : μ(x) = 0}. In what follows, we

often consider V as a subspace of Xμ, that is, we identify every v ∈ V with its equivalence
class [v]N ∈Xμ.

By P∞, we denote the set of those μ ∈ P for which Xμ is infinite-dimensional Banach

space, and by B, we denote the set of those μ ∈ P∞ for which the extension of μ to c00 is
an actual norm, that is, the vectors e1,e2, . . . are linearly independent in Xμ.

We endow P∞ and B with topologies inherited from P.

It is rather easy to verify that the topologies on P∞ and B are Polish, we refer to [14,

Corollary 2.5] for a proof.

Remark 1.3. As we have mentioned in the Introduction, Godefroy and Saint-

Raymond [28] considered another way of topologizing the class of all separable

(infinite-dimensional) Banach spaces. Namely, they consider the set SB = {X ⊆
C(2ω) : X is a closed linear subspace} and introduce a class of natural Polish topologies
τ on SB, which they call ‘admissible’. In [14], we compared our spaces P∞ and B with

(SB,τ). In particular, we observed that whenever τ is an admissible topology, then

there exists a continuous map Φ : (SB,τ)→P, such that for every F ∈ SB(X), we have
F ≡XΦ(F ) isometrically (see [14, Theorem 3.3]). Thus, from our results obtained in the

coding P∞, one may easily deduce also results formulated in the language of admissible

topologies.

The following definition precises the notation
K∼ defined earlier.

Definition 1.4. If v1, . . . ,vn ∈ V are given, for μ ∈ P, instead of (Xμ,v1, . . . ,vn)
K∼X, we

shall write (μ,v1, . . . ,vn)
K∼X.

For further purposes, we record here the following lemma from [14].
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1924 M. Cúth et al.

Lemma 1.5 [14, Lemma 2.4]. Let X be a Banach space with {x1, . . . ,xn} ⊆ X linearly

independent, and let v1, . . . ,vn ∈ V . Then for any K > 1, the set

N ((xi)i,K,(vi)i) = {μ ∈ P : (μ,v1, . . . ,vn)
K∼ (X,x1, . . . ,xn)}

is open in P.
In particular, the set of those μ∈P for which the set {v1, . . . ,vn} is linearly independent

in Xμ is open in P.

Since we are interested mainly in subsets of P closed under isometries, we introduce

the following notation.

Notation 1.6. Let Z be a separable Banach space, and let I be a subset of P. We put

〈Z〉I≡ := {μ ∈ I : Xμ ≡ Z} and 〈Z〉I� := {μ ∈ I : Xμ 
 Z}.

If I is clear from the context, we write 〈Z〉≡ and 〈Z〉� instead of 〈Z〉I≡ and 〈Z〉I�,
respectively.

The connection of the topologies on P, P∞ and B with finite representability was

thoroughly explored in [14]. Here, we recall what will be useful in this paper.

Definition 1.7. We say that a Banach space X is finitely representable in a Banach
space Y if given any finite-dimensional subspace E of X and ε > 0, there exists a finite-

dimensional subspace F of Y, which is (1+ ε)-isomorphic to E.

Moreover, if F is a family of Banach spaces, we say that a Banach space X is finitely
representable in F if given any finite-dimensional subspace E of X and any ε > 0, there

exists a finite-dimensional subspace F of some Y ∈ F , which is (1+ ε)-isomorphic to E.

Proposition 1.8 [14, Proposition 2.9]. If X is a separable infinite-dimensional Banach

space, then

{ν ∈ B : Xν is finitely representable in X}= 〈X〉B≡∩B

and similarly also if we replace B with P∞ or with P.

Moreover, let F ⊆ B be such that 〈Xμ〉B≡ ⊆F for every μ ∈ F . Then

{ν ∈ B : Xν is finitely representable in F}= F ∩B.

The same again holds if we replace B with P∞ or with P.

We finish this section by recalling one particular Banach space that will play a

fundamental role in certain further results in this paper. That is, we recall what the
Gurarĭı space is. One of the characterizations of the Gurarĭı space is the following, for

more details, we refer the interested reader, for example, to [10] (the characterization

below is provided by [10, Lemma 2.2]).

Definition 1.9. The Gurarĭı space is the unique (up to isometry) separable Banach

space, such that for every ε > 0 and every isometric embedding g : A→ B, where B is a

finite-dimensional Banach space and A is a subspace of G, there is a (1+ε)-isomorphism
f :B →G, such that ‖f ◦g− idA‖ ≤ ε.

In the sequel, we will need the following result.
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Theorem 1.10 [14, Theorem 4.1]. Let G be the Gurarĭı space. The set 〈G〉I≡ is a dense

Gδ-set in I for any I ∈ {P,P∞,B}.

2. Spaces with descriptively simple isometry and isomorphism classes

The topic of this section is to deal with spaces with descriptively simple isometry classes
(see Section 2.1) and with spaces with descriptively simple isomorphism classes (see

Section 2.3). The main outcome is Theorem A, which follows from Theorems 2.4 and

2.10.

2.1. Spaces with closed isometry classes

In this subsection, we start our investigation of descriptive complexity of isometry classes,
with the main goal to prove the first part of Theorem A. Let us first observe that no

isometry class can be open, as every isometry class actually has an empty interior. Indeed,

it follows from Proposition 1.8 that the isometry class of every isometrically universal

separable Banach space is dense. Since there are obviously many pairwise nonisometric
universal Banach spaces, we get that every open set (in all P, P∞ and B) contains norms,

respectively, pseudonorms, defining distinct Banach spaces. The same argument can also

be used to show that every isomorphism class has an empty interior.

Lemma 2.1. 〈�2〉≡ is closed in B and P∞.

Proof. Hilbert spaces are characterized among Banach spaces as those Banach spaces
whose norm satisfies the parallelogram law, that is ‖x+y‖2+‖x−y‖2 =2(‖x‖2+‖y‖2) for
any pair of elements x,y. It is clear that a norm satisfies the parallelogram law if and only

if it satisfies it on a dense set of vectors, therefore, every norm, respectively, pseudonorm,
from B, respectively, P∞, satisfying the parallelogram law on V defines a Hilbert space.

Since norms, respectively, pseudonorms, from B, respectively, P∞, define only infinite-

dimensional spaces, they define spaces isometric to �2(N). Since the parallelogram law is

clearly a closed condition, we are done.

Remark 2.2. We note that here we need to work with the spaces B or P∞, since in

P, the only space with closed isometry class is the trivial space. To show it, first notice
that the trivial space is indeed closed. Next, we show that any open neighbourhood of a

pseudonorm defining trivial space contains a pseudonorm defining arbitrary Banach space,

which will finish our claim. Let such an open neighbourhood be fixed. We may assume that
it is of the form {μ∈P : μ(vi)<ε,i≤n}, where v1, . . . ,vn ∈V and ε> 0. Letm be such that

all vi, i≤ n, are in spanQ{ej : j ≤m}. Let X be an arbitrary separable Banach space, and

let (fi)i∈N ⊆X be a sequence whose span is dense in X. We define μ ∈P by μ(ej) = 0, for

j ≤m, and μ(
∑

i∈I αiem+i) = ‖
∑

i∈I αifi‖X , where I ⊆N is finite and (αi)i∈I ⊆Q. This
defines μ separately on spanQ{ei : i ≤m} and spanQ{ei : i > m}, however, the extension

to the whole V is unique. It is clear that μ is in the fixed open neighbourhood and that

Xμ ≡X.

One may be interested whether there are other Banach spaces whose isometry class is

closed. The answer is negative. This follows from another corollary of Proposition 1.8,
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which we mentioned already in [14, Corollary 2.11]. Its proof is just an easy application

of the Dvoretzky theorem.

Lemma 2.3 [14, Corollary 2.11]. Let X be a separable infinite-dimensional Banach space.
Then, 〈�2〉B≡ ⊆ 〈X〉B≡∩B. The same holds if we replace B with P∞ or P.

The following theorem is now an immediate consequence of Lemmas 2.1 and 2.3.

Theorem 2.4. �2 is the only separable infinite-dimensional Banach space whose isometry

class is closed in B. The same holds if we replace B by P∞.

2.2. QSLp-spaces

Before embarking on studying spaces with descriptively simple isomorphism classes, let

us consider some natural closed subspaces of P, P∞ and B.
In [37], Kwapień denotes by Sp, respectively, SQp, for 1≤ p<∞, the class of all Banach

spaces isometric to a subspace of Lp(μ), respectively, to a subspace of some quotient

of Lp(μ), for some measure μ. Note that a separable Banach space X belongs to Sp,

respectively, SQp if and only if it is isometric to a subspace of Lp[0,1], respectively, to a
subspace of a quotient of Lp[0,1], which easily follows from the fact that any separable

Lp(μ) isometrically embeds into Lp[0,1] as a complemented subspace (see, e.g. Theorem

3.8 below).

Let us address the class Sp first. We have the following simple lemma.

Lemma 2.5. Let 1≤ p <∞. Put

M := {μ ∈ B : Xμ is isometric to a subspace of Lp[0,1]}.

Then M is a closed set in B, and we have

M = 〈�p〉B≡∩B = {μ ∈ B : Xμ is a Lp,1+ space}∩B.

The same holds if we replace B with P∞.

Proof. We recall the fact that a separable infinite-dimensional Banach space is isometric
to a subspace of Lp[0,1] if and only if it is finitely representable in �p (see, e.g. [1, Theorem

12.1.9]). The rest follows from Proposition 1.8. We refer the reader to Section 3 for a

definition of the class Lp,1+.

In the rest, we focus on the class SQp. Notice that for p = 1, this class coincides with

the class of all Banach spaces, and for p= 2, this class consists of Hilbert spaces.

These Banach spaces are also called QSLp-spaces in literature, and since it seems this
is the more recent terminology, this is what we will use further. It seems to be well-

known, see, for example, [49], that this class of spaces is characterized by Proposition 2.6

below. This result was first essentially proved probably by Kwapien [37] (however, in his
paper, he considered the isomorphic variant only), for a more detailed explanation of the

proof (and even for a generalization), one may consult, for example, the proof in [40,

Theorem 3.2], which uses ideas from [48] and [31]. Let us note that, by Proposition 2.6
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and [32, Proposition 0], the class of QSLp-spaces coincides with the class of p-spaces

considered already in 1971 by Herz [32].

Proposition 2.6. A Banach space X is a QSLp-space, if and only if, for every real

valued (n,m)-matrix M satisfying

n∑
i=1

∣∣∣∣∣∣
m∑
j=1

M(i,j)rj

∣∣∣∣∣∣p ≤
m∑

k=1

|rk|p,

for all m-tuples r1, . . . ,rm ∈ R, we have

n∑
i=1

∥∥∥∥∥∥
m∑
j=1

M(i,j)xj

∥∥∥∥∥∥
p

X

≤
m∑

k=1

‖xk‖pX,

for all m-tuples x1, . . . ,xm ∈X.

Since it is clear that it suffices to verify the condition from Proposition 2.6 only on dense
tuples of vectors, and that this condition is closed, we immediately obtain the following.

Proposition 2.7. For every 1< p <∞, the set

{μ ∈ P∞ : Xμ is a QSLp-space}

is closed in P∞.

The same is true if P∞ is replaced by B.

Denote now the set {μ ∈ P∞ : Xμ is a QSLp-space} by QSLp. By Lemma 2.5, for

1 ≤ p < ∞, the set Mp := {μ ∈ P∞ : Xμ is isometric to a subspace of Lp[0,1]} is closed.

Clearly, Mp ⊆QSLp (and for p= 2, there is an equality).
If p �= 2, then Mp �=QSLp because there exists a separable infinite-dimensional Banach

space, which is isomorphic to a quotient of Lp[0,1] but not to its subspace. Indeed, if

p = 1, this is easy since every separable Banach space is isomorphic to a quotient of �1
(see, e.g. [1, Theorem 2.3.1]). If 2 < q < p < ∞, then �q is isometric to a quotient of

Lp[0,1] (because its dual �q′ embeds isometrically into Lp′ [0,1]) but is not isomorphic

to a subspace of Lp[0,1] (see, e.g. [1, Theorem 6.4.18]). Finally, if 1 < p < 2, then by
[20, Corollary 2], there exists a subspace X of �p′ ⊆ Lp′ [0,1], which is not isomorphic

to a quotient of Lp′ [0,1],1 and so X∗ is isometric to a quotient of Lp[0,1], which is not

1More precisely, by [20, Theorem 1] (see also, e.g. [19, Corollary 3.2]), for every n ∈ N, there
exists a subspace En of �2n∞ , such that gl(En)≥K

√
n, whereK > 0 is a constant independent of

n and gl(En) is a quantity related to the notion of a ‘GL-space’ (or a space with the ‘Gordon-

Lewis property’). This implies that if we denote by Ep′
n the space En endowed with the

�p′ -norm, we obtain gl(Ep′
n ) ≥ K

√
ndBM (�2n∞ ,�2np′ )−1 = K2−1/p′

n1/2−1/p′ → ∞; hence, X :=

(
⊕

Ep′
n )p′ , the �p′ -sum of the spaces Ep′

n , is isometric to a subspace of �p′ , but it is not a GL-
space. If X was isomorphic to a quotient of Lp′ [0,1], thenX∗ would be isomorphic to a subspace
of Lp[0,1], which would imply that X∗ and X are GL-spaces (see, e.g. [16, Propositions 17.9
and 17.10]), a contradiction.

https://doi.org/10.1017/S1474748023000440 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000440


1928 M. Cúth et al.

isomorphic to a subspace of Lp[0,1]. We would like to thank Bill Johnson for providing

us these examples. Moreover, we have the following.

Proposition 2.8. For p ∈ [1,2)∪ (2,∞), the set Mp has an empty interior in QSLp.

Proof. Fix p ∈ [1,2)∪ (2,∞). Pick μ ∈QSLp, such that Xμ does not isometrically embed

as a subspace into Lp[0,1] (such a space exists, see the examples above). Let U be now

a basic open neighbourhood of some ν ∈QSLp. Since the class of QSLp-spaces is clearly
closed under taking �p-sums (see, e.g. [49]), Xν ⊕pXμ is still a QSLp-space. It is easy to

define ν′ ∈ U , so that Xν′ is isometric to Xν ⊕pXμ. Now, since Xμ does not isometrically

embed as a subspace into Lp[0,1], neither Xν′ does. By [1, Theorem 12.1.9], Xν′ is not
finitely representable in �p, so also not in Lp[0,1] (by [1, Proposition 12.1.8]). It follows

from Proposition 1.8 that there exists a basic open neighbourhood U ′ of ν′ avoiding Mp.

Now, U ∩U ′ is a nonempty open subset of U avoiding Mp, and we are done.

Corollary 2.9. For p ∈ [1,2)∪ (2,∞), Lp[0,1] is not a generic QSLp-space.

2.3. Spaces with descriptively simple isomorphism classes

The main result of this subsection, and one of the main results of the whole paper, is the
second part of Theorem A. That is, we prove the following.

Theorem 2.10. The Hilbert space �2 is characterized as the unique, up to isomorphism,

separable infinite-dimensional Banach space X, such that 〈X〉� is an Fσ-set in B. The
same holds if we replace B with P∞.
Moreover, 〈�2〉� is Fσ-complete.

While there are several Banach spaces whose isometry classes have low complexity,

as we shall see also in the next sections, there are reasons to suspect that isomorphism
classes are rather complicated in general. Theorem 2.10 is a strong evidence that �2 is

quite unique with respect to its property of having a simple isomorphism class. Another

piece of evidence which we state and prove before proving Theorem 2.10 is the following
result.

Proposition 2.11. No isomorphism class can be closed in P∞, B and P, and with the

possible exception of spaces isomorphic to G, for which we do not know the answer, no

isomorphism class can even be a Gδ-set.

Proof. Let X be a separable infinite-dimensional Banach space. We show that 〈X〉� is

dense (we show the argument only for P∞, the other cases are analogous). Let F be a

finite-dimensional Banach space. It is well-known that every finite-dimensional space is
complemented in any infinite-dimensional Banach space, so we have X 
 F ⊕1Y for some

Banach space Y. Since F was arbitrary, it follows that every separable Banach space is

finitely representable in 〈X〉�, so by Proposition 1.8, 〈X〉� = P∞, hence, 〈X〉� is dense.
It follows that 〈X〉� cannot be closed for any X because it is dense and there are

obviously two nonisomorphic spaces. Moreover, if X is not isomorphic to the Gurarĭı

space, then 〈X〉� cannot be a Gδ-set since by Theorem 1.10, the isometry class of
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the Gurarĭı space is a dense Gδ-set, so it would have nonempty intersection with 〈X〉�
otherwise.

Besides �2, whose isomorphism class is Fσ, it is proved in [28, Theorem 4.12] that

separable Banach spaces determined by their pavings have Σ0
4 isomorphism classes in

any admissible topology (see Remark 1.3, where we recall some basics about admissible

topologies). We refer the interested reader to the text before Theorem 2.13 for a definition
of spaces determined by their pavings. Here, we just briefly note that this class of spaces

was introduced by Johnson et al. in [33] and that there are known examples of separable

Banach spaces determined by their pavings not isomorphic to �2 (e.g. certain �2-sums of
finite-dimensional spaces are such). The second main result of this section is the following

improvement of the estimate mentioned above.

Theorem 2.12. Let X be a separable infinite-dimensional Banach space that is deter-

mined by its pavings. Then 〈X〉� is a Gδσ-set in P∞. In particular, it is a Gδσ-set in P
and in any admissible topology.

Let us start with the proof of Theorem 2.10.

Proof of Theorem 2.10. First, we show that isomorphism class is Fσ. This was proved
for an admissible topology on SB∞ in [28, Theorem 4.3]. The same proof, which we

briefly sketch, works also for P∞ and B. By Kwapień’s theorem (see, e.g. [1, Theorem

7.4.1]), a separable infinite-dimensional Banach space is isomorphic to �2 if and only if it

is of type 2 and of cotype 2. It is clear from the definition of type and cotype (see, e.g.
[1, Definition 6.2.10]) that these properties are Fσ-conditions. So to show that 〈�2〉� is

even Fσ-complete, by Lemma 1.1, it suffices to show that 〈�2〉� is not a Gδ-set, which

we have already proved. An alternative proof showing that the isomorphism class 〈�2〉�
is an Fσ-set follows from [37, Theorem 2’] (see also Remark 4 therein), which provides a

formula defining spaces isomorphic to �2 and which obviously defines an Fσ-set (in P∞
and B).
Next, we show that if a separable infinite-dimensional Banach space X is not isomorphic

to �2, then 〈X〉� is not Fσ in B. In what follows, we denote by T the set of finite tuples

(including empty) of natural numbers without repetition. The length of γ ∈ T is denoted

by |γ|, and its range by rng(γ). Moreover, for every γ ∈ T and every μ ∈ B, we put

Mγ
μ :=

{
ν ∈ B : for every (ai)

|γ|
i=1 ∈Q|γ| we have ν

( |γ|∑
i=1

aiei

)
= μ
( |γ|∑

i=1

aieγ(i)

)}
.

In order to get a contradiction, assume that (Fn)
∞
n=1 are closed sets in B such that

〈X〉� =
⋃∞

n=1Fn.

Claim. For every μ ∈ B with 〈Xμ〉≡ ⊆
⋃∞

n=1Fn there exist γ ∈ T and m ∈ N, such that

we have Mγ′

μ ∩Fm �= ∅ for every γ′ ∈ T with γ′ ⊇ γ.

Proof of the claim. Suppose the statement is not true. In particular, it does not hold

for γ = ∅ and m = 1. That is, there is some γ′
1 ∈ T so that M

γ′
1

μ ∩F1 = ∅. If 1 ∈ rng(γ′
1),

we set γ1 = γ′
1. Otherwise, we set γ1 = γ′

1
	
(1).
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In the next step, we use that the statement is not true for γ1 and m = 2 to obtain

γ′
2 ∈ T , γ′

2 ⊇ γ1 so that M
γ′
2

μ ∩F2 = ∅. If 2 ∈ rng(γ′
2), we set γ2 = γ′

2. Otherwise, we set

γ2 = γ′
2
	
(2).

We continue analogously. At the end of the recursion, we obtain a bijection π : N→ N,

such that π ⊇ γn for every n ∈ N and Mγn
μ ∩Fn = ∅ for every n ∈ N. Consider μ0 ∈ B

given as

μ0

( k∑
i=1

aiei

)
:= μ

( k∑
i=1

aieπ(i)

)
, k ∈ N, (ai)

k
i=1 ∈Qk.

Then the linear mapping given by ei �→ eπ(i), i ∈ N, witnesses that Xμ0
≡Xμ and μ0 ∈

Mγn
μ for every n ∈ N. Thus, μ0 /∈

⋃∞
n=1Fn, which is in contradiction with μ0 ∈ 〈Xμ〉≡ ⊆⋃∞

n=1Fn.

SinceX �
 �2, by the celebrated solution to the homogeneous subspace problem following

from the results of Komorowski and Tomczak-Jaegermann ([35]) and of Gowers ([29]), it
must contain an infinite-dimensional closed subspace Y ⊆X that is not isomorphic to X.

Let I ⊆ N be an infinite subset and {xn}n∈N a sequence of linearly independent vectors

in X so that

(1) span{xn}n∈N =X, span{xn : n ∈ I}= Y , and

(2) for every finite set F ⊆ N, we have

span{xn}n∈I∪F = span{xn}n∈F∩I ⊕ span{xn}n∈F\I ⊕ span{xn}n∈I\F .

Such a choice is possible, for example, by finding a Markushevich basis {xn}n∈I on Y (see
[30, Theorem 1.22]), extending it to a Markushevich basis {xn}n∈N on X (see [30, Theorem

1.45]) and then observing that for any J ⊆ N, we have that {xn}n∈J is a fundamental

biorthogonal system of span{xn}n∈J and so (2) holds (see [30, Fact 1.5]).

We define μ ∈ B as

μ
( k∑

i=1

aiei

)
:=
∥∥∥ k∑

i=1

aixi

∥∥∥
X
, k ∈ N, (ai)

k
i=1 ∈Qk.

Then 〈Xμ〉≡ = 〈X〉≡ ⊆
⋃∞

n=1Fn and so, by the claim above, there exist γ ∈ T and m ∈N

with Mγ′

μ ∩Fm �= ∅ for every γ′ ∈ T with γ′ ⊇ γ. Consider now the space Z := (span{ei : i∈
I ∪ rng(γ)},μ)⊆Xμ. Fix some Ĩ ⊆ I such that |I \ Ĩ|= |rng(γ)\I| and such that (I \ Ĩ)∩
rng(γ) = ∅. Define Z̃ := (span{ei : i ∈ Ĩ ∪ rng(γ)},μ). Then, using (2), we have

Z̃ 
 span{xn}n∈Ĩ ⊕R|rng(γ)\Ĩ| 
 span{xn}n∈Ĩ ⊕R|I\Ĩ| 
 Y ,

and so Z̃ �
X. Let ϕ : N→ rng(γ)∪ Ĩ be a bijection with ϕ⊇ γ. We define ν ∈ B by

ν
( k∑

i=1

aiei

)
:= μ

( k∑
i=1

aieϕ(i)

)
, k ∈ N, (ai)

k
i=1 ∈Qk.

Clearly, Xν ≡ Z̃ �
X.

https://doi.org/10.1017/S1474748023000440 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000440


Polish spaces of Banach spaces 1931

We claim that ν ∈ Fm. This will be in contradiction with the fact that Fm ⊆ 〈X〉�.
Since Fm is closed, it suffices to check that each basic open neighbourhood of ν intersects

Fm. Pick v1, . . . ,vl ∈ V and ε > 0. We need to find μ′ ∈ Fm so that |μ′(vj)−ν(vj)|< ε for
every j ≤ l.

Let L ∈ N, L ≥ |γ|, be such that v1, . . . ,vl ∈ span{ei : i ≤ L}. Since ϕ|{1,...,L} ⊇ γ, we

may pick μ′ ∈M
ϕ|{1,...,L}
μ ∩Fm. Then

μ′
( L∑

i=1

aiei

)
= μ
( L∑

i=1

aieϕ(i)

)
= ν
( L∑

i=1

aiei

)
, (ai)

L
i=1 ∈QL.

In particular, μ′(vj) = ν(vj), j ≤ l, as desired.

In the remainder of this section, we head towards the proof of Theorem 2.12.

Following [33], we say that an increasing sequence E1 ⊆ E2 ⊆ . . . of finite-dimensional
subspaces of a separable Banach space X whose union is dense is a paving of X. A

separable Banach space X is determined by its pavings if whenever Y is a Banach space for

which there are pavings {En}∞n=1 of X and {Fn}∞n=1 of Y with supn∈N dBM (En,Fn)<∞,
then Y is isomorphic to X. We refer the reader to [33] for details and examples.

We start with a theorem that is interesting on its own.

Theorem 2.13. Let X be a separable infinite-dimensional Banach space, {En}∞n=1 a

paving of X and λ≥ 1. Then the set

Z :=
{
μ ∈ P : for every ε > 0, there is a paving {Fk}∞k=1 of Xμ and an increasing

sequence (nk)
∞
k=1 ∈ NN with sup

k∈N

dBM (Fk,Enk
)≤ λ+ ε

}
is a Gδ-set in P.

In the proof, we will need the following observation, which is well-known and easy to

prove. We use the formulation from [14, Lemma 4.3].

Lemma 2.14. Given a basis bE = {e1, . . . ,en} of a finite-dimensional Banach space E,

there is C > 0 and a function φbE
2 : [0,C) → [0,∞) continuous at zero with φbE

2 (0) = 0,
such that whenever X is a Banach space with E ⊆ X and {xi : i ≤ n} ⊆ X are such

that ‖xi− ei‖ < ε, i ≤ n, for some ε < C, then the linear operator T : E → X given by

T (ei) := xi is a (1+φbE
2 (ε))-isomorphism and ‖T − IdE‖ ≤ φbE

2 (ε).

Proof of Theorem 2.13. For each En, n∈N, we fix its basis (which will be used only in

order to know what Z
K∼ En means for a finite-dimensional space Z and K > 1). For each

finite tuple �v of elements from V, we set S�v to be the set of all finite tuples �w, Q-linearly

independent in V, such that each element of �v (considered as an element of c00) lies in

span �w. For m ∈ N and a finite tuple �v of elements from V, we set
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P (�v,m) :=
{
μ ∈ P : if μ restricted to span{v1, . . . ,v|�v|} ⊆ c00 is a norm, then

there exist �w ∈ S�v and n ∈ N, such that

μ restricted to span{w1, . . . ,w|�w|} ⊆ c00 is a norm and

(((span{w1, . . . ,w|�w|},μ), �w)
√

λ+ 1
m∼ En)

}
.

Then, using the observation that {μ∈P : μ restricted to span{v1, . . . ,v|�v|}⊆ c00 is a norm}
is open due to Lemma 1.5, P (�v,m) is the union of a closed and an open set, so it is a
Gδ-set.

Denote by LI the set of all finite tuples �v = (v1, . . . ,v|�v|) of elements from V, which are

linearly independent in c00. We now set

G :=
⋂
m∈N

⋂
�v∈LI

P (�v,m),

which is clearly a Gδ-set. We shall prove that G = Z.

If μ ∈ G, it is clear that for every m, we can recursively build an increasing sequence

{Fk}∞k=1 of finite-dimensional subspaces whose union is dense in Xμ, such that we have

dBM (Fk,Enk
)≤ λ+ 1

m for every k ∈ N. It follows that μ ∈ Z.
On the other hand, pick μ ∈ Z. In what follows for x ∈ c00, we denote by [x] ∈ Xμ

the equivalence class corresponding to x. Pick some m ∈ N and an n-tuple �v ∈ LI,

such that μ restricted to span{v1, . . . ,vn} ⊆ c00 is a norm, so {v1, . . . ,vn} is a basis
of span{v1, . . . ,vn}. Pick λ′ ∈ (λ,λ+ 1

m ) and δ > 1 with δλ′ < λ+ 1
m . Since μ ∈ Z,

there is an increasing sequence {Fk}∞k=1 of finite-dimensional subspaces whose union

is dense in Xμ, such that supk∈N dBM (Fk,Enk
) ≤ λ′. By [38, Section 17, Theorem 6],

we can find a finite dimensional subspace span{[v1], . . . ,[vn]} ⊆ Y ⊆ Xμ and k ∈ N,

such that dBM (Y ,Fk) ≤ δ so dBM (Y ,Enk
) ≤ δλ′. Select yn+1, . . . ,ydimY ∈ Y , such that

b= {[v1], . . . ,[vn],yn+1, . . . ,ydimY } is a basis of Y. Let φb
2 be the function from Lemma 2.14,

and let η > 0 be such that δλ′(1+φb
2(η))

2 < λ+ 1
m . Further, for every n+1≤ i≤ dimY ,

pick vi ∈ V with ‖[vi]− yi‖Xμ
< η. Then (μ,[v1], . . . ,[vdimY ])

1+φb
2 (η)∼ Y so μ restricted

to span{v1, . . . ,vdimY } ⊆ c00 is a norm and span{[v1], . . . ,[vdimY ]} ⊆ Xμ is isometric to
(span{v1, . . . ,vdimY },μ). Since dBM ((span{v1, . . . ,vdimY },μ),Enk

) < δλ′ · (1 + φb
2(η))

2 <

λ+ 1
m , there exists a surjective isomorphism T : Enk

→ (span{v1, . . . ,vdimY },μ) with

max{‖T‖,‖T−1‖}<
√
λ+ 1

m . By Lemma 2.14, we may without loss of generality assume

that wi := T (ei) ∈ V for every i≤ dimY . Then μ restricted to span{w1, . . . ,wdimY } ⊆ c00

is a norm, �w ∈ S�v and ((μ, �w)

√
λ+ 1

m∼ Enk
).

Proof of Theorem 2.12. Pick a paving {En}∞n=1 of X. It is easy to see that for every
μ ∈ P∞, the Banach space Xμ is isomorphic to X if and only if μ belongs to the set Z
from Theorem 2.13 for some λ≥ 1. The ‘In particular’ part follows, since P∞ is a Gδ-set

in P. For admissible topologies, the result follows by applying [14, Theorem 3.3].
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3. Spaces with Gδ isometry classes

In this section, we investigate Banach spaces whose isometry classes are Gδ-sets, or even
Gδ-complete sets. The main results here are Theorems 3.3, 3.4 and 3.6, which imply the

first and the last part of Theorem B.

Besides �2, whose isometry class is actually closed, we have already mentioned in
Theorem 1.10 that the isometry class of the Gurarĭı space is a Gδ-set in P∞ and B.
We start the section with some basic corollaries of that result; in particular, that the

isometry class of G is even a Gδ-complete set.
Since for any separable infinite-dimensional Banach space X we obviously have 〈X〉B≡ =

〈X〉P∞
≡ ∩B, it is sufficient to formulate our positive results in the coding of P∞ and

negative results in the coding of B.

Lemma 3.1. Let X, Y be separable infinite-dimensional Banach spaces, such that X is

finitely representable in Y and Y is finitely representable in X. If 〈X〉≡ is a Gδ-set in B
and X �≡ Y , then

(i) 〈Y 〉≡ is not a Gδ-set in B.
(ii) 〈X〉≡ is a Gδ-complete set in B.

Proof. Recall that by Proposition 1.8, we have that both 〈X〉≡ and 〈Y 〉≡ are dense in

N := {ν ∈ B : Xν is finitely representable in X}.

(i): If both 〈X〉≡ and 〈Y 〉≡ are Gδ-sets, by the Baire theorem, we have that 〈X〉≡∩〈Y 〉≡
is comeager in N. Thus, the intersection cannot be an empty set, and we obtain X ≡ Y .
(ii): Since X �≡ Y , we have that 〈X〉≡ has empty interior in N. But it is also comeager in

N, and so it cannot be Fσ. Therefore, it is a Gδ-complete set by Lemma 1.1.

Corollary 3.2. G is the only isometrically universal separable Banach space whose
isometry class is a Gδ-set in B. The same holds if we replace B by P∞.

Moreover, 〈G〉≡ is a Gδ-complete set in both P∞ and B.

Proof. By Theorem 1.10, the isometry class of G is a Gδ-set. Let X be an isometrically

universal separable Banach space. By Lemma 3.1, if X �≡ G, then 〈X〉B≡ is not a Gδ-set
in B (and so neither in P∞).

For the ‘moreover’ part, we use Lemma 3.1 and any Banach space X not isometric to

G that is finitely representable in G and vice versa (e.g. any other universal separable

Banach space or c0).

The same proof gives us actually the following strengthening. Let us recall that by

Maurey–Pisier theorem, see [43] or [1, Theorem 12.3.14], a Banach space X has no
nontrivial cotype if and only if �∞ is finitely-representable in X (and yet equivalently, c0
is finitely-representable in X ).

Theorem 3.3. G is the only separable Banach space with no nontrivial cotype whose

isometry class is a Gδ-set in B. The same holds if we replace B by P∞.
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Proof. Any separable Banach space is finitely representable in c0, so by Lemma 3.1, there
is at most one Banach space X, such that c0 is finitely representable in X and 〈X〉≡ is a

Gδ-set. By Theorem 1.10, 〈G〉≡ is a Gδ-set.

3.1. Lp-spaces

Let us recall that a Banach space X is said to be an Lp,λ-space (with 1 ≤ p ≤ ∞ and

λ≥ 1) if every finite-dimensional subspace of X is contained in another finite-dimensional
subspace of X whose Banach-Mazur distance dBM to the corresponding �np is at most λ.

A space X is said to be an Lp-space, respectively, Lp,λ+-space, if it is an Lp,λ′ -space for

some λ′ ≥ 1, respectively, for every λ′ > λ.
The main result of this subsection is the following.

Theorem 3.4. For every 1≤ p<∞, p �=2, the isometry class of Lp[0,1] is a Gδ-complete

set in B and P∞.

Moreover, Lp[0,1] is the only separable Lp,1+-space whose isometry class is a Gδ-set
in B, and the same holds if we replace B by P∞.

Remark 3.5. It is easy to see (e.g. using [38, Section 17, Theorem 6]) that for every

p ∈ [1,∞] and λ ≥ 1, we have that a separable infinite-dimensional Banach space Y is
an Lp,λ+-space if and only if, for every ε > 0, there is an increasing sequence {Fk}∞k=1 of

finite-dimensional subspaces whose union is dense in Y, such that dBM (�dimFk
p ,Fk)≤ λ+ε

for every k ∈ N.

The next theorem is a crucial step in proving Theorem 3.4. However, it is also of

independent interest, and its corollary improves the related result from [28].

Theorem 3.6. Let 1 ≤ p ≤ ∞ and λ ≥ 1. The class of separable infinite-dimensional

Lp,λ+-spaces is a Gδ-set in P. In particular, the class of separable infinite-dimensional
Lp,λ+-spaces is a Gδ-set in P∞.

Proof. This is an immediate consequence of Theorem 2.13, Remark 3.5.

Note that for 1 ≤ p ≤∞, the class of Lp-spaces is obtained as the union
⋃

λ≥1Lp,λ+.

It is shown in [28, Proposition 4.5] that the class of separable Lp-spaces is a Σ0
4-set in

an admissible topology. It is immediate from Theorem 3.6 (and using [14, Theorem 3.3])

that we have a better estimate.

Corollary 3.7. For every 1≤ p≤∞, the class of separable Lp-spaces is a Gδσ-set in P
and any admissible topology.

Proof. Note that any finite-dimensional space is an Lp-space, so the class of separable

Lp-spaces may be written as the union of P\P∞ (which is an Fσ-set by [14, Corollary 2.5])
and {μ ∈ P∞ : Xμ is an Lp-space} (which is Gδσ-set by Theorem 3.6 above).

Let us recall the following classical result.

Theorem 3.8 (Lindenstrauss, Pe�lczyński). For every 1≤ p<∞ and a separable infinite-

dimensional Banach space X, the following assertions are equivalent.
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• X is an Lp,1+-space.
• X is isometric to a separable Lp(μ) space for some measure μ.
• X is isometric to one of the following spaces

Lp[0,1], Lp[0,1]⊕p �p, �p, Lp[0,1]⊕p �
n
p (for some n ∈ N).

Proof. By [41, Section 7, Corollaries 4 and 5], a separable Banach space is an Lp,1+-

space if and only if it is isometric to an Lp(μ) space for some measure μ. Finally, note

that every separable infinite-dimensional Lp(μ) space is isometric to one of the spaces

mentioned above (see, e.g. [1, pages 137–138]).

Recall that given a finite sequence (zn)n∈N in a Banach space Z, the symbol (zn)
K∼ �Np

means that K−1
(∑

i∈N |ai|p
)1/p

< ‖
∑

i∈N aizi‖<K
(∑

i∈N |ai|p
)1/p

for every a ∈ cN00. If

(zn) is isometrically equivalent to the �Np basis (that is, (zn)
1+ε∼ �Np for every ε > 0), we

write (zn)≡ �Np .

Theorem 3.9. Let 1≤ p <∞, p �= 2, and let X be a separable infinite-dimensional Lp,1+

space. Then the following assertions are equivalent.

(i) X is isometric to Lp[0,1].

(ii) For every x ∈ SX , the following condition is satisfied

∀N ∈ N ∃x1, . . . ,xN ∈X : (xi)
N
i=1 ≡ �Np and N1/p ·x=

N∑
i=1

xi.

(iii) For every x ∈ SX , the following condition is satisfied

∀ε > 0 ∃x1,x2 ∈X : (x1,x2)
1+ε∼ �2p and 21/p ·x= x1+x2.

(iv) For every x ∈ SX , the following condition is satisfied

∀ε > 0 ∀δ > 0 ∃x1,x2 ∈X : (x1,x2)
1+ε∼ �2p and ‖21/p ·x−x1−x2‖< δ.

Proof. (i) =⇒ (ii): Pick f ∈ SLp[0,1] and N ∈ N. Then, using the continuity of the

mapping [0,1] � x �→
∫ x

0
|f |, we find 0 = x0 < x1 < .. . < xN = 1, such that

∫ xi

xi−1
|f |p =

1
N

∫ 1

0
|f |p for every i= 1, . . . ,N . We put fi :=N1/p ·f ·χ[xi−1,xi], i= 1, . . . ,N . Then, since

the supports of fi are disjoint and since fi are normalized, we have (fi)
N
i=1 ≡ �Np . Further,

we obviously have N1/p ·f =
∑N

i=1 fi.

Obviously, we have (ii) =⇒ (iii) and (iii) =⇒ (iv).
(iii) =⇒ (i): In order to get a contradiction, let us assume that X is not isometric to

Lp[0,1], which, by Theorem 3.8, implies that X is isometric to Lp(μ), where (Ω,S,μ) is a

measure space for which there is ω ∈ Ω with μ({ω}) = 1. Fix ε > 0 small enough (to be

specified later). Suppose, to the contrary, that there are f,g ∈Lp(μ), such that (f,g)
1+ε∼ �2p

and 2
1
p · δω = f + g, where δω is the Dirac function supported by the point ω. For μ-a.e.

x ∈ Ω \ {ω}, we have f(x)+ g(x) = 0, so we assume this holds for all x ∈ Ω \ {ω}. We

without loss of generality assume that f(ω)≥ g(ω).
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We claim that both f(ω) and g(ω) are positive and |f(ω)−g(ω)|p < 1
2 if ε > 0 is chosen

sufficiently small. Indeed, we have

(1+ ε)p− 1

(1+ ε)p
≥
∣∣∣‖f‖pp−‖g‖pp

∣∣∣= ∣∣∣|f(ω)|p−|g(ω)|p
∣∣∣,

which implies ||f(ω)|−|g(ω)||< 2−1/p for sufficiently small ε > 0. The claim follows, since
if both f(ω) and g(ω) were not positive, we would have 21/p > 2−1/p > ||f(ω)|− |g(ω)||=
|(f +g)(ω)|= 21/p, a contradiction.

First, let us handle the case when 1≤ p < 2. We have

‖2f‖pp =
∫
Ω\{ω}

|2f |pdμ+(2f(ω))p =

∫
Ω\{ω}

|f −g|pdμ+(2f(ω))p

= ‖f −g‖pp+(2f(ω))p− ((f −g)(ω))p

≥ ‖f −g‖pp+((f +g)(ω))p = ‖f −g‖pp+‖f +g‖pp,

where in the inequality we used superadditivity of the function [0,∞) � t �→ tp. Thus,

(f,g)
1+ε∼ �p2 implies

(1+ ε)p ≥ ‖f‖pp ≥
‖f −g‖pp+‖f +g‖pp

2p
≥ 4

2p(1+ ε)p
;

hence, if 1≤ p < 2, we get a contradiction for sufficiently small ε > 0.

Finally, let us handle the case when p > 2. Note that since f(ω)≥ g(ω)≥ 0 and f(ω)+

g(ω) = 21/p, we have g(ω)≤ 21/p−1. Further, we have

‖2g‖pp =
∫
Ω\{ω}

|f −g|pdμ+(2g(ω))p ≤ ‖f −g‖pp+2.

Thus, (f,g)
1+ε∼ �p2 implies

1

(1+ ε)p
≤ ‖g‖pp ≤

‖f −g‖pp+2

2p
≤ 2(1+ε)p+2

2p
;

hence, if p > 2, we get a contradiction for sufficiently small ε > 0.

(iv) =⇒ (iii): Fix x ∈ SX and ε > 0. Pick δ > 0 small enough (to be specified later).

Applying Condition (iv), we obtain x′
1,x

′
2 ∈X, such that (x′

1,x
′
2)

1+
ε
2∼ �2p and ‖21/p ·x−x′

1−
x′
2‖< δ. Now, set x1 = x′

1+(21/p ·x− (x′
1+x′

2))/2 and x2 = x′
2+(21/p ·x− (x′

1+x′
2))/2. If

δ was chosen sufficiently small, we have (x1,x2)
1+ε∼ �2p, and clearly, 21/p ·x= x1+x2.

Let us note the following easy observation. The proof is easy and so omitted.

Fact 3.10. Let v,w ∈ V , v �= 0 and a,b ∈ R. Then the set{
μ ∈ P : μ(v) �= 0 and μ(a · v

μ(v)
−w)< b

}
is open in P.
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Proof of Theorem 3.4. Let F be the set of those ν ∈ P∞ for which Xν is an Lp,1+-
space. By Theorem 3.6, F ⊆ P∞ is a Gδ-set. By Theorem 3.9, using the obvious

observation that Condition (iv) may be verified on a dense subset, we have

〈Lp[0,1]〉P∞
≡ = F ∩

⋂
v∈V

⋂
n,k∈N

Uv,n,k,

where Uv,n,k are open sets (using Fact 3.10 and Lemma 1.5) defined as

Uv,n,k :=
{
μ ∈ P∞ : ∃v1,v2 ∈ V : (v1,v2)

1+
1
n∼ �2p and μ

(
21/p · v

μ(v)
−v1−v2

)
<

1

k

}
.

Thus, 〈Lp[0,1]〉P∞≡ is a Gδ-set.

On the other hand, since any Lp(μ) is finitely representable in �p and vice versa (see,

e.g. [1, Proposition 12.1.8]), from Lemma 3.1 and Theorem 3.8, we obtain that there is
at most one (up to isometry) Lp,1+ space X, such that 〈X〉≡ is a Gδ-set in B and that

〈Lp[0,1]〉≡ is a Gδ-complete set.

4. Spaces with Fσδ isometry classes

In this section, we focus on another classical Banach space, namely, �p spaces, for

p ∈ [1,2)∪ (2,∞), and c0. The main result of this section is the following, which proves
the second and the third part of Theorem B.

Theorem 4.1. The sets 〈c0〉≡ and 〈�p〉≡ (for p ∈ [1,2)∪ (2,∞)) are Fσδ-complete sets in
both P∞ and B.

Note that in order to obtain that result, we prove Proposition 4.6 and Theorem 4.13,

which are of independent interest, and where the ‘easiest possible’ isometric characteriza-
tions of the Banach spaces �p, respectively, c0, among separable Lp,1+-spaces, respectively,

separable L∞,1+-spaces are given. The proof of Theorem 4.1 follows immediately from

Propositions 4.3, 4.4 and 4.11.
Let us emphasize that in Section 4.2, we compute the Borel complexity of the operation,

assigning to a given Banach space the Szlenk derivative of its dual unit ball, which could

be of an independent interest as well. See, for example, Section 5.2 for some consequences.
The reason why we need to do it here is obviously that our isometric characterization of

the space c0 involves Szlenk derivatives.

We start with the part which is common for both cases – that is, for 〈c0〉≡ and 〈�p〉≡.

Lemma 4.2. Let p ∈ [1,∞), and let X = (
⊕

n∈NXn)p be the �p-sum of a family (Xn)n∈N

of separable infinite-dimensional Banach spaces. Then, X ≡ �p if and only if Xn ≡ �p for

every n ∈ N.
Similarly, let X = (

⊕
n∈NXn)0 be the c0-sum of a family (Xn)n∈N of separable infinite-

dimensional Banach spaces. Then, X ≡ c0 if and only if Xn ≡ c0 for every n ∈ N.

Proof. It is easy and well-known that the �p-sum of countably many �p spaces is isometric

to �p, and that the c0-sum of countably many c0 spaces is isometric to c0. The opposite

implications follow from the facts that every 1-complemented infinite-dimensional
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subspace of �p is isometric to �p, and that every 1-complemented infinite-dimensional
subspace of c0 is isometric to c0 (see [42, page 54]).

Proposition 4.3. Let X be one of the spaces �p, p ∈ [1,2)∪ (2,∞) or c0. Then the set
〈X〉≡ is Fσδ-hard in B.

Proof. Our plan is to find a Wadge reduction of a known Fσδ-hard set to 〈X〉B≡. For this
purpose, we will use the set

P3 = {x ∈ 2N×N : ∀m there are only finitely many n’s with x(m,n) = 1}

(see, e.g. [34, Section 23.A] for the fact that P3 is Fσδ-hard in 2N×N). But before we start
to construct the reduction of P3 to 〈X〉B≡, we need to do some preparation.

By Theorem 3.4 (in case X = �p) and Theorem 3.3 (in case X = c0), we know that

〈X〉B≡ is not a Gδ-set in B. Therefore, it is Fσ-hard in B by Lemma 1.1. Now, as the set

N2 = {x ∈ 2N : there are only finitely many n’s with x(n) = 1}

is an Fσ-set in 2N, it is Wadge reducible to 〈X〉B≡, so there is a continuous function
� : 2N →B, such that

x ∈N2 ⇔ �(x) ∈ 〈X〉B≡.

We fix a bijection b : N2 →N. For every x ∈ 2N and every m ∈N, we define �m(x) ∈ P∞
as follows. Suppose that v =

∑
n∈Nαnen is an element of V (i.e. αn is a rational number

for every n, and αn �= 0 only for finitely many n’s), then we put

�m(x)(v) = �(x)

(∑
n∈N

αb(m,n)en

)
.

Note that the set {eb(m,n) : n ∈ N} is both linearly independent and linearly dense in
X�m(x), and that �m(x)(ek) = 0 if k /∈ {b(m,n) : n ∈ N}. Also, X�m(x) is isometric to

X�(x), where the isometry is induced by the operator

ek �→
{
en k = b(m,n),

0 k /∈ {b(m,n) : n ∈ N}.

Now, we are ready to construct the required reduction f : 2N×N →B. For every x∈ 2N×N

and every m ∈ N, we write x(m) for the sequence (x(m,n))n∈N. If X = �p, we define

f(x)(v) = p

√∑
m∈N

(
�m(x(m))(v)

)p
, v ∈ V ,

and if X = c0, we put

f(x)(v) = sup{(�m(x(m)))(v) : m ∈ N}, v ∈ V.

This formula, together with the preceding considerations, easily implies that f(x)∈B and

that Xf(x) is isometric to the �p-sum, or to the c0-sum (depending on whether X = �p
or X = c0), of the spaces X�(x(m)), m ∈ N. Continuity of the functions �m and x �→ x(m),
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m ∈ N, immediately implies continuity of f. By Lemma 4.2, f(x) ∈ 〈X〉B≡ if and only if

�(x(m)) ∈ 〈X〉B≡ for every m ∈ N. Hence,

x ∈ P3 ⇔∀m ∈ N : x(m) ∈N2 ⇔ f(x) ∈ 〈X〉B≡.

4.1. The spaces �p

The purpose of this subsection is to prove the following result.

Proposition 4.4. For every p ∈ [1,2)∪ (2,∞), we have that 〈�p〉≡ is an Fσδ-set in P∞.

We start with the following classical result, which is sometimes named Clarkson’s

inequality. The proof may be found on various places, the original one is in the paper

by Clarkson (see [11]). In fact, we use only a very special case of Clarkson’s inequality,
where z,w are required to be elements of the real line instead of an Lp space (and this

case is rather straightforward to prove).

Lemma 4.5 (Clarkson’s inequality). Let 1 ≤ p < ∞, p �= 2. If p > 2, then for every
z,w ∈ R, we have

|z+w|p+ |z−w|p−2|z|p−2|w|p ≥ 0.

If p < 2, then the reverse inequality holds. Moreover, the equality holds if and only if

zw = 0.

Proposition 4.6. Let 1 ≤ p < ∞, p �= 2, and let X be a separable infinite-dimensional

Lp,1+-space. Let D be a dense subset of X. Then the following assertions are equivalent.

(i) X is isometric to �p.

(ii) For every x ∈ SX and every δ ∈ (0,1), the following condition is satisfied:

∃N ∈ N ∃ε > 0 ∀x1, . . . ,xN ∈X : (N1/p ·xi)
N
i=1

1+ε∼ �Np ⇒‖x−
N∑
i=1

xi‖> δ.

(iii) For every x ∈ SX , the following condition is satisfied:

∃N ∈ N ∀x1, . . . ,xN ∈X : (N1/p ·xi)
N
i=1 ≡ �Np ⇒ x �=

N∑
i=1

xi.

(iv) For every x ∈D \{0} and every δ ∈ (0,1), the following condition is satisfied:

∃N ∈ N ∃ε > 0 ∀x1, . . . ,xN ∈D : (N1/p ·xi)
N
i=1

1+ε∼ �Np ⇒
∥∥∥ x

‖x‖ −
N∑
i=1

xi

∥∥∥≥ δ.

Proof. (i) =⇒ (ii): Fix x ∈ S�p and δ ∈ (0,1). Pick l ∈ N with
∑l

k=1 |x(k)|p > δp and

N ∈ N, such that
∑l

k=1(|x(k)| − 3
p√
N
)p > δp. Fix a sequence (εm)m∈N ∈ (0,1)N with

εm → 0. In order to get a contradiction, for every m ∈ N, pick xεm
1 , . . . ,xεm

N ∈ �p, such

that (N1/p ·xεm
i )Ni=1

1+εm∼ �Np and ‖x−
∑N

i=1x
εm
i ‖ ≤ δ for every m ∈ N.
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We claim that there is m ∈ N, such that |xεm
i (k)xεm

j (k)| < η := N−(2+2/p) for every
i,j ∈ {1, . . . ,N}, i �= j, and k ∈ {1, . . . ,l}. Indeed, otherwise, there are i,j,k, such that

|xεm
i (k)xεm

j (k)| ≥ η for infinitely many m’s. By passing to a subsequence, we may assume

that this holds for every m ∈ N. Since the sequences (|xεm
i (k)|)m and (|xεm

j (k)|)m are

bounded, by passing to a subsequence, we may assume there are numbers a,b ∈ R with

xεm
i (k) → a, xεm

j (k) → b and |ab| ≥ η > 0. Since (N1/p · xεm
i ,N1/p · xεm

j )
1+εm∼ �2p, using

Lemma 4.5, for p > 2, we obtain

0≤ |a+ b|p+ |a− b|p−2|a|p−2|b|p

= lim
m

(
|xεm

i (k)+xεm
j (k)|p+ |xεm

i (k)−xεm
j (k)|p−2|xεm

i (k)|p−2|xεm
j (k)|p

)
≤ lim

m

(
‖xεm

i +xεm
j ‖p+‖xεm

i −xεm
j ‖p−2‖xεm

i ‖p−2‖xεm
j ‖p

)
= 0;

hence, |a+b|p+ |a−b|p = 2|a|p+2|b|p = 0, which, by Lemma 4.5, is in contradiction with

|ab|> 0. The case when p < 2 is similar.

From now on, we write xi instead of xεm
i , where m ∈ N is chosen to satisfy the

claim above. Fix k ≤ l. By the claim above, there is at most one i0 ∈ {1, . . . ,N} with

|xi0(k)| ≥
√
η, and for this i0, we have |xi0(k)| ≤ ‖xi0‖ ≤ 2N−1/p. Consequently, we have

N∑
i=1

|xi(k)| ≤
2

N1/p
+

∑
i∈{1,...,N}&|xi(k)|<

√
η

|xi(k)| ≤
2

N1/p
+N ·√η =

3

N1/p
.

Thus, we have

‖x−
N∑
i=1

xi‖p ≥
l∑

k=1

(
|x(k)|−

N∑
i=1

|xi(k)|
)p

≥
l∑

k=1

(
|x(k)|− 3

N1/p

)p
> δp,

which is in contradiction with ‖x−
∑N

i=1xi‖= ‖x−
∑N

i=1x
εm
i ‖ ≤ δ.

(ii) =⇒ (iii) is obvious.

(iii) =⇒ (i): Suppose that X is not isometric to �p. By Theorem 3.8, X is isometric
to Lp[0,1]⊕p Y for some (possibly trivial) Banach space Y. By abusing the notation, we

may assume that X =Lp[0,1]⊕pY . Let 1∈Lp[0,1] be the constant 1 function, and define

x ∈X = Lp[0,1]⊕p Y by x = (1,0). Now, fix N ∈ N arbitrarily. Define x1, . . . ,xN ∈X by

xi = (χ[ i−1
n , i

n ],0). Clearly, (N
1/p ·xi)

N
i=1 ≡ �np , and we have x=

∑N
i=1xi.

(ii) =⇒ (iv) is obvious, so it only remains to show that (iv) =⇒ (ii). For every

x ∈X \{0}, δ ∈ (0,1), N ∈ N, ε > 0 and x1, . . . ,xN ∈X, we denote by V (x,δ,N,ε,(xi)
N
i=1)

the assertion that if (N1/p ·xi)
N
i=1

1+ε∼ �Np , then ‖ x
‖x‖ −

∑N
i=1xi‖ ≥ δ. The desired implica-

tion straightforwardly follows by the following two easy observations. First, if x∈D\{0},
δ, N and ε are given, such that V (x,δ,N,ε,(xi)

N
i=1) holds for every x1, . . . ,xN ∈D, then

V (x,δ,N,ε,(xi)
N
i=1) holds for every x1, . . . ,xN ∈X. Second, if for every x ∈D \{0} and δ,

there are N and ε, such that V (x, 1+δ
2 ,N,ε,(xi)

N
i=1) holds for every x1, . . . ,xN ∈X, then

for every x ∈ X \ {0} and δ, there are N and ε, such that V (x,δ,N,ε,(xi)
N
i=1) holds for

every x1, . . . ,xN ∈X.
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Proof of Proposition 4.4. Let F be the set of those ν ∈ P∞ for which Xν is an Lp,1+-
space. By Theorem 3.6, F ⊆ P∞ is a Gδ-set. By Proposition 4.6 (i) ⇔ (iv), we have

〈�p〉P∞
≡ = F ∩

⋂
v∈V \{0}

⋂
m∈N

⋃
n,k∈N

Vv,m,n,k,

where the closed (see Fact 3.10 and Lemma 1.5) sets Vv,m,n,k are given by

Vv,m,n,k :=
{
μ ∈ P∞ : μ(v) = 0, or for every (vi)

n
i=1 ∈ V n, we have

¬
(
( p
√
nvi)

n
i=1

1+ 1
k∼ �np

)
or μ

( v

μ(v)
−

n∑
i=1

vi
)
≥ 1

m

}
.

Thus, 〈�p〉P∞
≡ is an Fσδ-set.

4.2. Dual unit balls and the Szlenk derivative

The purpose here is to show that mappings, which assign the dual unit ball and its Szlenk

derivative to a separable Banach space, may be realized as Borel maps (see Lemmas 4.9
and 4.10). This will be later used in order to estimate the Borel complexity of the isometry

class of the space c0 because the isometric characterization of the space c0 we use involves

Szlenk derivatives (see Theorem 4.13). Note that the issue of handling Szlenk derivations

as Borel maps was previously considered also by Bossard in [7, page 141], but our approach
is slightly different, as we prefer to work with the coding P, and we also need to obtain

an estimate on the Borel class of the mapping.

Let us recall that given a real Banach space X, a w∗-compact set F ⊆X∗ and ε > 0,
the Szlenk derivative is given as

F ′
ε =
{
x∗ ∈ F : U � x∗ is w∗-open⇒ diam(U ∩F )≥ ε

}
.

We start by coding dual unit balls as closed subsets of B�∞ equipped with the weak*
topology, that is the topology generated by elements of the unique predual �1.

Lemma 4.7. Let X be a separable Banach space, and let {xn : n ∈ N} be a dense set
in BX . Then the mapping BX∗ � x∗ �→ (x∗(xn))

∞
n=1 ∈ B�∞ is ‖ · ‖-‖ · ‖ isometry and

w∗-w∗ homeomorphism onto the set

Ω(X) :=
{
(an)

∞
n=1 ∈B�∞ :M ⊆ N finite⇒

∣∣∣ ∑
n∈M

an

∣∣∣≤ ∥∥∥ ∑
n∈M

xn

∥∥∥}.
Proof. That the mapping is w∗-w∗ homeomorphism onto its image follows from the fact

that BX∗ is w∗-compact and the mapping is one-to-one (because (xn) separate the points
of BX∗) and w∗-w∗ continuous (because on B�∞ , the w∗-topology coincides with the

topology of pointwise convergence). It is also straightforward to see that the mapping is

isometry. Thus, it suffices to prove that

{(x∗(xn))
∞
n=1 : x

∗ ∈BX∗}=Ω(X).
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The inclusion ⊆ is easy, let us prove ⊇. Given numbers a1,a2, . . . satisfying |
∑

n∈M an| ≤
‖
∑

n∈M xn‖ for any finite M ⊆ N, we need to find x∗ ∈ BX∗ , such that x∗(xn) = an for

each n.
Let us realize first that

• |an−am| ≤ ‖xn−xm‖ for every n,m,
• |an+am−al| ≤ ‖xn+xm−xl‖ for every n,m,l.

We check the first inequality only, the second inequality can be checked in the same

way. Given ε > 0, let n′ different from n and m be such that ‖xn+xn′‖ < ε. We obtain

|an−am|= |(an+an′)− (am+an′)| ≤ |an+an′ |+ |am+an′ | ≤ ‖xn+xn′‖+‖xm+xn′‖ ≤
2‖xn+xn′‖+‖xm−xn‖< 2ε+‖xm−xn‖. Since ε > 0 was chosen arbitrarily, we arrive at

|an−am| ≤ ‖xm−xn‖. It follows that there is a function f : BX → R with the Lipschitz

constant 1, such that f(xn) = an for each n. We claim that f(u+ v) = f(u)+ f(v) and
f(αu) = αf(u), whenever u,αu,v,u+ v ∈ BX . Given ε > 0, we pick n,m,l, such that

‖xn − u‖ < ε,‖xm − v‖ < ε and ‖xl − (u+ v)‖ < ε. Then, |f(u) + f(v)− f(u+ v)| <
|an + am − al|+3ε ≤ ‖xn +xm −xl‖+3ε ≤ ‖u+ v− (u+ v)‖+3ε+3ε = 6ε. Since ε > 0
was chosen arbitrarily, we arrive at |f(u) + f(v)− f(u+ v)| = 0. This also shows that

f(u/2) = f(u)/2, therefore, f(αu) = αf(u), provided that α is a dyadic rational number.

For a general α, we use density of dyadic rationals and continuity of f.

Now, it is easy to see that f uniquely extends to a linear functional on X.

By the above, every dual unit ball of a separable Banach space may be realized as a

subset of the unit ball of �∞. Thus, in what follows, we use the following convention.

Convention. Whenever we talk about open (closed, Fσ, etc.) subsets of Bl∞ , we always
mean open (closed, Fσ, etc.) subsets in the weak* topology. On the other hand, whenever

we talk about the diameter of a subset of Bl∞ , or about the distance of two subsets of

Bl∞ , we always mean the diameter, or the distance, with respect to the metric given by

the norm of �∞. Also, we write only K(Bl∞) instead of K(Bl∞,w∗).

Let us note the following easy observation for further references.

Lemma 4.8. Let P be a Polish space, X a metrizable compact, α ∈ [1,ω1) and f : P →
K(X) a mapping, such that {p ∈ P : f(p)⊆W} ∈Σ0

α(P )∪Π0
α(P ) for every open W ⊆X.

Then, f is Σ0
α+1-measurable.

Proof. The sets of the form

{F ∈ K(X) : F ⊆W} and {F ∈ K(X) : F ∩W �= ∅},

where W ranges over all open subsets of X, form a subbasis of the topology of K(X).

So we only need to check that f−1(U) is a Σ0
α+1-set for every open set U of one of

these forms. For the first case, this follows immediately from the assumptions, and for
the second case, if {Wn : n ∈ N} is an open basis for the topology of X, we have

f−1({F ∈ K(X) : F ∩W �= ∅}) =
⋃

n∈N, such that Wn⊆W

P \{p ∈ P : f(p)⊆X \Wn},

which, by the assumptions, is the countable union of sets from Σ0
α(P )∪Π0

α(P ).
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Lemma 4.9. For every ν ∈ P, we can choose a countable dense subset {xν
n : n ∈ N} of

BXν
in such a way that the mapping Ω: P →K(Bl∞,w∗) given by

Ω(ν) =

{
(an)

∞
n=1 ∈Bl∞ : M ⊆ N finite⇒

∣∣∣∣∣∑
n∈M

an

∣∣∣∣∣≤ ν

(∑
n∈M

xν
n

)}

is continuous.

Proof. First of all, we describe the choice of the sets {xν
n : n ∈N}, ν ∈ P. Let g : [0,∞)→

[1,∞) be given by g(t) = 1 for t ≤ 1 and g(t) = t for t > 1. Let {vn : n ∈ N} be an

enumeration of all elements of the vector space V (which is naturally embedded into
all Banach spaces Xν , ν ∈ P). Now, for every ν ∈ P and every n ∈N, we define xν

n ∈BXν

by xν
n = vn

g(ν(vn))
. Then, for every ν ∈ P, we have that {xν

n : n ∈ N} is a dense subset of

BXν
. Note also that the set{

(ν,(an)
∞
n=1) ∈ P ×Bl∞ :

∣∣∣∣∣∑
n∈M

an

∣∣∣∣∣> ν

(∑
n∈M

xν
n

)}

is open in P × (Bl∞,w∗) for every M ⊆ N finite (the proof is easy and is omitted).

Pick an open subset U of B�∞ . We have

Ω−1 ({F ∈ K(Bl∞) : F ⊆ U})

=

⎧⎨⎩ν ∈ P : ∀
(an)∞n=1∈Bl∞

⎛⎝⎛⎝ ∃
M⊆N
finite

∣∣∣∣∣∑
n∈M

an

∣∣∣∣∣> ν

(∑
n∈M

xν
n

)⎞⎠ or ((an)
∞
n=1 ∈ U)

⎞⎠⎫⎬⎭ .

The complement of the last set is the projection of a closed subset of P× (Bl∞,w∗) onto
the first coordinate. As the space (Bl∞,w∗) is compact, the complement is a closed subset

of P. It remains to show that the set {ν ∈ P : Ω(ν)∩U �= ∅} is open. Pick ν ∈ P with
Ω(ν)∩U �= ∅. By Lemma 4.7, there exists x∗ ∈ BX∗

ν
, such that the sequence (an)

∞
n=1

given by an = x∗(xν
n), n ∈ N, satisfies (an)

∞
n=1 ∈ Ω(ν)∩U . Let ε > 0 and N ∈ N be such

that (bn)
∞
n=1 ∈ �∞ is an element of U whenever |bn−an|< ε for every 1≤ n≤N . Let us

consider subspaces of c00, given as E = span{v1, . . . ,vN} and F = {x ∈ E : ν(x) = 0}. Let
G be such that F ⊕G = E and G∩V = G (it is enough to pick a basis of E consisting

of vectors from V, and using the Gauss elimination to determine which vectors from the

basis generate the algebraic complement to F ). Let PF :E → F and PG :E →G be linear
projections onto F and G, respectively. Pick δ <min{1, ε3}, such that δ · |x∗(PGvn)|< ε/3

for every 1≤ n≤N . Finally, put

O :={ν′ ∈ P :
1

1− δ
ν(x)> ν′(x)> (1− δ)ν(x) for every x ∈G\{0}}∩

N⋂
n=1

{ν′ ∈ P : ν′(PF vn)< δ,|ν′(vn)−ν(vn)|< δ}.
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Then, O is an open neighbourhood of ν, which easily follows from Lemma 1.5 and the
fact that G∩V is dense in G.

We will show that O ⊆ {ν′ ∈ P : Ω(ν′) ∩U �= ∅}. Pick ν′ ∈ O. If we put y∗(x) :=
(1−δ)x∗(x) for x ∈G, then |y∗(x)|= (1−δ)|x∗(x)| ≤ (1−δ)ν(x)≤ ν′(x) for every x ∈G,
and so by the Hahn-Banach theorem, we may extend y∗ to a functional (denoted again

by y∗) from the dual unit ball of Xν′ . By Lemma 4.7, the sequence (bn)
∞
n=1 given by

bn := y∗(xν′

n ), n ∈ N, is in Ω(ν′). Moreover, for every 1≤ n≤N , we have

|bn−an|=
∣∣ 1
g(ν′(vn))

y∗(vn)− 1
g(ν(vn))

x∗(vn)
∣∣

=
∣∣ 1
g(ν′(vn))

y∗(PF vn)+
1

g(ν′(vn))
y∗(PGvn)− 1

g(ν(vn))
x∗(PF vn+PGvn)

∣∣
=
∣∣ 1
g(ν′(vn))

y∗(PF vn)+
1

g(ν′(vn))
(1− δ)x∗(PGvn)− 1

g(ν(vn))
x∗(PGvn)

∣∣
≤ 1

g(ν′(vn))
|y∗(PF vn)|+

∣∣ 1
g(ν′(vn))

(1− δ)− 1
g(ν(vn))

∣∣|x∗(PGvn)|

≤ δ+
(
|g(ν(vn))−g(ν′(vn))|+ δ

)
|x∗(PGvn)|

≤ δ+2δ|x∗(PGvn)|< ε,

and so (bn)
∞
n=1 ∈Ω(ν′)∩U . Hence, O⊆ {ν′ ∈P : Ω(ν′)∩U �= ∅}, so {ν ∈P : Ω(ν)∩U �= ∅}

is an open set and Ω is a continuous mapping.

We close this subsection by realizing that the mapping which assigns to every compact

subset of B�∞ its Szlenk derivative is Borel. Let us note that the result is almost optimal,
as the mapping from Lemma 4.10 is not Fσ-measurable (see Corollary 4.14).

Lemma 4.10. For every ε > 0, the function sε : K(Bl∞,w∗) → K(Bl∞,w∗) given by

sε(F ) = F ′
ε is Σ0

3-measurable.

Proof. First, we claim that the set

{F ∈ K(Bl∞) : diam(U ∩F )< ε}

is an Fσ-set for every open subset U of Bl∞ . Indeed, the set above equals

∞⋃
k=1

{F ∈ K(Bl∞) : diam(U ∩F )≤ ε− 1
k}

=

∞⋃
k=1

⋂
O1,O2 open subsets of U

dist(O1,O2)≥ε− 1
k

{F ∈ K(Bl∞) : F ∩O1 = ∅ or F ∩O2 = ∅},

and our claim immediately follows.
Now, let W be an open subset of Bl∞ . Let {Un : n ∈N} be an open basis for the weak*

topology of Bl∞ . Then, we have (using a compactness argument in the last equality)

that
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s−1
ε ({F ∈ K(Bl∞) : F ⊆W})

= {F ∈ K(Bl∞) : ∃
M⊆N

((
∀

n∈M
diam(Un∩F )< ε

)
and

(
F ⊆W ∪

⋃
n∈M

Un

))
}

= {F ∈ K(Bl∞) : ∃
M⊆N
finite

((
∀

n∈M
diam(Un∩F )< ε

)
and

(
F ⊆W ∪

⋃
n∈M

Un

))
},

and our previous claim implies that the last set is an Fσ-set.

Thus, by Lemma 4.8, the mapping sε is Σ0
3-measurable.

4.3. The space c0

The main goal of this subsection is to prove the following.

Proposition 4.11. 〈c0〉≡ is an Fσδ-set in P∞.

Our estimate on the Borel complexity of the isometry class of c0 is based on an
isometric characterization of c0 among L∞,1+-spaces. Let us recall that L∞,1+-spaces

are often called the Lindenstrauss spaces or L1 predual spaces. There are many different

characterizations of this class of spaces. Let us recall one which we will use further (see,
e.g. [38, page 232], the ‘in particular’ part follows from the easy part of Theorem 3.8

applied to X∗ and the fact that L1[0,1] is not isomorphic to a subspace of a separable

dual Banach space, see, e.g. [1, Theorem 6.3.7]).

Theorem 4.12. Let X be a Banach space. Then the following conditions are equivalent.

(i) X is an L∞,1+-space.

(ii) X∗ is isometric to L1(μ) for some measure μ.

In particular, if X is an L∞,1+-space with X∗ separable, then X∗ is isometric to �1.

The isometric characterization of c0, which we use for our upper estimate, follows.

Theorem 4.13. Let X be a separable L∞,1+-space, and let 0<ε< 1. Then X is isometric
to c0 if and only if

(BX∗)′2ε = (1− ε)BX∗ .

Proof. First, we show that (Bc∗0
)′2ε = (1−ε)Bc∗0

(this must be known, but we were unable
to find any reference). By a standard argument, (1− ε)BX∗ ⊆ (BX∗)′2ε for any infinite-

dimensional X. (Let x∗ ∈ (1−ε)BX∗ . Any w∗-open set U containing 0 contains also both

y∗ and −y∗ for some y∗ ∈ SX∗ , and so diam(U ∩BX∗) = 2. For this reason, any w∗-open
set V containing x∗ fulfils diam(V ∩(x∗+εBX∗)) = 2ε, in particular, diam(V ∩BX∗)≥ 2ε.

This proves that x∗ ∈ (BX∗)′2ε.)
Let us show that the opposite inclusion takes place for X = c0. Assuming 1− ε <

‖x∗‖≤ 1, we need to check that x∗ /∈ (Bc∗0
)′2ε. Let e1,e2, . . . be the canonical basis of c0. Let

n be large enough that
∑n

i=1 |x∗(ei)|> 1−ε, and let δ > 0 satisfy 2δn < [
∑n

i=1 |x∗(ei)|]−
(1− ε). Let

U = {y∗ ∈ c∗0 : 1≤ i≤ n⇒ |y∗(ei)−x∗(ei)|< δ}.
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For y∗,z∗ ∈ U ∩Bc∗0
, we have

∞∑
i=n+1

|y∗(ei)|= ‖y∗‖−
n∑

i=1

|y∗(ei)| ≤ 1−
n∑

i=1

|x∗(ei)|+ δn,

and the same for z∗, thus

‖y∗− z∗‖ ≤
n∑

i=1

|y∗(ei)− z∗(ei)|+
∞∑

i=n+1

|y∗(ei)|+
∞∑

i=n+1

|z∗(ei)|

≤ 2δn+2
[
1−

n∑
i=1

|x∗(ei)|
]
+2δn.

We get diam(U ∩Bc∗0
)≤ 4δn+2[1−

∑n
i=1 |x∗(ei)|]< 2ε.

Now, let us assume that X satisfies (BX∗)′2ε = (1− ε)BX∗ . Clearly, X is infinite-
dimensional, as (BX∗)′2ε is nonempty. Moreover, X∗ is separable because the Szlenk

index of X is ω (see, e.g. [39, Proposition 3 and Theorem 1]). Thus, by Theorem 4.12,

the dual X∗ is isometric to �1. Let e∗1,e
∗
2, . . . be a basis of X∗ that is 1-equivalent to

the canonical basis of �1, and let e∗∗1 ,e∗∗2 , . . . be the dual basic sequence in X∗∗. We

claim that the functionals e∗∗n are w∗-continuous. Suppose that e∗∗n is not w∗-continuous
for some n. It means that {x∗ ∈ X∗ : e∗∗n (x∗) = 0} is not w∗-closed. By the Banach-
Dieudonné theorem, the set {x∗ ∈ BX∗ : e∗∗n (x∗) = 0} is not w∗-closed, too. The space

(BX∗,w∗) is metrizable, so there is a sequence x∗
k in BX∗ with e∗∗n (x∗

k) = 0, which w∗-
converges to some x∗ with e∗∗n (x∗) �= 0. Without loss of generality, let us assume that

e∗∗n (x∗)> 0 and that e∗∗i (x∗
k) converges to some ai for every i. Then, clearly, an = 0. Note

that
∑∞

i=1 |ai| ≤ 1, which follows from the fact that
∑∞

i=1 |e∗∗i (x∗
k)|= ‖x∗

k‖ ≤ 1 for every k.

Let us put a∗ =
∑∞

i=1 aie
∗
i , y

∗
k = x∗

k−a∗ and y∗ = x∗−a∗. Then, e∗∗n (y∗k) = 0,e∗∗n (y∗)> 0,

the sequence y∗k is w∗-convergent to y∗ and, moreover, e∗∗i (y∗k) converges to 0 for every i.
Choosing a subsequence and making a small perturbation, we can find a sequence z∗l
which is a block sequence with respect to the basis e∗i and which still w∗-converges to

y∗. Without loss of generality, let us assume that ‖z∗l ‖ converges to some λ, clearly, with
λ≥ ‖y∗‖> 0, and let us consider u∗

l =
1

‖z∗
l ‖
z∗l and u∗ = 1

λy
∗.

So, we have seen that there is a normalized block sequence u∗
l in X∗ which w∗-converges

to some u∗ with e∗∗n (u∗)> 0. We put

v∗l = (1− ε)e∗n+ εu∗
l , v∗ = (1− ε)e∗n+ εu∗.

Then, v∗l is a sequence in BX∗ that w∗-converges to v∗. Since ‖v∗l − v∗l′‖ = 2ε for l �= l′,
any w∗-open set U containing v∗ fulfils diam(U ∩BX∗)≥ 2ε. It follows that v∗ ∈ (BX∗)′2ε,
and, by our assumption, v∗ ∈ (1− ε)BX∗ . At the same time,

‖v∗‖ ≥ e∗∗n (v∗) = (1− ε)+ εe∗∗n (u∗)> 1− ε,

which is not possible.
Hence, the functionals e∗∗n are w∗-continuous indeed. Every e∗∗n is therefore the

evaluation of some en ∈ X. Finally, it is easy to check that e1,e2, . . . is a basis of X

that is 1-equivalent to the canonical basis of c0.
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Proof of Proposition 4.11. Let F be the set of those μ∈P∞ for whichXμ is an L∞,1+-
space. By Theorem 3.6, F is a Gδ-set in P∞. Let Ω be the mapping from Lemma 4.9, and

let us denote by � the closed set {(x,x) : x ∈ K(�∞)} in K(�∞)×K(�∞). By Lemma 4.7

and Theorem 4.13, we have that

〈c0〉≡ = F ∩{ν ∈ P : ( 12Ω(ν),Ω
′
1(ν)) ∈�}.

By Lemmas 4.9 and 4.10, the mapping P � ν �→ ( 12Ω(ν),Ω
′
1(ν)) ∈ K(�∞)×K(�∞) is

Σ0
3-measurable, so we obtain that 〈c0〉≡ is an Fσδ-set in P∞.

Corollary 4.14. Let ε > 0. Then, the mapping sε from Lemma 4.10 is not Σ0
2-

measurable.

Proof. Otherwise, similarly as in the proof of Proposition 4.11, we would prove that

〈c0〉≡ is a Gδ-set in P∞, which is not possible due to Theorem 3.3.

5. Miscellaneous

5.1. Superreflexive spaces

Recall that a map f : M → N between metric spaces is called a C -bi-Lipschitz

embedding if

∀x �= y ∈M : C−1dM (x,y)< dN (f(x),f(y))<CdM (x,y).

Lemma 5.1. Let M be a finite metric space and C > 0. The set E(M,C) consisting of
those μ ∈ P, such that M admits a C-bi-Lipschitz embedding into Xμ is open in P.

Proof. Let μ ∈ E(M,C). Thus, there is a C -bi-Lipschitz embedding f : M → Xμ. By

perturbing the image of f if necessary, we may without loss of generality assume that
f(M)⊆ V .

Consider ε > 0 and the open neighbourhood Uε of μ consisting of those μ′ ∈P for which

|μ(f(x)− f(y))−μ′(f(x)− f(y))| < ε for every x,y ∈ M . Then, Uε ⊆ E(M,C) for ε > 0
small enough. Indeed, it suffices to choose ε smaller than

min{ min
x �=y∈M

CdM (x,y)−μ(f(x)−f(y)), min
x �=y∈M

μ(f(x)−f(y))−C−1dM (x,y)}.

The easy verification is left to the reader.

Proposition 5.2. Let (Mn)n∈N be a sequence of finite metric spaces, and let X be the

class of those Banach spaces X for which there exists a constant C, such that for every

n ∈ N, Mn admits a C-bi-Lipschitz embedding into X.
Then, F := {μ ∈ P∞ : Xμ is in X} is a Gδσ-set in P∞.

Proof. Follows immediately from Lemma 5.1, because we have

F = P∞∩
⋃
C>0

⋂
n∈N

E(Mn,C).

Bourgain in his seminal paper [9] found a sequence of finite metric spaces (Mn)n∈N,

such that a separable Banach space is not superreflexive if and only if there exists a

https://doi.org/10.1017/S1474748023000440 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000440


1948 M. Cúth et al.

constant C, such that for every n ∈ N, Mn admits a C -bi-Lipschitz embedding into X.
We refer the interested reader to [47, Section 9] for some more related facts and results.

Thus, combining this result with Proposition 5.2, we obtain immediately the following.

Theorem 5.3. The class of all superreflexive spaces is an Fσδ-set in P∞.

A metric space M is called locally finite if it is uniformly discrete and all balls in M are

finite sets (in particular, every such M is at most countable). Let us mention a result by
Ostrovskii by which a locally finite metric space bi-Lipschitz embeds into a Banach space

X if and only if all of its finite subsets admit uniformly bi-Lipschitz embeddings into X

(see [46] or [47, Theorem 2.6]). Thus, from Proposition 5.2, we obtain also the following.

Corollary 5.4. Let M be a locally finite metric space. Then, the set of those μ ∈ P∞ for

which M admits a bi-Lipschitz embedding into Xμ is a Gδσ-set in P∞.

It is well-known that many important classes of separable Banach spaces are not Borel.
This concerns, for example, reflexive spaces, spaces with separable dual, spaces containing

�1, spaces with the Radon-Nikodým property, spaces isomorphic to Lp[0,1] for p ∈ (1,2)∪
(2,∞), or spaces isomorphic to c0. We refer to [7, page 130 and Corollary 3.3] and [36,
Theorem 1.1] for papers which contain the corresponding results and to the monograph

[17] and the survey [26] for some more information. Thus, for example, in combination

with Corollary 5.4, we see that none of those classes might be characterized as a class

into which a given locally finite metric space bi-Lipchitz embeds. Let us give an example
of such a result, which is related to [45, Problem 12.5(b)]. This is an elementary but

interesting application of the whole theory.

Corollary 5.5. There does not exist a locally finite metric space M, such that any

separable Banach space X is not reflexive if and only if M admits a bi-Lipschitz embeddings
into X.

Remark 5.6. Let us draw the attention of the reader once more to the remarkable paper

[45], where the authors found a metric characterization of reflexivity, even though such a

condition is necessarily non-Borel (as mentioned above).

5.2. Szlenk indices

In this subsection, we give estimates on the Borel classes of spaces with Szlenk index
less than or equal to a given ordinal number. Note that it is a result by Bossard, see

[7, Section 4], that those sets are Borel and their Borel classes are unbounded. So our

contribution here is that we provide certain quantitative estimates from above. Similarly,
we give an estimate on the Borel class of spaces with summable Szlenk index, which is a

quantitative improvement of the result mentioned in [25, page 367]. Let us start with the

corresponding definitions. Let X be a real Banach space and K ⊆X∗ a w∗-compact set.
Following [39], for ε > 0, we define sε(K) as the Szlenk derivative of the set K (see Section

4.2), and then we inductively define sαε (K) for an ordinal α by sα+1
ε (K) := sε(s

α
ε (K)) and

sαε (K) :=
⋂

β<α s
β
ε (K) if α is a limit ordinal. Given a real Banach space X, Sz(X,ε) is
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the least ordinal α, such that sαε (BX∗) = ∅, if such an ordinal exists (otherwise, we write

Sz(X,ε) =∞). The Szlenk index is defined by Sz(X) = supε>0Sz(X,ε).

Recall that for a separable infinite-dimensional Banach space X, the Szlenk index is
either ∞ or ωα for some α ∈ [1,ω1) (see [39, Section 3]).

Theorem 5.7. Let α ∈ [1,ω1) be an ordinal. Then

{μ ∈ P∞ : Sz(Xμ)≤ ωα}

is a Π0
ωα+1-set in P∞.

Proof. Using Lemma 4.10, it is easy to prove by induction on n that the mapping

K(B�∞) � F �→ snε (F ) ∈ K(B�∞) is Σ0
2n+1-measurable for every n ∈ N. Further, the

mapping K(B�∞) � F �→ sωε (F ) ∈ K(B�∞) is Σ0
ω+1-measurable. Indeed, for every open

V ⊆B�∞ , by compactness argument, we have

{F : sωε (F )⊆ V }=
∞⋃

n=1

{F : snε (F )⊆ V }

which is a Σ0
ω-set, so by Lemma 4.8, the mapping sωε is Σ0

ω+1-measurable. Similarly, we
prove by transfinite induction that sβε is Σ0

β+1-measurable whenever β ∈ [ω,ω1) is a limit

ordinal.

Let Ω be the mapping from Lemma 4.9. Then, by Lemma 4.7, we have

{μ ∈ P∞ : Sz(Xμ)≤ ωα}=
⋂
k∈N

{μ ∈ P∞ : Sz(Xμ,
1
k )≤ ωα}

=
⋂
k∈N

{μ ∈ P∞ : sω
α

1/k(Ω(μ)) = ∅},

which, by the above and Lemma 4.9, is the countable intersection of preimages of closed

sets under Σ0
ωα+1-measurable mapping, so it is a Π0

ωα+1-set in P∞.

Let us recall that a Banach space X has a summable Szlenk index if there is
a constant M, such that for all positive ε1, . . . ,εn with sε1 . . . sεnBX∗ �= ∅, we have∑n

i=1 εi ≤M .

Proposition 5.8. The set {μ ∈ P∞ : Xμ has a summable Szlenk index} is a Σ0
ω+2-set

in P∞.

Proof. Let Ω be the mapping from Lemma 4.9. It is easy to see that the set {μ ∈
P∞ : Xμ has a summable Szlenk index} is equal to⋃

M∈N

⋂
ε1,...,εn∈Q+∑n

i=1 εi>M

{μ ∈ P∞ : sε1 . . . sεnΩ(μ) = ∅},

which by Lemmas 4.9 and 4.10 is a Σ0
ω+2-set in P∞.
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Finally, let us note that similarly, one can of course estimate Borel complexity of various
other classes of spaces related to Szlenk derivations, for example, spaces with Szlenk power

type at most p etc.

5.3. Spaces having Schauder basis-like structures

It is an open problem whether the class of spaces with Schauder basis is a Borel set in

B (see, e.g. [17, Problem 8]), and note that by the results from [14, Section 3], it does

not matter whether we use the coding SB(C([0,1])) or B. However, it was proved by
Ghawadrah that the class of spaces with π-property is Borel (actually, it is a Σ0

6-set in

P∞, which follows immediately from [21, Lemma 2.1], see also [24]) and that the class of

spaces with the bounded approximation property (BAP) is Borel (actually, it is a Σ0
7-set

in P∞, which follows immediately from [23, Lemma 2.1], and this estimate has recently

been improved to a Σ0
6-set in any admissible topology, see [24]). One is therefore led to

the question of finding examples of Banach spaces having BAP but not Schauder basis.
Such an example was constructed by Szarek [50]. Actually, Szarek considered classes of

separable spaces with local basis structure (LBS) and local Π-basis structure (LΠBS) for

which we have

basis =⇒ (LΠBS) =⇒
(
(LBS) and (BAP)

)
=⇒ (BAP),

and he proved that the converses to the second and the third implication do not hold in
general. The problem of whether the converse to the first implication holds seems to be

open (see [50, Problem 1.8]). In this subsection, we prove that both (LBS) and (LΠBS)

give rise to a Borel class of separable Banach spaces (we even compute an upper bound
on their Borel complexities, see Theorem 5.13). Note that this result somehow builds a

bridge between both open problems mentioned above, that is, between the problem of

whether 〈spaces with Schauder basis〉 is a Borel set in B and the problem of whether

every separable Banach space with (LΠBS) has a basis.
Let us start with the definitions as they are given in [50].

Definition 5.9. By the basis constant of a basis (xi)
d
i=1 of a Banach spaceX of dimension

d ∈ [0,∞], we mean the least number C ≥ 1, such that ‖
∑n

i=1 aixi‖ ≤ C‖
∑m

i=1 aixi‖
whenever n,m∈N, n≤m≤ d and a1, . . . ,am ∈R. The basis constant of (xi)

d
i=1 is denoted

by bc((xi)
d
i=1). We further denote

bc(X) = inf
{
bc((xi)

d
i=1) : (xi)

d
i=1 is a basis of X

}
.

Definition 5.10. A Banach space X is said to have the local basis structure (LBS)

if X =
⋃∞

n=1En, where E1 ⊆ E2 ⊆ . . . are finite-dimensional subspaces satisfying

supn∈Nbc(En)<∞.

Further, X is said to have the local Π-basis structure (LΠBS) if X =
⋃∞

n=1En, where

E1 ⊆ E2 ⊆ . . . are finite-dimensional subspaces satisfying supn∈Nbc(En) < ∞ for which

there are projections Pn :X → En, such that Pn(X) = En and supn∈N ‖Pn‖<∞.

Lemma 5.11. Whenever E is a finite-dimensional subspace of a Banach space X,

δ ∈ (0,1), K > 0, T : E → X is a (1+ δ)-isomorphism (not necessarily surjective) with

https://doi.org/10.1017/S1474748023000440 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000440


Polish spaces of Banach spaces 1951

‖T − I‖< δ and P :X →E is a projection with P (X) =E and ‖P‖ ≤K, then, for every

subspace F of E, we have ‖TP |T (F )− IT (F )‖ ≤ 4δK.

Moreover, whenever ‖TP |T (E) − IT (E)‖ ≤ q < 1, then T (E) is (1+δ)K
1−q -complemented

in X.

Proof. Let {f1, . . . ,fn} be a basis of F. Then, for every x=
∑n

i=1 aiT (fi)∈ T (F ), we have

‖TPx−x‖= ‖TP (
n∑

i=1

ai(T (fi)−fi))‖ ≤ (1+ δ)K‖(T − I)T−1x‖ ≤ (1+ δ)2δK‖x‖.

Moreover, if ‖TP |T (E) − IT (E)‖ < 1, then the mapping TP |T (E) is an isomorphism

with ‖(TP |T (E))
−1‖ ≤

∑∞
i=0 q

i = 1
1−q . It is now straightforward to prove that P ′ :=

(TP |T (E))
−1TP :X → T (E) is a projection onto T (E) with ‖P ′‖ ≤ (1+δ)K

1−q .

Lemma 5.12. For every μ ∈ B, K,l ∈ N and v1, . . . ,vm ∈ V , let us denote by
Φ(μ,K,v1, . . . ,vm) and Ψ(μ,K,l,v1, . . . ,vm) the formulae

Φ(μ,K,v1, . . . ,vm) = ∀a1, . . . ,am ∈ R : max
1≤k≤m

μ
( k∑

i=1

aivi

)
≤Kμ

( m∑
i=1

aivi

)
and

Ψ(μ,K,l,v1, . . . ,vm) = ∃u1, . . . ,ul ∈Q-span{v1, . . . ,vm}∀a1, . . . ,am,b1, . . . ,bl ∈ R :

μ
( m∑

i=1

aivi+

l∑
i=1

biui

)
≤Kμ

( m∑
i=1

aivi+

l∑
i=1

biei

)
.

Then, for every ν ∈ B, the following holds.

(a) The space Xν has LBS if and only if

∃K ∈ N∀n ∈ N∃m ∈ N∃v1, . . . ,vm ∈ V , {e1, . . . ,en} ⊆ span{v1, . . . ,vm}

Φ(ν,K,v1, . . . ,vm).

(b) The space Xν has LΠBS if and only if

∃K ∈ N∀n ∈ N∃m ∈ N∃v1, . . . ,vm ∈ V , {e1, . . . ,en} ⊆ span{v1, . . . ,vm}

Φ(ν,K,v1, . . . ,vm)∧∀l ∈ NΨ(ν,K,l,v1, . . . ,vm).

Proof. We prove only the more difficult part (b). Since ν ∈ B, the space Xν is just the

completion of (c00,ν) (it is not necessary to consider a quotient). So, the notions of linear
span and of linear independence have the same meaning in c00 and in Xν , if performed

on subsets of c00.

Let us suppose that ν ∈ B satisfies the formula in (b) for some K ∈N. We put E0 = {0}
and choose recursively subspaces E1 ⊆ E2 ⊆ . . . of Xν , each of which is generated by a

finite number of elements of V , in the following way. Assuming that Ej has been already

chosen, we pick first nj+1 ≥ j+1, such that Ej ⊆ span{e1, . . . ,enj+1
}. Then, we can pick
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mj+1 ∈ N and vj+1
1 , . . . ,vj+1

mj+1
∈ V with {e1, . . . ,enj+1

} ⊆ span{vj+1
1 , . . . ,vj+1

mj+1
}, such that

Φ(ν,K,vj+1
1 , . . . ,vj+1

mj+1
) and for every l ∈ N, Ψ(ν,K,l,vj+1

1 , . . . ,vj+1
mj+1

) hold.

We put Ej+1 = span
{
vj+1
1 , . . . ,vj+1

mj+1

}
. In this way, we obtain Ej ⊆ Ej+1. Also, Xν =⋃∞

n=1En (we have ej+1 ∈ Ej+1, as nj+1 ≥ j+1). If we take all nonzero vectors vj+1
i ,1≤

i≤mj+1, we obtain a basis of Ej+1 with the basis constant at most K.

To show that the sequence E1 ⊆ E2 ⊆ . . . witnesses that Xν has LΠBS, it remains

to find a projection Pj+1 of Xν onto Ej+1, such that ‖Pj+1‖ ≤ K. Let us pick some
l ∈ N and put E(l) = span{vj+1

1 , . . . ,vj+1
mj+1

,e1, . . . ,el}. By Ψ(ν,K,l,vj+1
1 , . . . ,vj+1

mj+1
), there

exists a projection P (l) of E(l) onto Ej+1 with ‖P (l)‖ ≤K. Since the norms of P (l), for

l ∈N, are uniformly bounded and have a fixed finite-dimensional range, there exists their
accumulation point in strong operator topology (SOT) which is a projection Pj+1 :Xν →
Ej+1 of norm bounded by K as desired.

Conversely, suppose that Xν has LΠBS as witnessed by some C > 1 and a sequence
(En)n∈N of finite-dimensional subspaces satisfying Xν =

⋃
nEn and supn∈Nbc(En) < C,

for which there are projections Pn :Xν →En, such that Pn(Xν) =En and supn∈N ‖Pn‖<
C. Pick D > 0, such that Hn := (span{e1, . . . ,en},ν) is D-complemented in Xν , and let

φ1 := φe1,...,en
2 be the function from Lemma 2.14. Fix ε> 0, such that φ1(t) is small enough

(to be specified later) whenever t < ε. Find k ∈N, such that there are h1, . . . ,hn ∈Ek with

ν(ei−hi)< ε. If φ1(ε) is small enough, we have (1+φ1(ε))D
1−4φ1(ε)D

≤ 2D (this value refers to the

‘Moreover’ part in Lemma 5.11). By Lemma 5.11, span{hi : i ≤ n} is 2D-complemented

in Xν , so let Q : Xν → span{hi : i ≤ n} be the corresponding projection. Pick a basis
hn+1, . . . ,hdimEk

of the space Ek ∩Q−1(0), which is (2D+1)-complemented in Ek. Let

φ2 := φ
hn+1,...,hdimEk
2 be the function from Lemma 2.14. Fix δ > 0, such that φ2(t) is small

enough (to be specified later) whenever t < δ. Finally, find fn+1, . . . ,fdimEk
∈ V with

ν(fj −hj)< δ for j = n+1, . . . , dimEk.
We claim that the space Fn := (span{e1, . . . ,en,fn+1, . . . ,fdimEk

},ν) is 2C-complemented

in Xν and dBM (Fn,Ek) < 2. If we denote by T : Ek → Fn the linear mapping given by

hi �→ ei, i ≤ n, and hj �→ fj , n+1 ≤ j ≤ dimEk, then for every y ∈ span{hi : i ≤ n} and
z ∈ span{hj : j = n+1, . . . , dimEk}, we have

ν(T (y+ z)−y− z)≤ ν(Ty−y)+ν(Tz− z)≤ φ1(ε)ν(y)+φ2(δ)ν(z)

≤
(
φ1(ε)2D+φ2(δ)(2D+1)

)
ν(y+ z);

hence, if η :=
(
φ1(ε)2D+φ2(δ)(2D+1)

)
< 1, we obtain ‖T‖ ≤ 1+ ‖I −T‖ ≤ 1+ η and

‖Tx‖ ≥ ‖x‖− ‖(I − T )x‖ ≥ (1− η)‖x‖ for every x ∈ Ek, so T is an isomorphism with
‖T‖−1 ≤ (1−η)−1. Thus, by Lemma 5.11, if φ1(ε) and φ2(δ) are small enough (and so η

is small enough), we obtain ‖T‖‖T−1‖< 2 and Fn is 2C-complemented in Xν .

Thus, bc(Fn)≤ bc(Ek)dBM (Ek,Fn)< 2C, which is witnessed by some basis v1, . . . ,vm ∈
V of Fn. This shows that Φ(ν,2C,v1, . . . ,vm) holds. Let P :Xν → Fn be a projection with

P [Xν ] = Fn and ‖P‖ ≤ 2C. Given l ∈ N, let T ⊆ {1, . . . ,l} be a set, such that (ei)i∈T

together with (vi)
m
i=1 form a basis of span({v1, . . . ,vm}∪{e1, . . . ,el}). Pick A> 0, such that
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(vi)
m
i=1∪(ei)i∈T

A∼ �
m+|T |
1 . For i∈ T pick ui ∈ spanQ{v1, . . . ,vm}, such that ν(ui−P (ei))<

C
A . Then, for every a1, . . . ,am ∈ R and every (bi)i∈T ∈ RT , we have

ν
( m∑

i=1

aivi+
∑
i∈T

biui

)
≤ 2Cν

( m∑
i=1

aivi+
∑
i∈T

biei

)
+ν(

∑
i∈T

bi(ui−P (ei)))

≤ 3Cν
( m∑

i=1

aivi+
∑
i∈T

biei

)
.

Thus, the linear mapping O : span({v1, . . . ,vm}∪{e1, . . . ,el})→ span{v1, . . . ,vm} given by

vi �→ vi, i ≤m, and ei �→ ui, i ∈ T , is a linear projection, and if we put ui := O(ei) ∈ V

for every i ∈ {1, . . . ,l}, we see that Ψ(ν,3C,l,v1, . . . ,vm) holds and the formula in (b) is
satisfied with K = 3C.

Theorem 5.13.

(a) The class of spaces which have LBS is a Σ0
4-set in B.

(b) The class of spaces which have LΠBS is a Σ0
6-set in B.

Proof. This follows from Lemma 5.12 because the conditions given by formulas Φ and

Ψ are obviously closed and Fσ, respectively.

6. Open questions and remarks

In Theorem 2.10, we proved that �2 is the unique separable infinite-dimensional Banach
space (up to isomorphism) whose isomorphism class is an Fσ-set. Following [33], we

say that a separable infinite-dimensional Banach space X is determined by its finite

dimensional subspaces if it is isomorphic to every separable Banach space Y, which is
finitely crudely representable in X and for which X is finitely crudely representable in Y.

Note that �2 is determined by its finite dimensional subspaces and that if a separable

infinite-dimensional Banach space is determined by its finite dimensional subspaces, then

it is obviously determined by its pavings and so, by Theorem 2.12, its isomorphism class
is Gδσ. Johnson et al. conjectured (see [33, Conjecture 7.3]) that �2 is the unique, up

to isomorphism, separable infinite-dimensional Banach space which is determined by its

finite dimensional subspaces. We believe that Theorem 2.10 could be instrumental for
proving this conjecture, since it follows from this theorem that the conjecture is equivalent

to the positive answer to the following question. We thank Gilles Godefroy who suggested

to us that there might be a relation between having Fσ isomorphism class and being
determined by finite dimensional subspaces.

Question 1. Let X be a separable infinite-dimensional Banach space determined by its
finite dimensional subspaces. Is 〈X〉� an Fσ-set in B?

It would be interesting to know whether there is a separable infinite-dimensional Banach
space X, such that 〈X〉� is a Gδ-set in B or in P∞. Note that the only possible candidate

is the Gurarĭı space (see Section 2.1 for more details). One of the possible strategies to

answer Question 2 in negative for P∞ would be to find an admissible topology τ on
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1954 M. Cúth et al.

SB(X), such that 〈G〉� is a dense and meagre set in (SB(X),τ). However, we do not

even know whether 〈G〉� is Borel.

Question 2. Is 〈G〉� a Gδ-set in P∞ or in B? Is it at least Borel?

Solving the homogeneous Banach space problem, Komorowski and Tomczak-

Jaegermann ([35]), and Gowers ([29]) proved that if a separable infinite-dimensional

Banach space is isomorphic to all of its closed infinite-dimensional subspaces, then it
is isomorphic to �2. It seems that the isometric variant of this result is open; that is,

whether �2 is the only (up to isometry) separable infinite-dimensional Banach space that

is isometric to all of its infinite-dimensional closed subspaces. We note that any Banach
space satisfying this criterion must be, by the Gowers’s result, isomorphic to �2. Our

initial interest in this problem was that we observed that a positive answer implies that

whenever 〈X〉≡ is closed in P∞, then X ≡ �2. Eventually, we found another argument

(see Section 2.1), but the question is clearly of independent interest.

Question 3. Let X be a separable infinite-dimensional Banach space which is isometric
to all of its closed infinite-dimensional subspaces. Is then X isometric to �2?

We note here that Question 3 was already attacked by de Rancourt [15], who was able
to prove that if X is as above (that is, isometric to all of its closed infinite-dimensional

subspaces), then, for every ε > 0, X admits a (1+ε)-unconditional basis.

In Theorem B, we proved that 〈G〉≡, respectively, 〈Lp[0,1]〉≡, for p ∈ [1,∞), are Gδ-
sets; we even proved that they are dense Gδ-sets in P∞, respectively, in Lp,1+ ∩P∞.

Coincidentally, all these spaces are Fräıssé limits (we refer to [18, Proposition 3.7] for

this statement about Lp[0,1]). According to [18], no other examples of separable Banach
spaces which are Fräıssé limits seem to be known. We remark that a characterization of

separable Banach spaces with Gδ isometry classes has been obtained in [13], where some

new examples are presented.

It also follows that for 1≤ p <∞, Lp[0,1] is a generic Lp,1+-space. On the other hand,
by Corollary 2.9, for p ∈ [1,2)∪ (2,∞), Lp[0,1] is not a generic QSLp-space. For p = 2,

�2 is obviously the generic QSL2-space, and since QSL1-spaces coincide with the class

of all Banach spaces, for p = 1, G is the generic QSL1-space. This leaves open the next
question.

Question 4. For p ∈ (1,2)∪ (2,∞), does there exist a generic QSLp-space in B or P∞?

In Theorem 5.3, we have computed that the class of superreflexive spaces is an Fσδ-set.
It is easy to check that the class of superreflexive spaces is dense in P∞ and B, so it cannot

be a Gδ-set, as then this class would have a nonempty intersection with the isometry class

of G which is not superreflexive. However, the following is not known to us.

Question 5. Is the class of all superreflexive spaces Fσδ-complete in P∞ or B?

Taking into account that spaces with a summable Szlenk index form a class of spaces

which is a Σ0
ω+2-set, see Proposition 5.8, the following seems to be an interesting problem.
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Question 6. Is the set {μ ∈ P∞ : Xμ has a summable Szlenk index} of a finite Borel

class?

Even though we do not formulate it as a numbered question, a natural project to

consider is to determine at least upper bounds for isometry classes of other (classical or
less classical) separable infinite-dimensional Banach spaces, such as C[0,1], C([0,α]) with

α countable ordinal, Orlicz sequence spaces, Orlicz function spaces, spaces of absolutely

continuous functions, Tsirelson’s space, etc.

Kechris in [34, page 189] mentions that there are not known any natural examples
of Borel sets from topology or analysis that are Π0

ξ or Σ0
ξ , for ξ ≥ 5, and not of lower

complexity. We think that the area of research investigated in this paper is a good one

to find such examples.
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