Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

www.cambridge.org/aie

Research Article

Cite this article: Pan J, Huang J, Cheng G and
Zeng Y (2025). Sampling balanced high-quality
data to train an automatic mesh generator.
Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 39, 30, 1-12
https://doi.org/10.1017/S089006042510019X

Received: 22 March 2024
Revised: 18 June 2025
Accepted: 30 August 2025

Keywords:

data generation; data synthesis; mesh
generation; optimal performance; algorithm
design

Corresponding author:
Yong Zeng;
Email: yong.zeng@concordia.ca

© The Author(s), 2025. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0), which
permits unrestricted re-use, distribution and
reproduction, provided the original article is
properly cited.

CAMBRIDGE

UNIVERSITY PRESS

Sampling balanced high-quality data to train an
automatic mesh generator

Jie Pan’, Jingwei Huang’ @, Gengdong Cheng’ and Yong Zeng'

!Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada; “Department of
Engineering Management & Systems Engineering, Old Dominion University, Norfolk, VA, USA and *Department of
Engineering Mechanics, Dalian University of Technology, Dalian, China

Abstract

In real-world scenarios, high-quality data are often scarce and imbalanced, yet it is essential for
the optimal performance of data-driven algorithmic models. Data synthesis methods are
commonly used to address this issue; however, they typically rely heavily on the original dataset,
which limits their ability to significantly improve performance. This article presents a quality
function-based method for directly generating high-quality data and applies it to a mesh
generation algorithm to demonstrate its efficiency and effectiveness. The proposed approach
samples input—output pairs of the algorithm based on their feature spaces, selects high-quality
samples using a defined quality function that evaluates the suitability of outputs for their
corresponding inputs, and trains a feedforward neural network to learn the mapping relation-
ship using the selected data. Experimental results show that the learning cost is significantly
reduced while maintaining competitive performance compared to two representative meshing
algorithms.

Highlights

o A direct sampling method is proposed to generate balanced high-quality training data for mesh
generation.

« This significantly reduces the learning cost of an automatic mesh generator.

o A full quadrilateral mesh is generated without human intervention and extra clean-ups.

o The meshing performance is competitive with representative commercial software in several
aspects.

Introduction

High-quality data serve as the basis for optimal model performance in most machine learning
algorithms. In real-world scenarios, the data distribution is often imbalanced, with minority
classes occurring less frequently and posing challenges in data collection. Nevertheless, these
minor classes often carry greater importance in determining problem resolution. The per-
formance of many classification, regression, and semi-supervised models is significantly
compromised when dealing with imbalanced data (He and Garcia, 2009; Yang et al., 2021).
Over the past two decades, two types of methods, namely data-level and algorithm-level
approaches (Krawczyk, 2016; Tanaka and Tanaka and Aranha, 2019), have been proposed
to address this data imbalance issue. While these methods have seen continuous improvement,
they remain confined to the scope of the given dataset and typically offer only incremental
gains. As a result, models still struggle with generalizing to unseen scenarios, particularly those
involving rare classes.

To overcome these limitations, this article introduces a data generation method based on a
quality function, aimed at directly producing high-quality, diverse samples beyond those present
in the original dataset. We apply this method in the context of mesh generation to demonstrate its
ability to improve both efficiency and performance.

Mesh generation is a critical area in computational geometry and underpins numerical
simulations in finite element analysis (FEA), computational fluid dynamics (CFD), and graphic
model rendering (Gordon and Hall, 1973; Roca and Loseille, 2019). Its primary goal is to
discretize complex geometries into a finite set of geometrically simple and bounded elements
— such as triangles or quadrilaterals in two dimensions (2D), or tetrahedra or hexahedra in three
dimensions (3D). However, existing mesh generation algorithms often struggle to consistently
produce high-quality meshes, especially when dealing with complex geometries (Slotnick et al.,
2014). These methods typically rely on heuristic rules and demand substantial manual effort in
preprocessing (e.g., decomposing intricate domains) and postprocessing (e.g., correcting poor-
quality elements). This process is time-consuming, often taking days or even weeks for highly
complex 3D domains.

https://doi.org/10.1017/5089006042510019X Published online by Cambridge University Press

https://orcid.org/0000-0003-2155-6107
https://orcid.org/0000-0001-6678-271X
https://doi.org/10.1017/S089006042510019X
mailto:yong.zeng@concordia.ca
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/S089006042510019X

Moreover, traditional methods depend heavily on domain-
specific knowledge and rigid rule-based formulations, making them
difficult to generalize. Designing robust algorithms capable of
handling arbitrary and complex geometries remains a major chal-
lenge. The increasing complexity of required heuristics also leads to
higher computational costs and slower generation speeds. These
limitations hinder their ability to meet the growing demands for
accuracy and efficiency in large-scale numerical simulations using
CFD and FEA. As emphasized in the National Aeronautics and
Space Administration’s CFD Vision 2030 study, current meshing
technologies are a primary bottleneck in advancing CFD workflows
(Slotnick et al., 2014).

To address these challenges, many researchers have begun inte-
grating mesh generation with artificial intelligence (AI) techniques,
including expert systems (Zeng and Cheng, 1993) and neural net-
works (NNs; Yao et al., 2005; Vinyals et al., 2015; Zhang et al., 2020;
Papagiannopoulos et al., 2021). While these approaches show prom-
ise, Al-based methods are not yet mature enough to fully replace
standard mesh generation algorithms. Several limitations remain:
(1) the complex architectures of NNs make it difficult to ensure
robust and generalizable mesh generators; (2) rigid problem formu-
lations often reduce adaptability when applied to diverse and irregu-
lar geometric domains; and (3) training datasets frequently suffer
from low-quality and imbalanced distributions, which hinder learn-
ing effectiveness and reduce model reliability.

The first two issues can be mitigated by reformulating the mesh
generation task as a sequential decision-making process (Pan et al.,
2021,2023). In this setup, mesh elements are constructed iteratively
from the geometry’s boundary until the entire domain is filled.
Since each iteration requires only a partial boundary, this formu-
lation enables the use of simple NN structures and offers strong
adaptability to complex geometries. While reinforcement learning
(RL) can, in principle, learn generation rules through trial and error
using partial boundaries, it often struggles to explore rare or
extreme boundary configurations, such as sharp corners or narrow
regions, due to their low occurrence in training data. As a result,
RL-based models require extensive training time to generalize
across a wide variety of geometric shapes. In this study, we address
the challenge of low-quality and imbalanced training datasets. We
propose a quality function-based data generation method that
directly synthesizes high-quality training samples containing
diverse boundary situations. The enhanced dataset enables the
training of a simple yet effective feedforward NN (FNN), resulting
in a robust and efficient mesh generator, FreeMesh-DG.

The main contributions of this study are summarized as follows:
1. A quality function-based method is proposed to address the

imbalanced data problem in mesh generation, significantly

improving model performance.

2. The resulting mesh generator can fully mesh geometric domains
without human intervention or additional post-processing oper-
ations.

3. The model achieves the best performance in two key quantitative
metrics — singularity and taper — when compared with two
representative meshing algorithms.

The remainder of the article is organized as follows. Section title
“Problem formulation and fundamentals” reviews related work on
imbalanced learning and mesh generation. Section title “Quality
function-based data generation for mesh generation” details the
implementation of the proposed quality function-based data gen-
eration method for mesh generation. Section title “Experiment
results” evaluates the performance of the proposed approach and

https://doi.org/10.1017/5089006042510019X Published online by Cambridge University Press

Jie Pan et al.

compares it with other state-of-the-art meshing algorithms.
Section title “Discussion” discusses the key improvements intro-
duced by this method and its relevance to both the mesh generation
and machine learning communities. Finally, Section title
“Conclusion” concludes the article and outlines potential future
research directions.

Problem formulation and fundamentals

This section discusses the existing data generation methods for
imbalanced learning and explains the formulation of the mesh
generation problem and techniques.

Data generation

In real-world environments, data are often non-uniformly distrib-
uted due to rare occurrence and difficulty of collecting high-quality
samples. The quantity and quality of data fundamentally determine
the performance of trained data-driven machine learning models.
A large dataset is crucial for establishing complex decision bound-
aries in classification problems and for avoiding overfitting —
particularly in deep learning methods that involve numerous
parameters (LeCun et al.,, 2015). Imbalanced datasets tend to bias
the predictions of algorithms toward majority classes (He and
Garcia, 2009), even though minority classes are often more import-
ant and informative. To address this issue, data augmentation and
synthesis techniques are employed to increase the dataset size by
either slightly modifying existing samples or generating new, arti-
ficial data derived from the original dataset (He and Garcia, 2009;
Krawczyk, 2016).

Conventional methods for handling imbalanced datasets
primarily focus on modifying existing datasets to achieve a more
balanced distribution. Two widely used strategies include:
(1) removing examples from the majority class (undersampling)
and (2) generating new examples for the minority class (oversam-
pling). The basic form of random undersampling selects and
removes samples from the majority class without replacement.
To address the potential information loss associated with this
approach, Liu et al. (2008) proposed two informed undersampling
techniques. Similarly, Yen and Lee (2009) introduced a cluster-
based undersampling method to mitigate the disjunct problem.

On the oversampling side, random oversampling replicates
existing minority class samples to increase their representation.
However, this method often leads to overfitting. To overcome this,
synthetic sampling techniques have been developed. A well-known
method is Synthetic Minority Oversampling Technique (SMOTE),
proposed by Chawla et al. (2002), which generates synthetic
examples based on feature-space similarities between minority class
samples. Building upon SMOTE’s success, several enhancements
have been introduced, including borderline-SMOTE (Han et al,,
2005), safe-level-SMOTE (Bunkhumpornpat et al, 2009), and
adaptive synthetic sampling (He et al., 2008).

To further address within-class imbalance, Jo and Japkowicz
(2004) proposed cluster-based oversampling, aimed at resolving
the small disjunct problem. Other researchers have explored lever-
aging structural information within the data to generate more
representative synthetic samples. For instance, Xie et al. (2015)
employed clustering techniques to model data density and generate
samples accordingly. Liu and Hsieh (2019) developed a model-
based synthetic sampling method that enhances data diversity by
capturing inter-feature relationships through regression models.

https://doi.org/10.1017/S089006042510019X

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3

Markov chain models have also been applied to synthesize time-
varying stochastic data, such as wind speed (Shamshad et al., 2005)
and vehicle velocity in driving cycles (Lee and Filipi, 2010), by
constructing transition matrices. More recently, Yang and Nam
(2022) proposed a covariance matrix-based method that incorpor-
ates random noise and feature correlations from the original dataset
to generate synthetic data.

Numerous NN-based data synthesis models have been devel-
oped in recent years. Habibie et al. (2017) introduced a generative
model for human motion data using a variational autoencoder.
Yang et al. (2021) employed deep NNs to represent the feature
space of data samples. Among various approaches, the generative
adversarial network (GAN) has gained popularity due to its flexi-
bility and efficiency in synthesizing data from high-dimensional
datasets (Tanaka and Aranha, 2019). Wang et al. (2018) combined
GANs with autoencoders to generate synthetic vibration signals for
gearboxes, while Xuan et al. (2018) explored the integration of
convolutional NNs with GANS for pearl image generation. Despite
their widespread application, GAN-based methods may produce
low-quality data due to several challenges, including (1) instability
during the training of the generator, (2) small size of the original
dataset, and (3) high dimensionality and nonlinearity of the data
(Tanaka and Aranha, 2019; Yang and Nam, 2022).

Data augmentation improves model performance by increasing
the amount of valuable training data, enhancing variability, redu-
cing overfitting, and alleviating data scarcity. It also helps to boost
the generalization ability of models and reduces the cost of data
collection and annotation. However, the performance gains are
often limited. First, it is difficult to identify and represent the
intrinsic characteristics of the data, which typically requires
domain-specific knowledge. Second, representative features of
unseen scenarios are often missing from the existing dataset. Simple
transformations of available data rarely lead to fundamental
improvements in model generalizability. Consequently, there
remains a significant challenge in designing data generation
methods that can truly capture the underlying nature of complex,
high-dimensional, and nonlinear datasets.

Mesh generation

With the rapid advancement of high-performance computing
hardware, mesh generation methods are increasingly expected to
handle geometric domains of greater complexity and resolution,
while maintaining reliability and efficiency. In response, many
machine learning-based algorithms have been developed to

generate high-quality meshes. For example, Nechaeva (2006) pro-
posed an adaptive mesh generation algorithm based on self-
organizing maps (SOM), an unsupervised NN method. This algo-
rithm adapts a given uniform mesh to a target physical domain via
mapping, aiming to address the limitations of SOM in handling
inaccurate meshes near domain boundaries and in constructing
meshes for nonconvex domains.

Vinyals et al. (2015) introduced a novel neural architecture
known as Pointer Networks to tackle combinatorial problems using
NNs. While not originally intended for mesh generation, the model
could generate triangular meshes by outputting triplets of integers
(each forming a triangle) that indicate the connectivity of input
points. However, its application to meshing problems lacked
robustness and completeness — the resulting mesh was often only
partially covered with triangular elements and contained intersect-
ing edges. Papagiannopoulos et al. (2021) proposed a triangular
mesh generation method employing three separate NNs. These
networks respectively predicted the number of candidate inner
vertices, their coordinates, and their connectivity to existing bound-
ary segments. Nevertheless, this approach struggled to generalize to
arbitrary and complex geometric domains due to its fixed input size
and complex architecture. Additionally, the meshing performance
was heavily constrained by the quality and diversity of the training
data used to construct the generator.

The mesh generation problem can be formulated as a sequential
decision-making process (Pan et al., 2021). In this formulation, the
geometric domain is discretized into quadrilateral elements, as
shown in Figure 1. At each time step, an element Q; (in red) is
generated from the existing boundary (in blue), B;, which consists
of piecewise linear segments denoted by a sequence of vertices
[V1,Va,...,Vy,]. After generating each element, the boundary is
updated by removing the corresponding segment, and the updated
boundary is then used to generate the next element. This iterative
process continues until the remaining boundary vertices form the
final mesh element. The completed mesh must satisfy specific
geometrical and topological criteria to ensure quality and correct-
ness (Zeng and Cheng, 1993; Zeng and Yao, 2009).

A key challenge in the sequential mesh generation framework
lies in determining how to construct an element based on the
partial boundary (Pan et al., 2021). Yao et al. (2005) addressed this
by formally defining a reference vertex and its neighboring verti-
ces as the input, with the corresponding rule type and vertex
coordinates as the output. They manually created training data
consisting of specific input—output pairs and used an artificial NN
(ANN) to approximate the mapping relationship. Building on this

Meshing process

to (initial domain) ty i

Steps

ti+1 tn-1 tn (final mesh)

Figure 1. A sequence of decisions to complete the mesh. At each time step t;, an element (in red) is extracted from the current boundary (in blue). The boundary is then updated by
removing the element and serves as the meshing boundary in the next time step t;.;. This process continues until the updated boundary becomes the final element.

https://doi.org/10.1017/5089006042510019X Published online by Cambridge University Press

https://doi.org/10.1017/S089006042510019X

foundation, Pan et al. (2021, 2023) refined the input definition by
incorporating more contextual information around the reference
vertex, such as the vertices located in the fan-shaped region
formed by the reference point and its adjacent vertices. They also
explored the use of FNNs and RLs to automatically generate high-
quality training samples and enhance the accuracy of the learned
mapping. While RL-based approaches have successfully learned
effective meshing policies that adapt to complex geometries, they
still face notable limitations: (1) the training process is time-
consuming, and (2) the geometry used for training must be
manually selected. These limitations stem from RL’s reliance on
extensive trial-and-error exploration to cover the wide range of
geometric variations encountered in practice.

This article proposes a data generation method that provides
comprehensive data, capturing all possible boundary scenarios, to
train an efficient mesh generator to resolve this challenge. The
method enables the training of an efficient mesh generator without
relying on computationally intensive trial-and-error strategies. Asa
result, it significantly reduces the training burden and provides a
more direct and reliable pathway for producing high-quality
meshes.

Meshing problem formulation for data generation

This article proposes a method to directly generate high-quality,
balanced training data for the meshing algorithm. The overall
procedure is outlined as follows:

1. Formulate the control problem as a set of state—action (i.e., input—
output) pairs;

2. Define the feature spaces for each dimension of the state and
action;

3. Sample state—action pairs across their respective feature spaces;

4. Design a quality function to evaluate each state—action pair,
typically using a simulation environment of the problem;

5. Specify quality criteria to filter and retain only qualified samples;

6. Evaluate and rebalance the collected samples to ensure a repre-
sentative and uniformly distributed dataset.

The mesh generation problem has been formulated as a sequential
decision-making process that consists of a set of state-action
(i.e., input—output) pairs. The input is formally represented as
follows,

%= { Vi Vi, Veds oo Vi Vis oo Vo). (1)

where V; and V,; denote the i-th vertex at the left and right side of
the reference vertex V) along the boundary; g neighboring points,
V1,..., Vg were the closest vertices to the reference vertex located in
the corresponding fan-shaped area 6,,...,0, with radius L,, where

0,=0,=...=0,. An example of the input is shown in Figure 2.
The output is formally defined as
¥, = [types, Vi, ()

where type, € {0,1,2,3}, which correspond to the four basic rules,
respectively; V, are the coordinates of the newly added vertex, as
shown in Figure 3. To form an element based on a partial boundary,
type 1 involves adding two extra edges; type 0 and 2 involve adding
one extra edge, where the specific rule is decided by distance
from the reference point (Pan et al.,, 2023). Type 3 refers to the
addition of three edges to complete a square. However, type
3 does not need to be learned by the model as it can be hard-

https://doi.org/10.1017/5089006042510019X Published online by Cambridge University Press

Jie Pan et al.

-
~—

Figure 2. An example of the input with L, =4,n=2,9 =3 (Pan et al., 2023).

(a) type =0 (b) type = 1
V
Vii b
=V,
vV Vv
0 nl Vo Vg
(c) type=2 (d) type =3

Vi

Figure 3. Four basic rule types to form a quadrilateral element. Vy is the reference
vertex. The newly generated vertices V/; and edges are marked in yellow. Type 1 involves
adding two extra edges; type 0 and 2 involve adding one extra edge; and type 3 involves
adding three edges.

coded as a deterministic operation. In this study, we only con-
sider three rule types, type, € {0,1,2}.

With the input and output formulations established, the feature
space for each dimension of the data can be readily determined.
Various boundary situations can then be represented by uniformly
sampling from these feature spaces. A quality function is employed
to evaluate all possible actions for each situation, allowing the
selection of appropriate actions based on predefined criteria.

Quality function-based data generation for mesh generation

This section presents the quality function-based data generation
method for the mesh generation algorithm. An overview of the
overall data generation procedure is first provided, followed by a
detailed explanation of the key steps: defining the quality function,

https://doi.org/10.1017/S089006042510019X

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 5

balancing the sampled data, and training an FNN to develop the
final mesh generation algorithm.

Data generation procedure

The overall data generation procedure consists of three main steps:
(1) sampling input—output pairs based on the defined feature space
of each dimension; (2) applying a quality threshold to filter out low-
quality samples; and (3) balancing the remaining samples accord-
ing to their types. The resulting dataset is then used to train an FNN
model to learn the mapping between input and output. An overview
of the data generation procedure for the mesh generation algorithm
is shown in Figure 4.

The mesh generation problem has been formulated as a sequen-
tial decision-making task in the previous section. At each time step
i, a partial boundary environment is taken as the input x; (see
Equation 1), and the corresponding output y; consists of the rule
type and coordinates of the newly generated vertex (see Equation 2).
This process repeats iteratively until the last element is formed. As
decisions are made, the partial boundary is dynamically updated,
resulting in various situations. The meshing problem can be effect-
ively addressed by identifying the optimal decision for each situ-
ation. The core idea of the proposed data generation method is to
produce a sufficient number of high-quality solutions across
diverse boundary situations. These solutions form the dataset

N
D={x;,y;},_, to train an optimal decision policy.

The lower and upper bounds of each dimension in the input X is
denoted as Xjy=([x11,%u1]>- > [XpnsXun)), Where x;; and x,;

represents the lower and upper bounds for jth input of X; n
is the total number of the input dimensions. Similarly, the
bounds for each dimension in the output Y are denoted as Yy =
([)’1,1’ yu’l] yeeos [yl’n, yu’n])> where n is the number of output dimen-
sions. Using these bounds, a large number of input—output pairs D
can be sampled from a uniform distribution to construct the dataset.
The detailed sampling procedure is presented in Algorithm 1.

Algorithm 1 Sampling input—output pairs.
Require: input and output value bounds X; y and Yy, sample
number Nj

1: D]

2:fork—1to N do

3: De—DU{(x0y) |k~ UXLv).ye~U(YLy)} B> U(x) is

the uniform distribution.
4: end for

Quality function for performance measurement

To effectively guide learning in a sequential decision-making prob-
lem, the quality of each solution step must be both well-defined and
measurable. It is not only the final result that matters, but also how
each decision contributes toward achieving the overall objective. A
quality function is thus introduced to evaluate the performance of
each step in the decision sequence. After generating a large set of
input—output samples, the quality function is applied to assess them.

To align with this objective, the quality function evaluates each
sample through a two-stage process:

Qutput

type: 0
Mesh generation algorithm ”‘15,',2;1
01
lV%\?pe: 2
type: 2
f Input ; .
) Sampling in) . n
feature spaces I
A

|

Filtering by quality
function

|

type: 0
type: 0
type: 1
type: 1
type: 2
type: 2

FNN training €

Balance samples
by types

Figure 4. Quality function-based data generation procedure for mesh generation. The mesh generation algorithm consists of a set of input-output pairs. The points and edges in
black are from the right and left sides of the reference vertex, and the ones in yellow are three neighboring points from the corresponding fan-shaped area.

https://doi.org/10.1017/5089006042510019X Published online by Cambridge University Press

https://doi.org/10.1017/S089006042510019X

1. Validity check: It verifies the structural integrity of the input and
output. If the input vertices form self-intersecting segments or if
the output leads to intersections with the existing boundary, the
quality is set to 0.

2. Geometric quality evaluation: If the input and output are valid,
the function then evaluates the quality of the newly formed
quadrilateral element and the updated boundary.

As a result, the quality function 7(x;,y;) is defined as:
n(xiy;) = {

where #{ denotes the quality of the generated element, evaluated
based on the uniformity of its edges and internal angles; ¥ repre-
sents the quality of the updated adjacent boundary, assessed by two
factors: (1) the smoothness of the angle transitions between the new
element and the remaining boundary, and (2) the minimum dis-
tance from the newly added vertex to its surrounding edges, which
helps avoid overly sharp or narrow situations. The parameter o is a
weight balancing the two components; it is experimentally set to
0.618 to prioritize boundary quality, as it has a stronger impact on
ensuring overall mesh quality in the long run than the quality of
individual elements.

The element quality #¢ is measured by its edges and internal
angles, and is calculated as follows:

0, invalid input and output; 3)
(1—a)n+on?, otherwise;

7= gedee gangle,
edge _ V2minje (o123 {4}
1 Dinax ’ (4)
angle _ minje {0,1,2,3} {anglej}

max;e (0,123} { angle; }

q

where g°%° refers to the quality of edges of this element; ; is the
length of the jth edge of the element; D,y is the length of the
longest diagonal of the tth element; g*"8® refers to the quality of
the angles of the element; and angle; is the degree of the jth inner
angle of the element. The quality #¢ ranges from 0 to 1.

The quality of the updated adjacent boundary 5" is illustrated in
Figure 5 and denoted as follows:

b_\/minke{lﬂ}{min(gk’Mangle)} dist
= q

>

Mangle
dmin
di), fdun<(di+d)/2
qst:{(dl+d2)/2 I <(di+dy)/2
1, otherwise.
where ¢y refers to the degrees of the kth generated angle; d,y;;,, is the

distance of V, to its closest edge if type = 1; d; is the distance between

(a) type = 0/2 (b) type =1

Vil

Figure 5. Updated adjacent boundary quality for different solution types. V, is the
reference vertex.

https://doi.org/10.1017/5089006042510019X Published online by Cambridge University Press

Jie Pan et al.

the newly generated point and V;; d, is the distance between the
newly generated point and V.1; and Mg, is a threshold to judge if
the newly generated angles are becoming sharp. The g% equals to 1 if
type € {0,2}. The quality #° ranges from 0 to 1, with a larger value
representing better quality. When the formed new angles are less
than Mangl (€.g., <60 °), the boundary quality decreases. It penalizes
the generation of sharp angles that harm the overall mesh quality and
meshing completeness.

These two quality measures are chosen to capture the trade-off
between the quality of the current element and the impact on the
remaining adjacent boundary. A detailed explanation of the elem-
ent quality ¢ and boundary quality #° can be found in our previous
work (Pan et al., 2023). Since each generated element incrementally
reshapes the boundary, prioritizing perfect element quality in the
current step can lead to unfavorable or even invalid boundary
configurations in later steps. This trade-off is essential to ensure
both high overall mesh quality and the completeness of the
final mesh.

A large number of high-quality samples can be obtained by
applying a quality threshold 7 to the evaluation results. The detailed
selection process is outlined in Algorithm 2. The resulting dataset
D, is designed to: (1) comprehensively cover the diverse input
scenarios that may arise during mesh generation, and (2) include
all corresponding high-quality outputs for each scenario. This
forms a critical foundation for training a robust and generalizable
mesh generator capable of adapting to a wide range of geometric
domains while ensuring consistently high mesh quality.

Algorithm 2 Filtering samples.

Require: Sample dataset D, quality thresholdz.
1: D,]
2: for each sample in D do

3: x,y < sample

4: ifn(x,y) =7 then
5: D, D;U(x,y)
6: endif

7: end for

Sample balancing

Since the first dimension of the output corresponds to the rule type,
Yo, = typei, which takes on discrete values, type; € {0,1,2}. To
maintain a balanced dataset D, = {xi, yi}?/i i the total number of
samples for each type is specified as M/3,M /3 and M/3, respect-
ively, which ensures that the sample numbers are uniformly dis-
tributed.

FNN model

The final balanced dataset Dy, is used to train an FNN model. FNNs,
also known as multilayer perceptrons, are classical ANNs, where
information moves in one direction from input nodes, through
hidden layers, to the output nodes. Despite their simple structure,
FNNs possess powerful general function approximation capabil-
ities. Based on Kolmogorov—Arnold representation theorem, sev-
eral theoretical studies (Hecht-Nielsen, 1987, 1992; Cybenko, 1989;
Hornik et al., 1989) show that FNNs are universal approximators,
such as an FNN with just one hidden layer of a sufficient number of
nodes using arbitrary squashing functions (e.g., sigmoid function)
can approximate any continuous function with certain properties
(e.g., Borel measurable) to any degree of accuracy.

https://doi.org/10.1017/S089006042510019X

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7

In the context of modern deep learning, deep architectures often
utilize convolutional layers for feature extraction, while fully con-
nected layers (i.e., FNNs) serve to map extracted features to target
classes or output spaces (Krizhevsky et al., 2012; LeCun et al., 2015).
These fully connected layers typically employ the Rectified Linear
Unit (ReLU) activation function to mitigate the vanishing gradient
problem. Recent studies, such as Lu et al. (2017), have shown that
FNNs with ReLU activations and bounded width can also serve as
universal approximators when given sufficient depth. Given the
power of FNNs as universal approximators, in mesh generation,
FNN is an ideal model for mapping a meshing state, represented by
the input x, (Equation 1), into a meshing action, represented as
output y, (Equation 2), in a sequential decision-making framework.

In this study, the network structure follows the same structure as
proposed in the work (Pan et al., 2021). A combined loss function,
cross-entropy loss for the action type classification and mean
square error loss for the vertex coordinate prediction, is used to
evaluate the FNN model prediction error. The trained FNN mesh-
ing model is named FreeMesh-DG, and its structure is shown in
Algorithm 3. The algorithm incrementally constructs a quadrilat-
eral mesh by repeatedly selecting a reference point along the
boundary and applying one of three predefined rules to extract a
new element. The process begins with an initial boundary consist-
ing of n vertices and continues until only four vertices remain,
which can be directly connected to form the final element.

Algorithm 3 FreeMesh-DG algorithm structure.
Require: Number of boundary verticesn.
lI: me—n D> Initialize the control variable
2: while m >4 do > The last four points can form
an element automatically

3: Find the reference vertex from the boundary
4: if rule 3 applies then
5: Extract 1 element around the reference vertex by adding 2

points
6: me—m+2
7: else if rule 1 applies then

8: Extract 1 element around the reference vertex by adding
1 point
9: else > Apply rule 0 or 2
10: Extract 1 element around the reference vertex
11: m«—m—2
12: endif

13: Update the boundary
14: end while

The time complexity of the FreeMesh-DG algorithm is analyzed
based on the number of boundary vertices n. The core operations,
that is, applying meshing type 3, finding reference vertices, and
updating boundaries, are all constant-time operations. Rule type
0/2 must be applied at a baseline complexity of O(n). Rule type
1, which may be applied multiple times between type 0/2 oper-
ations, contributes an additional variable cost. In the worst case, this
results in a cumulative complexity of O(n?), making the overall
time complexity of the algorithm O(n?).

Experiment results

In this section, we demonstrate the effectiveness of the proposed
method to train a meshing model, FreeMesh-DG, through a series
of experiments, including data diversity verification and meshing

https://doi.org/10.1017/5089006042510019X Published online by Cambridge University Press

performance comparison. We begin by outlining the implementa-
tion details, followed by a comprehensive evaluation of the experi-
mental results.

Implementation details

We set n=3 and g=3 in the input formulation (in Equation 1).
Each input is composed of vertices represented in a 2D polar
coordinate system (r,0), with the lower and upper bounds for each
axis defined as [0,1] and [0,7], respectively. The output space
comprises three dimensions, with bounds [0,1],[0,1],[0,7], corres-
ponding to rule parameters and vertex coordinates. The network
structure of the FNN has five hidden layers as [64,128,64,32,16],
where its optimal setting is evaluated in Pan et al. (2021). The
learning rate is set as le-3. All the experiments are conducted on
a computer with an i7-8700 CPU and an Nvidia GTX 1080 Ti GPU
with 32 GB of random access memory. A total of one million steps
are used to train the policy network.

Quality threshold analysis

After generating a large amount of input—output samples, a quality
threshold 7 must be determined to filter high-quality solutions. Five
metrics are selected to characterize the dataset: element quality (¢
in Equation 3), boundary quality (4°), quality (), angle
(i.e, 2V VoV, in the input), and averaged segment length. Four
candidate thresholds, 7€ {0.6,0.7,0.75,0.8}, are evaluated across
these metrics. The comparison results are shown in Figure 6. As the
threshold increases, the mean values of the three quality metrics
also increase, indicating improved solution quality; however, the
corresponding value ranges narrow, suggesting reduced sample
diversity. The average segment length shows a slight decrease with
minimal change in range. The mean angle values remain around
90°, while their ranges become more concentrated. The general
principle for selecting an appropriate quality threshold is to ensure
high quality while preserving sufficient diversity, such as the angle
distribution. Therefore, we choose 7 = 0.7 as a balanced threshold to
construct the final dataset for model training.

Sample size analysis

This section analyzes the sufficient dataset size required to achieve
optimal model performance. While a larger dataset can help estab-
lish a clearer decision boundary for the target problem, excessive
data may not yield significant performance gains and can instead
introduce unnecessary computational overhead. To investigate this
trade-off, four sample sizes are evaluated: M € {5e3,1e4,4e4,1e5}.
The element quality (#° in Equation 3) is used as the primary
performance metric, and the results are shown in Figure 7. Among
the four configurations, the smallest dataset (M = 5e3) yields the
lowest mean element quality, indicating suboptimal performance.
For the other three dataset sizes, increasing the sample size results
in only limited improvements in mean quality. However, a notable
reduction in outliers is observed, suggesting enhanced stability with
larger datasets. Therefore, a sample size M =4e4 is adopted in this
study because of a favorable balance between model performance
and computational efficiency.

Evaluation

Data diversity verification

Many NN-based methods use existing mesh generators as the data
sources for training. For instance, Papagiannopoulos et al. (2021)
utilized the output data of Gmsh, a mesh generator that had

https://doi.org/10.1017/S089006042510019X

0 (a) Element quality

(b) Boundary quality

Jie Pan et al.

(c) Quality

1 10
l 09
0.8 09
0.8
08
0.6 .
07 0.7
04 mis 06 0.6
(d) Angle (e) Averaged segment length
25 T Tt M
06
20 l . Quality threshold
15 04 06
B 0.7
1.0 1" - mm 075
o5 4 I 038
06 07 075 0.8 06 07 075 08

Figure 6. Comparison of datasets with four levels of quality thresholds, r € {0.6,0.7,0.75,0.8}. Five kinds of metrics are used to represent the characteristics of the dataset, including
element quality (¢ in Equation 3), boundary quality (4°), quality (y), angle (i.e., 2£V;1VoV, in the input), and the averaged segment length.

1.0 — - -
0.9
- I
§
G_O.?
1=
o 0.6
5 I
w 0.5 L] ! +
. H
0.4 ! | .
0.3 ' '
5k 10k 40k 100k
Sample size

Figure 7. Comparison of element quality with four levels of sample size, Me
{5€3,1e4,4e4,1e5}. Element quality is used to measure the meshing results with
different levels of sample size.

implemented the Blossom-Quad algorithm (Remacle et al., 2012),
to train their NNs. However, the diversity and balance of the
obtained data are thus limited, which could compromise the final
model performance. To assess the impact of these limitations, we
extract training samples from a domain meshed using Gmsh and
compare their diversity and distribution with those obtained using
our proposed method. The detailed extraction process is described
in our previous work (Pan et al,, 2021).

The comparison results of vertex distributions obtained by the
two methods are shown in Figure 8. Since all input—output pairs are
represented in a polar coordinate system centered at the reference
vertex, the data exhibit circular patterns. It is evident that the value
ranges of neighboring vertices (in blue), vertices in the fan-shaped
area (in yellow), and the newly generated vertices (in red) are
narrower and unbalanced across three output types from the sam-
ples by Gmsh [in Figure 8(a)] compared to those generated by

https://doi.org/10.1017/5089006042510019X Published online by Cambridge University Press

FreeMesh-DG [in Figure 8(b)]. While the proposed method yields
uniformly distributed vertices in the fan-shaped area, the Gmsh-
based samples show missing values in specific regions for neigh-
boring vertices, indicating a lack of coverage for certain meshing
scenarios. Additionally, the newly generated vertices in the Gmsh
samples are confined to a smaller region near the reference point,
which may hinder the model’s generalizability, especially in hand-
ling highly irregular boundary geometries.

Additionally, we examine the angle distribution in the samples
produced by the two methods, as shown in Figure 9. The results
indicate that the samples generated by FreeMesh-DG [in Figure 9(b)]
have a uniform distribution for angles across three action types,
with values ranging from 0.5 to 2.5 radians. In contrast, the samples
extracted from Gmsh [in Figure 9(a)] follow a normal distribution
across three types, with a narrower range confined to (1, 2.25)
radians. This comparison clearly demonstrates that FreeMesh-
DG achieves broader and more balanced angle coverage along the
boundary, thereby offering more diverse and representative train-
ing data to enhance model generalizability and performance.

Consequently, the proposed method produces more diverse and
balanced data compared to existing mesh generators. This advan-
tage arises primarily because: (1) problematic or rare meshing
scenarios seldom occur in datasets generated by existing methods,
and (2) those methods often lack the capability to handle such cases
effectively. In contrast, FreeMesh-DG is designed to directly gen-
erate data for a wide range of scenarios by uniformly sampling the
feature space while ensuring high mesh quality.

Performance comparison

To evaluate the meshing performance, we compare the mesh
quality generated by FreeMesh-DG against two widely adopted
meshing methods across five predefined 2D domain boundaries
(i.e., domains D0-D4). These domains are designed to encompass a
variety of geometric features, such as sharp angles, bottleneck
regions, uneven edge distributions, and internal holes, to ensure

https://doi.org/10.1017/S089006042510019X

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 9

(a) Samples extracted from Gmsh

Type 0 Type 1 Type 2

126 125 12

1.00 1.00 10

075 075 0.8
L oso 050
m
>
> 025 025

0.00 0.00

025 -0.25

050 =0.50

-0.26 0.00 0.26 0.50 075 1.00 125 -0.5 0.0 05 10 18 10
x value x value
(b) Samples generated by FreeMesh-DG
Type 0 Type 1

1.00 1.00

075

0.50
o 025
=2
g o000
>

-0.25

-0.50

-0.7%

-075 -050 -025 000 025 050 075 100 -0.75 -050 -025 000 025 050 075 100 -075 -050 -025 000 025 050 075 100
x value x value X value

Figure 8. Comparison of the vertex distribution of samples. The first row [i.e., Subfigure (a)] is the distribution of all the vertices in the input-output samples extracted from Gmsh.
The second row [i.e., Subfigure (b)] is the vertex distribution of samples generated by FreeMesh-DG with quality threshold 7 > 0.7. Types 0, 1, and 2 correspond to the three basic rules
in the output. Only type 1 needs to generate a new vertex (in red) to form an element. Blue vertices represent the neighboring vertices around the reference Vertex; yellow vertices
represent the vertices in the fan-shaped area; all of them are included in the input. The x and y axes are the coordinate axes of the vertex.

diverse and comprehensive testing. The two benchmark
approaches used for comparison are Blossom-Quad (Remacle
et al., 2012) and Pave (Blacker and Stephenson, 1991; White and
Kinney, 1997).

The meshing results are summarized in Table 1. While all three
methods successfully generated meshes for the tested domains, the
results from Blossom-Quad and Pave contain triangular elements
(highlighted in yellow), which indicate areas requiring additional
refinement. Specifically, Blossom-Quad struggles with domains
featuring sharp boundary angles, whereas Pave encounters diffi-
culties in interior regions where two advancing boundaries con-
verge. These limitations often necessitate extra cleanup operations
to remove triangles or poor-quality elements. In contrast,
FreeMesh-DG consistently produces meshes composed entirely
of quadrilateral elements, eliminating the need for post-processing
and ensuring cleaner, higher-quality outputs.

Table 2 presents the quantitative evaluation of meshing per-
formance across the three methods using eight commonly adopted
quality metrics: singularity, element quality (#° in Equation 3),
absolute deviation of minimum and maximum angles from
90° (JMinAngle —90| and |[MaxAngle —90]|), scaled Jacobian,
stretch, taper, and the number of triangles (triangles; Pan
et al.,, 2021). The reported values are averaged over the five test
domains. FreeMesh-DG demonstrates superior performance in
singularity, taper, and triangle count. A lower singularity value
suggests enhanced mesh regularity, which is beneficial for
improving numerical simulation accuracy. Likewise, a lower

https://doi.org/10.1017/5089006042510019X Published online by Cambridge University Press

taper value indicates elements that are closer to ideal square
shapes, and the complete absence of triangles eliminates the
need for additional correction steps, thereby enhancing effi-
ciency. On the other hand, the Pave method outperforms the
others in terms of element quality, angle deviations, stretch, and
scaled Jacobian, where a higher scaled Jacobian indicates more
regular quadrilateral elements. Blossom-Quad yields subopti-
mal results across most metrics and only surpasses Pave in
producing fewer triangles, a common challenge for indirect
methods due to their reliance on initial triangulation
(Remacle et al., 2013).

Discussion

The trained meshing model, FreeMesh-DG, has demonstrated
competitive performance when compared to the other two meshing
algorithms, achieving optimal results in three key quality indices:
singularity, taper, and triangle count. Moreover, FreeMesh-DG
offers further advantages, as outlined below.

To ensure a fair and comprehensive comparison, we evaluated
the meshing performance using eight widely adopted quality met-
rics. Although the Pave method slightly outperformed FreeMesh-
DG in five of these metrics, the differences are relatively minor. In
contrast, FreeMesh-DG demonstrated clearly superior perform-
ance in key aspects, particularly in singularity count and triangle
ratio. A lower singularity count reflects a better topological struc-
ture, which is critical for improving numerical stability and

https://doi.org/10.1017/S089006042510019X

10 Jie Pan et al.

(a) Samples extracted from Gmsh

Type 0 Type 1
1400 o 1400
1200 1500 1200
1000
g 100 1000
o
E a0 800 800
w
i
S 00 600 600
[
£
s 400 400 400
z
200 I 200 I 200
5 | 8 5 | | 5
050 075 100 125 150 175 200 225 250 050 075 100 125 150 175 200 225 250 050 075 100 125 150 175 200 225 250
Angle (radian) Angle (radian) Angle (radian)
(b) Samples generated by FreeMesh-DG
Type 0 Type 1 Type 2
800
700 700
700
600 600
600
500 500
b 500
=3
400 400
E 400
o
w300 300 300
ped
@
g 200 200 200
=]
Z 100 100 100
u 0 0
050 075 100 1256 150 175 200 225 250 050 075 125 150 175 200 225 250 050 075 100 125 150 175 200 225
Angle (radian) Angle (radian) Angle (radian)

Figure 9. Comparison of the angle distribution of samples. The angle ranges from 0.5 to 2.5 radians. Types 0, 1, and 2 correspond to the three basic rules in the output. Subfigure
(a) is the angle distribution of samples from Gmsh. Subfigure (b) is the vertex distribution of samples generated by FreeMesh-DG with a quality threshold z>0.7.

Table 1. Meshing results comparison

Algorithms Domain 0 Domain 1 Domain 2 Domain 3 Domain 4

Blossom-Quad

Pave

FreeMesh-DG

Note: The elements in yellow represent existing triangles in the meshes.

https://doi.org/10.1017/5089006042510019X Published online by Cambridge University Press

https://doi.org/10.1017/S089006042510019X

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11

Table 2. Averaged mesh quality metrics over the five domains

Metrics Blossom-Quad Pave FreeMesh-DG
Singularity (L) 352.67 +200.11 90.6 + 59.36 87.6 + 36.79
Element quality (H) 0.74 £ 0.11 0.85 + 0.12 0.81+0.13
[MinAngle — 90| (L) 16.86 +9.77 10.33 £ 7.91 12.53+9.8
|MaxAngle — 90| (L) 24.06 + 10.83 11.49 + 10.76 13.45+11.8
Scaled Jacobian (H) 0.90+0.11 0.96 + 0.08 0.95 + 0.09
Stretch (H) 0.79 £ 0.07 0.87 + 0.08 0.83+£0.1
Taper (L) 0.13+£0.12 0.09 £ 0.11 0.09 + 0.1
Triangle (L) 0.67 £ 0.94 6 +5.29 0+0

Note: L, Hindicate if the lower value or higher value is preferred, respectively. The value in bold
means the best among other approaches in that specific metric.

accuracy in simulation tasks. Moreover, FreeMesh-DG produced
meshes composed entirely of quadrilateral elements, avoiding the
introduction of triangles that typically require additional post-
processing and may degrade performance in applications tailored
for structured quadrilateral meshes.

One of the key benefits of FreeMesh-DG is its ability to meet
the diverse quality requirements of downstream applications by
customizing the quality function. Different applications have
distinct simulation tasks that necessitate meshes with specific
topological and geometric characteristics. In contrast, existing
mesh generators are limited to producing meshes with predefined
characteristics, often requiring additional post-processing tech-
niques such as remeshing and mesh adaptation (Verma and
Suresh, 2017). These additional techniques are not only costly
and time-consuming but also slow down the meshing process and
increase algorithm complexity. FreeMesh-DG provides an effi-
cient solution by directly designing the desired mesh through the
adjustment of the quality function. The generated data can be
quickly used to train the target algorithm, which is highly valuable
in practical applications.

Extending our method to 3D or surface meshing is a natural and
promising direction. As an intermediate step, surface meshing on 3D
geometries can bridge the gap between planar 2D meshing and full
3D volume meshing. To enable this extension, our framework can be
adapted by incorporating surface parameterization or intrinsic
coordinate systems, allowing the model to operate on curved surfaces
while preserving geometric fidelity. The core mechanisms, including
learning from high-quality examples, generating elements through
sequential decisions, and promoting topological smoothness, can be
directly applied to surface contexts with minimal structural changes.
This would make it possible to produce structured quad meshes on
complex 3D surfaces, maintaining key advantages such as low sin-
gularity count and full quadrilateral coverage.

The approach employed by FreeMesh-DG can be extended to a
variety of real-life problems. These problems can be formulated as
sequential decision-making processes, where a few primitive rules
(i.e., state-action pairs) are defined. A quality function is then used
to select high-quality samples, and a NN is subsequently trained to
capture the mapping relationships between states and actions using
the obtained data. This process can significantly reduce the manual
effort required to develop efficient and robust algorithms.

However, a limitation of FreeMesh-DG lies in its performance
when meshing domains with sharp angles or narrow regions.
Currently, the data generation strategy uniformly samples the
entire domain, which can lead to suboptimal meshing in these

https://doi.org/10.1017/5089006042510019X Published online by Cambridge University Press

extreme scenarios. As sharp angles and narrow regions are less
frequently represented in the uniformly distributed training data,
the model tends to struggle with such cases. Future work will focus
on improving the data generation process by concentrating sam-
pling efforts in areas with complex boundary conditions, thus
enhancing the model’s robustness in these challenging scenarios.

Conclusion

To address the issue of limited high-quality data and imbalance,
this study introduces a quality function-based data generation
method for the automatic quadrilateral mesh generation algorithm,
FreeMesh-DG. The mesh generation process is formulated as a
sequential decision-making problem, consisting of a set of state-
action (i.e., input—output) pairs. A large volume of data is uniformly
sampled from the input and output feature spaces to ensure com-
prehensive coverage of all possible input scenarios and correspond-
ing output solutions. Extensive experiments demonstrate that the
algorithm trained on this generated data performs competitively
with two widely used mesh generation methods, even surpassing
them in three key quality indices.

This article highlights the potential of FreeMesh-DG for the
mesh generation and algorithm design communities. Several
avenues for future work are identified, including the exploration
of quality functions tailored to meet the diverse needs of down-
stream applications and the extension of this approach to 3D mesh
generation.

Acknowledgments. The support of the NSERC Discovery Grant (RGPIN-
2019-07048) is gratefully acknowledged.

References

Blacker TD and Stephenson MB (1991) Paving: A new approach to automated
quadrilateral mesh generation. International Journal for Numerical Methods
in Engineering 32, 811-847.

Bunkhumpornpat C, Sinapiromsaran K and Lursinsap C (2009) Safe-level-
smote: Safe-level-synthetic minority over-sampling technique for handling the
class imbalanced problem, In Pacific-Asia Conference on Knowledge Discovery
and Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 475-482.

Chawla NV, Bowyer KW, Hall LO and Kegelmeyer WP (2002) Smote: Syn-
thetic minority over-sampling technique. Journal of Artificial Intelligence
Research 16, 321-357.

Cybenko G (1989) Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems 2, 303-314.

Gordon WJ and Hall CA (1973) Construction of curvilinear co-ordinate
systems and applications to mesh generation. International Journal for
Numerical Methods in Engineering 7, 461-477.

Habibie I, Holden D, Schwarz J, Yearsley] and Komura T (2017) A recurrent
variational autoencoder for human motion synthesis, In 28th British Machine
Vision Conference, London: British Machine Vision Association.

Han H, Wang WY and Mao BH (2005) Borderline-smote: A new over-
sampling method in imbalanced data sets learning, In International Confer-
ence on Intelligent Computing. Berlin, Heidelberg: Springer Berlin Heidel-
berg, pp. 878-887.

He H, Bai Y, Garcia EA and Li S (2008) Adasyn: Adaptive synthetic sampling
approach for imbalanced learning, In 2008 IEEE International Joint Confer-
ence on Neural Networks (IEEE World Congress on Computational Intelli-
gence). Hong Kong, China: IEEE, pp. 1322-1328.

He H and Garcia EA (2009) Learning from imbalanced data. IEEE Transactions
on Knowledge and Data Engineering 21, 1263—1284.

Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence
theorem, In Proceedings of the International Conference on Neural Networks.
NY, USA: IEEE Press New York, pp. 11-14.

https://doi.org/10.1017/S089006042510019X

12

Hecht-Nielsen R (1992) Theory of the backpropagation neural network, In
Neural Networks for Perception. Elsevier, pp. 65-93.

Hornik K, Stinchcombe M and White H (1989) Multilayer feedforward
networks are universal approximators. Neural Networks 2, 359-366.

Jo T and Japkowicz N (2004) Class imbalances versus small disjuncts. ACM
Sigkdd Explorations Newsletter 6, 40—49.

Krawczyk B (2016) Learning from imbalanced data: Open challenges and future
directions. Progress in Artificial Intelligence 5, 221-232.

Krizhevsky A, Sutskever I and Hinton GE (2012) Imagenet classification
with deep convolutional neural networks, Advances in Neural
Information Processing Systems 25. Lake Tahoe: Curran Associates Inc., pp
1097-1105.

LeCun Y, Bengio Y and Hinton G (2015) Deep learning. Nature 521, 436—444.

Lee TK and Filipi ZS (2010) Synthesis and validation of representative real-
world driving cycles for plug-in hybrid vehicles, In 2010 IEEE Vehicle Power
and Propulsion Conference. Lille: IEEE, pp. 1-6.

Liu CL and Hsieh PY (2019) Model-based synthetic sampling for imbalanced
data. IEEE Transactions on Knowledge and Data Engineering 32, 1543—1556.

Liu XY, Wu J and Zhou ZH (2008) Exploratory undersampling for class-
imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 39, 539-550.

Lu Z, PuH, Wang F, Hu Z and Wang L (2017) The expressive power of neural
networks: A view from the width, Advances in Neural Information Processing
Systems 30, Long Beach: Curran Associates Inc., pp 6232-6240.

Nechaeva O (2006) Composite algorithm for adaptive mesh construction based
on self-organizing maps, In International Conference on Artificial Neural
Networks. Springer, pp. 445-454.

Pan], Huang J, Cheng G and Zeng Y (2023) Reinforcement learning for
automatic quadrilateral mesh generation: A soft actor—critic approach.
Neural Networks 157, 288-304.

Pan J, Huang J, Wang Y, Cheng G and Zeng Y (2021) A self-learning finite
element extraction system based on reinforcement learning. Artificial Intel-
ligence for Engineering Design, Analysis and Manufacturing, 1-29. https://doi.
org/10.1017/5089006042100007X.

Papagiannopoulos A, Clausen P and Avellan F (2021) How to teach neural
networks to mesh: Application on 2-d simplicial contours. Neural Networks
136, 152-179.

Remacle JF, Henrotte F, Carrier-Baudouin T, Béchet E, Marchandise E,
Geuzaine C and Mouton T (2013) A frontal delaunay quad mesh generator
using the | norm. International Journal for Numerical Methods in Engineering
94, 494-512.

Remacle JF, Lambrechts J, Seny B, Marchandise E, Johnen A and Geuzainet C
(2012) Blossom-quad: A non-uniform quadrilateral mesh generator using a
minimum-cost perfect-matching algorithm. International Journal for
Numerical Methods in Engineering 89, 1102—1119.

https://doi.org/10.1017/5089006042510019X Published online by Cambridge University Press

Jie Pan et al.

Roca X and Loseille A (2019) 27th International Meshing Roundtable, Vol. 127.
Cham: Springer.

Shamshad A, Bawadi M, Hussin WW, Majid T and Sanusi S (2005) First and
second order markov chain models for synthetic generation of wind speed
time series. Energy 30, 693-708.

Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E and
Mavriplis D (2014) CFD vision 2030 study: a path to revolutionary compu-
tational aerosciences, Technical Report, NASA.

Tanaka FHK and Aranha C (2019) Data augmentation using GANSs. arXiv
preprint arXiv:1904.09135.

Verma CS and Suresh K (2017) A robust combinatorial approach to reduce
singularities in quadrilateral meshes. Computer-Aided Design 85, 99-110.
Vinyals O, Fortunato M and Jaitly N (2015) Pointer networks. Advances in
Neural Information Processing Systems 2, Montreal: MIT Press, pp.

2692-2700.

Wang Z, Wang J and Wang Y (2018) An intelligent diagnosis scheme based on
generative adversarial learning deep neural networks and its application to
planetary gearbox fault pattern recognition. Neurocomputing 310, 213-222.

White DR and Kinney P (1997) Redesign of the paving algorithm: Robustness
enhancements through element by element meshing, In 6th International
Meshing Roundtable. Sandia National Laboratories, pp. 830.

XieZ,Jiang L, Ye T and Li X (2015) A synthetic minority oversampling method
based on local densities in low-dimensional space for imbalanced learning, In
International Conference on Database Systems for Advanced Applications.
Cham: Springer, pp. 3-18.

Xuan Q, Chen Z, Liu Y, Huang H, Bao G and Zhang D (2018) Multiview
generative adversarial network and its application in pear] classification. IEEE
Transactions on Industrial Electronics 66, 8244—8252.

Yang W and Nam W (2022) Data synthesis method preserving correlation of
features. Pattern Recognition 122, 108241.

Yang Y, Zha K, Chen YC, Wang H and Katabi D (2021) Delving into deep
imbalanced regression. arXiv preprint arXiv:2102.09554.

Yao S, Yan B, Chen B and Zeng Y (2005) An ANN-based element extraction
method for automatic mesh generation. Expert Systems with Applications 29,
193-206.

Yen SJ and Lee YS (2009) Cluster-based under-sampling approaches for imbal-
anced data distributions. Expert Systems with Applications 36, 5718-5727.
Zeng Y and Cheng G (1993) Knowledge-based free mesh generation of quad-
rilateral elements in two-dimensional domains. Computer-Aided Civil and

Infrastructure Engineering 8, 259-270.

Zeng Y and Yao S (2009) Understanding design activities through computer
simulation. Advanced Engineering Informatics 23, 294-308.

Zhang Z, Wang Y, Jimack PK and Wang H (2020) Meshingnet: A new mesh
generation method based on deep learning, In International Conference on
Computational Science. Cham: Springer, pp. 186—198.

https://doi.org/10.1017/S089006042100007X
https://doi.org/10.1017/S089006042100007X
https://arxiv.org/abs/1904.09135
https://arxiv.org/abs/2102.09554
https://doi.org/10.1017/S089006042510019X

	Sampling balanced high-quality data to train an automatic mesh generator
	Highlights
	Introduction
	Problem formulation and fundamentals
	Data generation
	Mesh generation
	Meshing problem formulation for data generation

	Quality function-based data generation for mesh generation
	Data generation procedure
	Quality function for performance measurement
	Sample balancing
	FNN model

	Experiment results
	Implementation details
	Quality threshold analysis
	Sample size analysis

	Evaluation
	Data diversity verification
	Performance comparison

	Discussion
	Conclusion
	Acknowledgments
	References

