Lipid atherogenic risk markers can be more favourably influenced by the cis-9,trans-11-octadecadienoate isomer than a conjugated linoleic acid mixture or fish oil in hamsters

Karine Valeille1, Daniel Gripois2, Marie-France Blouquit2, Maamar Souidi3, Michel Riottot2, Jean-Christophe Boutheegourd4, Colette Sérougne2 and Jean-Charles Martin2*

1ARILAIT Recherches, 42 rue de Châteaudun, 75314 Paris, Cedex 09, France
2Université Paris-Sud, bat 447, campus d’Orsay, 91405 Orsay, Cedex, France
3Institut de Radioprotection et de Sûreté Nucléaire, SARAM/DPHD, rue Auguste Lemaire, IRSN, BP 17, 92262 Fontenay-aux-Roses, Cedex, France
4UMR INRA/INRA P-G 914, Physiologie de la Nutrition et du Comportement Alimentaire, 16 rue Claude Bernard, 75231 Paris, Cedex 05, France

(Received 6 June 2003 – Revised 24 September 2003 – Accepted 2 November 2003)

The aim of our present study was to compare the efficiency of conjugated linoleic acids (CLA) and fish oil in modulating atherogenic risk markers. Adult male hamsters were given a cholesterol-rich diet (0·6 g/kg) for 8 weeks; the diet was supplemented with 5 g cis-9,trans-11-CLA isomer/kg, 12 g CLA mixture (CLA-mix)/kg, 12 g fish oil/kg or 12 g fish oil/kg + 5 g cis-9,trans-11-CLA isomer/kg. The plasma cholesterol status was improved only with the cis-9,trans-11-CLA (HDL-cholesterol and HDL-cholesterol:LDL-cholesterol ratio, P<0·05), but was of borderline significance for CLA-mix (HDL-cholesterol:LDL-cholesterol ratio, P=0·06), with an increase (33–40 %) in the liver lipoprotein receptors (scavenger receptor-type I and LDL ApoB/E receptor) and HDL-binding protein 2 (P<0·05). 100 % pigment gallstones incidence and a slight insulin resistance (homeostatic model assessment index) were observed in the CLA-mix-fed hamsters (P=−0·031). In comparison, fish-oil feeding alone improved merely the scavenger receptor-type I and HDL-binding protein 2 liver status and faeces sterol output. For most of our present observations, the concomitant intake of fish oil and CLA-mix gave dominant effects that were exclusive and specific to one or the other oil. In conclusion, part of the beneficial effects of CLA in the present study can be ascribed to the cis-9,trans-11-isomer, and these did not generally overlap with those of fish oil. In addition, the CLA-mix effects are clearly affected by the marine (n-3) fatty acids.

Conjugated linoleic acid: Rumenic acid: Fish oil: Lipid atherosclerosis risk markers: Hamsters

Conjugated linoleic acid (CLA) is a collective term describing positional and geometrical isomers of linoleic acid. Among them, the cis-9,trans-11-isomer, so-called rumenic acid, occurs naturally in foodstuffs from ruminant animal fat sources. CLA have received growing attention in the past 10 years because of their pleiotropic biological activities. For instance, these fatty acids are effective anti-carcinogens, anti-atherosclerotic agents and potent modulators of the immune function (Pariza et al. 2001; Martin & Valeille, 2002). Studies dealing with the anti-atherosclerotic properties of CLA are scarce but promising. For instance, a CLA mixture (CLA-mix; 94-0 % (range 1–10 g/kg cis-9,trans-11 and trans-10,cis-12 isomers/kg of diet) decreased early aortic atherosclerosis when given to male hamsters receiving a pro-atherogenic diet (F,B strain; Wilson et al. 2000), and even caused regression of pre-established atherosclerosis in the male rabbit (New Zealand White; Kritchevsky et al. 2000) (10 g/kg diet). On the other hand, a detrimental effect on early aortic lesions outcome of a similar CLA-mix (5 g/kg diet) has been observed in C57Bl/6 mice fed a pro-atherogenic diet (Munday et al. 1999). Nevertheless, the studies dealing with the effect of CLA on the plasma lipid profile are less clear. Animal studies and studies with human subjects have had discordant results, as reviewed in Roche et al. (2001). In addition, animal experiments (hamsters) indicated that the cis-9,trans-11-isomer was ineffective in this regard (de Deckere et al. 1999; Gavino et al. 2000), whereas a study on human subjects demonstrated a slight beneficial effect on plasma VLDL-cholesterol (Noone et al. 2002). These discrepant results on plasma lipid variables arise from many factors, including duration, isomeric CLA composition, dose, species, gender, genomic polymorphism, initial metabolic status and diet, which could all have influence on the

Abbreviations: CLA, conjugated linoleic acid; CLA-mix, conjugated linoleic acid isomer mixture; CYP, cytochrome P450; HB2, HDL-binding protein 2; HMG, hydroxymethylglutaryl; HOMA, homeostatic model assessment; LDL-r, LDL ApoB/E receptor; SR-BI, scavenger receptor class B type I.

* Corresponding author: Dr Jean-Charles Martin, fax +33 1 69 15 70 74, email jean-charles.martin@ibaic.u-psud.fr
effect of CLA. Since the cholesterol metabolism of the hamster is similar to that of man (Spady & Dietschy, 1983) and is similarly sensitive to changes in dietary fats (Kris-Etherton & Dietschy, 1997), we have examined the effects of CLA-supplemented diets on various aspects of cholesterol and lipid metabolism in this species together with the atherosclerotic risk. We used inbred male hamsters to minimize genomic polymorphism and variation due to gender. In addition, the biological effect of the main isomer found in foodstuffs, i.e. cis-9,trans-11-CLA, was examined by comparison with a CLA-mix containing equal amounts of both cis-9,trans-11-isomer and the trans-10,cis-12-isomer. To get a better quantitative assessment of the potencies of CLA, an additional comparison was made among hamsters fed the same amount of either long-chain n-3 fatty acids as fish oil or the CLA-mix, since the n-3 PUFA of fish oil have a well-recognized effect on the atherosclerotic risk (Harris, 1997). It is also clear from other studies that other fatty acids in the diet can modify the effect of CLA (Li et al. 1999), and this might be one of the reasons for the discrepant results from studies described earlier. We also examined the possible interaction of the marine n-3 fatty acids with CLA in our present model.

Experimental methods

Chemicals and isotopes

Kits for cholesterol, triacylglycerol and phospholipid assays were purchased from Boehringer-Mannheim (Meylan, France). A polyclonal antibody raised against the bovine adrenal cortex LDL-receptor was kindly provided by Paul Roach (Adelaide, South Australia, Australia). A rabbit polyclonal antibody against a peptide containing residues 495–509 from murine scavenger receptor class B type I (SR-BI; kindly prepared by André Mazur, Theix, France) was used to detect SR-BI as described by Loison et al. (2002). Hydroxymethylglutaryl (HMG) CoA-[5-3H]mevalonolactone, [4-14C]cholesterol, 25-[26,27-3H2]hydroxysterol and [24-14C]chenedoxycholic acid were obtained from Dupont-NEN Products (Les Ulis, France).

Animal and diets

Official French regulations for the general experimental conditions (no. 87848) and for the specific care and use of laboratory animals were followed (no. 03056). Male hamsters bred in our own animal facility (LPN strain) were housed ten per cage in plastic cages (with a wire bottom positioned 15 mm above the floor to prevent copro- phagy and sawdust ingestion as much as possible), in a controlled environment, with constant temperature (22°C±1) and humidity (70 %) and a 12 h light–dark cycle (lights off at 19.30 hours). They were fed a standard non-purified diet (105; UAR, Villemoisson-sur-Orge, Epinay-sur-Orge, France) until 7 weeks of age. They were then fed a semi-synthetic diet containing 48.9 % energy as carbohydrate, 17.9 % energy as casein and 32.9 % energy as lipid (lard–high-oleic-acid sunflower oil–rapeseed oil (3:0·5:0.5, by wt) + 0.5 g cholesterol/kg) for 2 weeks before the experimental dietary period (Table 1). The nutritional adequacy of the diet has been previously evaluated (Bouthegourd et al. 2002; Loison et al. 2002). A stock-based diet was prepared in advance for 1 week of food consumption and stored at 4°C in a hermetically closed container. CLA and fish oil were stored in portions under an atmosphere of N2 at −20°C. Food provided to the hamsters was prepared from the stock diet every 2 d.

The hamsters were then housed individually and assigned to one of five diets: (1) the standard diet (control group); (2) the standard diet augmented with 6 g cis-9,trans-11-isomer/kg; (3) the standard diet augmented with 12 g CLA-mix/kg; (4) the standard diet augmented with 12 g CLA-mix + 12 g fish oil/kg; (5) the standard diet + 12 g fish oil/kg. The hamsters (ten per group) were fed these diets for 8 weeks. Body weight was measured twice per week and food intake was measured daily at the end of the dark period (see Bouthegourd et al. 2002). CLA and fish oil were added to the basal diet with no substitution for carbohydrate, fat or protein. The cis-9,trans-11-isomer (81.5 g/100 g total fatty acids) was synthesized from dehydrated castor oil (see Bouthegourd et al. 2002), and the final product was found to contain (g/100 g total fatty acids): cis-9,trans-12:18 : 2.58, cis-9,cis-12:18:2.0, cis-9,trans-11:18:2:81.5, cis-9,cis-11:18:2:7.5, trans-9,trans-11:18:2:1.8, unidentified 1.4. The CLA mixture (78.2 g/100 g total fatty acids) was kindly donated by Seah International (Boulogne sur Mer, France). Its fatty acids composition was (g/100 g total fatty acids): 16:0, 4.0, 18:0:1:2.12, cis-9,18:1:1.20, cis-11:18:1:0.6, cis-9,trans-12:18:2:0.2, trans-9,cis-12:18:2:6.0, cis-9,cis-12:18:2:2.0, all 8,10:18:2 isomers 0.8, all 7,9:18:2 isomers 0.7, all 11,13:18:2 isomers 0.4, all 12,14:18:2 isomers 0.1, cis-10,cis-12:18:2:0.6, cis-9,cis-11:18:2:0.8, cis-9,trans-11:18:2:35.6, trans-10,cis-12:18:2:36.4, unidentified 4.2 (i.e. CLA isomeric repartition was (g/100 g total fatty acids): cis-9,trans-11:47.2, trans-10,cis-12:48.2, other CLA isomers 4.6). Determination of fatty acid composition is detailed elsewhere (Bouthegourd et al. 2002). The total CLA in the fat of the basal diet

Table 1. Composition of the basal diets

<table>
<thead>
<tr>
<th>Components</th>
<th>g/kg</th>
<th>% Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein</td>
<td>200</td>
<td>17-9</td>
</tr>
<tr>
<td>Sucrose</td>
<td>200</td>
<td>17-9</td>
</tr>
<tr>
<td>Maize starch</td>
<td>350</td>
<td>31-3</td>
</tr>
<tr>
<td>Cellulose</td>
<td>50</td>
<td>–</td>
</tr>
<tr>
<td>Mineral mixture*</td>
<td>50</td>
<td>–</td>
</tr>
<tr>
<td>Vitamin mixture†</td>
<td>25</td>
<td>–</td>
</tr>
<tr>
<td>Fat‡</td>
<td>125</td>
<td>33</td>
</tr>
</tbody>
</table>

* Contained (mg/kg diet): NaCl 5.00, KCl 5.00, CaHPO4 21.50, MgCO3 5.00, MgSO4 2.50, FeO 0.15, FeSO4·7H2O 0.25, MnSO4·H2O 0.125, CuSO4·H2O 0.25, ZnSO4·H2O 0.104, CoSO4·7H2O 0.0002, Ki 0.0004.
† Contained (mg/kg diet): retinol 27.00, ergocalciferol 2.00, thiamine 50.00, riboflavin 37.50, calcium panthetenate 175.00 pyridoxin 25.00, meso-insitol 375.00, cyanocobalamine 0.125, ascorbic acid 2000.00, DL- tocopherol 425.00, menadion 100.00, nicotinic acid 25.00, choline 34 000.00, tolic acid 12.50, p-aminobenzoic acid 125.00, biotin 0.75.
‡ Lard–high-oleic-acid sunflower oil–rapeseed oil (1:0.5:0.5, by wt) + 0.5 g cholesterol/kg; fatty acid composition is detailed on p. 192.
The adrenal glands were excised, weighed and immediately frozen (2000). Twenty-two bile samples were diluted (1:20) with physiological saline (9 g NaCl/l) and analysed for cholesterol, phospholipid and triglyceride concentrations as previously described (Boehler et al. 1999). Lipids were extracted from homogenates of liver samples (0·5 g) and assayed enzymatically as described previously (Boehler et al. 1999). Lipids (neutral and acidic sterols) in faecal samples were extracted by boiling with ethanol in a Soxhlet apparatus for 48 h; they were then analysed and quantified by GLC (Boehler et al. 1999).

Hepatic enzyme activities

Tissue processing and enzyme assays are detailed in Loison et al. (2002) and Souidi et al. (2001). The microsomal and mitochondrial fractions were isolated using conventional ultracentrifugation techniques. HMG-CoA reductase activity was determined in the microsomal fractions in the presence of alkaline phosphatase. Cytochrome P450 (CYP) 7A1, CYP27A1 and CYP7B1 were assayed in the microsomal fractions with a radioisotopic method using either [4-14C]cholesterol (CYP7A1, CYP27A1) or 25-[26,27-3H2]hydroxycholesterol (CYP7B1), solubilized and carried by hydroxypropyl-β-cyclodextrin.

Scavenger receptor class B type I, LDL-receptor and HDL binding protein 2

Total membranes from frozen liver samples stored at −20°C (1 g) were prepared and membrane proteins were solubilized in a buffer containing Triton-X 100 (20 ml/l) (Milliat et al. 2000). Specific dot-blot immunodetection was then carried out for SR-BI, LDL ApoB/E receptor (LDL-r) and HDL-binding protein 2 (HB2), essentially as previously detailed by Milliat et al. (2000).

Statistical analyses

All assays were performed on one occasion each. Results are expressed as mean values with their standard errors. Comparisons were made using one-way ANOVA and tested by a post hoc protected least significant difference Fisher test. Differences in gallstones incidence were tested by the χ² test. All differences (including post hoc analysis) were considered significant at P<0.05.

Results

Plasma lipids

Plasma total cholesterol content was the highest in the cis-9,trans-11-group (Fig. 1), but the difference was significant only with control (P = 0·0239) and fish-oil-fed animals (P = 0·00282). This was not the case in the CLA-mix group (having as much of the cis-9,trans-11-isomer as in the cis-9,trans-11-group), although this group had a similar trend to the cis-9,trans-11-group (Fig. 1). The addition of fish oil to the CLA-mix gave rise to a HDL-cholesterol:HDL-cholesterol ratio similar to that of the fish-oil

amounted to 0·45 g/100 g total fatty acids, and the isomeric distribution can be tentatively given as (g/100 g total fatty acids): cis-9, trans-11 + trans-8, cis-10 0·280, trans-9, cis-11 0·015, trans-10, cis-12 0·009, all cis, cis-isomers 0·067, trans-11, trans-13 0·019, other trans, trans-isomers 0·064. Lard contained 0·1 g cholesterol/kg, which made the overall cholesterol in the basal diet 0·6 g/kg. The fatty acid composition of the basal diet was (g/100 g total fatty acids): 12:0 0·8, 14:0 1·2, 16:0 21·0, 16:1 1·9, 18:0 80 1·7, 20:4 2·7, 20:5 n3 22·1, 22:5 n3 2·3, 22:6 n6 22·5.

Tissue removal and blood sampling

The hamsters were deeply anaesthetized with Zoletil® 50 (250 mg/kg; Tiletamine chloride-Zolazepam chloride, 50:50, w/w; Reading Laboratory, Nice, France) after 18 h food deprivation. Blood samples were taken by cardiac puncture between 09.00 and 10.00 hours. Blood (250 µl) was taken in a first puncture approximately 2 min after anaesthesia. Blood (10 ml) was used immediately for measurement of glucose. The plasma of the remaining blood was then separated by centrifugation (4°C, 20 min, 3000 g) and stored at −80°C for further determination of insulin. Blood (2 ml) was collected from a second puncture. The plasma was immediately separated by centrifugation (4°C, 20 min, 3000 g) and stored in portions at −80°C for further determination of lipoproteins. The liver was removed, rinsed in cold saline (9 g NaCl/l), blotted and finely chopped. A portion (1−2 g) was dipped in liquid N2 and stored at −80°C until processed for receptor analysis.

Plasma, bile, faeces and tissue analyses

Plasma lipids were measured by enzymatic procedures, using commercial kits, by means of an automatic analyser (Abbott VP, Rungis, France). Insulin was assayed by RIA (rat insulin RIA kit; Linco Research, St Louis, MO, USA). Glucose was measured in whole blood using a glucometer (Glucometer encore R; Bayer Corp., Elkhart, IN, USA). The adequacy of the glucometer for hamster blood was tested before the experimental assays. The homostatic model assessment (HOMA) for insulin resistance was calculated from the insulin and glucose values using the equation of Matthews et al. (1985):

\[
HOMA = \text{insulin(mU/l)}/(9 \times 22·5 \times \ln \text{glucose(mmol/l})).
\]

Bile samples were diluted (1:20) with physiological saline (9 g NaCl/l) and analysed for cholesterol, phospholipid and total bile acid concentrations as previously described (Boehler et al. 1999). Lipids were extracted from homogenates of liver samples (0·5 g) and assayed enzymatically as described previously (Boehler et al. 1999). Lipids (neutral and acidic sterols) in faecal samples were extracted by boiling with ethanol in a Soxhlet apparatus for 48 h; they were then analysed and quantified by GLC (Boehler et al. 1999).

Lipoproteins were fractionated by ultracentrifugation of plasma samples (0·4 ml) in a KBr density gradient, using an SW41 rotor in an L-870 apparatus (Beckman Instruments, Gagny, France) (Loison et al. 2002). Twenty-two fractions (0·5 ml) were collected and analysed for total cholesterol, triglyceride and phospholipid.
group. Triacylglycerolaemia (total plasma and VLDL) significantly increased over control values only in groups consuming the CLA mixture \((P = 0.025)\) (Fig. 1). The addition of fish oil to the CLA-mix lowered the HDL-triacylglycerol values to those of fish oil alone or control (Fig. 1). The pattern of phospholipid distribution in plasma lipoproteins was close to that of cholesterol (Fig. 1). In particular, the HDL-phospholipid was higher in the \(\text{cis}-9,\text{trans}-11\)-CLA group \((P = 0.0317\) compared with control group). As for plasma cholesterol, the addition of fish oil to the CLA-mix brought about a similar effect as with fish oil alone for plasma phospholipid distribution. When expressed as % lipid per lipoprotein particles, the VLDL-triacylglycerol was significantly increased in the group given the CLA-mix alone compared with other groups \((P < 0.05, \text{results not shown})\).

Liver lipid composition and enzyme activities

The cholesterol concentration in the liver, whether as total, esterified or non-esterified, was greater in the hamsters of the \(\text{cis}-9,\text{trans}-11\)-CLA group \((P = 0.0274, P = 0.0470, P = 0.0025\) compared with control respectively) (Table 2). On the other hand, the phospholipid concentration was decreased in the hamsters of the CLA-mix group \((P = 0.0021\) compared with control). There were no differences in the liver triacylglycerol concentrations of the hamsters fed the various diets \((P \geq 0.09)\).

The results were similar to those for HB2, another HDL-binding proteins, although the differences when compared with hamsters fed the control diet were greater than for SR-BI. In particular, fish-oil feeding alone increased the expression of this protein to a greater extent compared with the other groups (Fig. 2).

Interestingly, the addition of fish oil to the CLA-mix resulted either in a dominating CLA effect (HB2) or in a dominating fish-oil effect (LDL-r). No statistical differences were shown in the SR-BI and LDL-r content in a steroidogenic tissue expressing these receptors (adrenal glands, results not shown).

Lipoprotein receptors and binding proteins

The amount of LDL-r expressed per whole organ was greater in hamsters fed the \(\text{cis}-9,\text{trans}-11\)-CLA and the CLA-mix diets \((P < 0.05)\) compared with the other groups, with both having a similar content of receptors (Fig. 2). The amount of the liver HDL receptor SR-BI was also increased in groups fed on all supplemented diets compared with control, although the difference versus control was weaker in the CLA-mix group \((P = 0.0715)\).
CYP7A1, CYP27A1 (both rate limiting for bile acid biosynthesis) and CYP7B1 were not different among treatment groups, whether expressed in specific activities (nmol/min per mg protein) or in liver capacities (nmol/min per whole liver) (results not shown).

Biliary compartment and faecal output

The overall cholesterol concentration in bile, whether as non-esterified cholesterol or as bile acids, was increased only in the hamsters of the CLA-mix group compared with control animals ($P = -0.0004$) (Fig. 3). The addition of fish oil to the CLA mixture gave results similar to fish oil alone.

Both CLA-mix and the fish-oil feeding increased similarly the phospholipid output into bile ($P = -0.0071$ and $P = -0.0033$ vs. control group respectively). Nonetheless, the effect was not additive when both were present in the diet (e.g. CLA-mix + fish-oil group, $P = -0.0135$) (Fig. 3).

CLA-mix feeding, alone or along with fish oil, brought about a dramatic 100% incidence of pigment gallstones (Fig. 4). The cis-9,trans-11-CLA and fish-oil-supplemented diet had no effect. No pure cholesterol gallstones were observed in the gallbladder of any hamsters.

In contrast to bile, only fish-oil feeding increased the sterol output in the faeces compared with the other treatment groups ($P < 0.05$), but this was due to acidic sterols (e.g. lithocholic acid and deoxycholic acid; 2.5-fold more in the fish-oil group than in the control group) (Fig. 3). Co-administration of a CLA mixture with fish oil in the diet completely antagonized this fish-oil effect.

Glucose and insulin concentrations in the food-deprived hamster

There were slight but non-significant differences in glucose and insulin concentrations among hamsters fed the various diets (except for the CLA-mix + fish-oil group for insulin, $P = 0.0379$) (Fig. 5). Nonetheless, the HOMA calculated from these values was indicative of slight insulin resistance only for the CLA-mix group when compared with control ($P = 0.031$).

Discussion

Two recent studies have addressed the potency of CLA-mix and individual CLA isomers to modulate plasma lipid levels in the hamster model (de Deckere et al. 1999; Gavino et al. 2000). If we compare the matched groups for CLA isomers among these studies including our present study, it is obvious that there is a lack of consistency in plasma lipids among the three studies. A close examination of the dietary setting and experimental conditions indicates that differences in the strain of hamsters used, the fat-based diet and its cholesterol content, and the caging conditions could explain these apparent discrepancies (Kris-Etherton & Dietschy, 1997). Therefore, we applied an experimental dietary setting that had already been shown to cause the same changes in plasma lipids in both our strain of hamster (LPN strain) and human subjects in response to an identical dietary challenge (Delplanque et al. 2002).

There is evidence to show that high plasma HDL-cholesterol as well as an elevated HDL-cholesterol:LDL-cholesterol ratio are protective against atherosclerosis (Rudel et al. 1998). In our present study, an increase in these two factors was achieved especially with the cis-9,trans-11-CLA diet, although the CLA-mix diet was borderline significant for the HDL-cholesterol:LDL-cholesterol ratio ($P = 0.06$). Since the cis-9,trans-11-CLA intake is similar in the cis-9,trans-11-group and in the CLA-mix group, this
suggests that the effect is mainly caused by the cis-9,trans-11-CLA when present as the main CLA isomer in food. Interestingly, a study has addressed the potency of the sole trans-10,cis-12-isomer to improve the plasma lipid status in obese men with the metabolic syndrome, and demonstrated that compared with placebo, the trans-10,cis-12-CLA decreased the HDL-cholesterol concentrations (Riserus et al. 2002). This is of concern, but cannot constitute a definitive conclusion because of the unusual metabolic status of the test group (with the metabolic syndrome). Other studies with human subjects, however, failed to show differences in HDL-cholesterol while given CLA-mix (Blankson et al. 2000; Benito et al. 2001; Noone et al. 2002) or a cis-9,trans-11-CLA-fortified blend (Noone et al. 2002) when compared with the respective control groups.

All the lipoprotein-binding proteins are upregulated in the liver of hamsters fed the cis-9,trans-11-CLA and the CLA-mix diets. Nonetheless, greater levels were measured with fish-oil feeding for HB2 and SR-BI but not LDL-r. This indicates an increased potential of the liver to clear plasma cholesterol. In particular, the fact that HDL-cholesterol is much elevated when hamsters fed the diet containing the cis-9,trans-11-CLA together with an increased expression of the liver SR-BI indicates that the flux of cholesterol through the reverse pathway could be even greater in this group. This assumption can be substantiated by a higher cholesteryl ester (and non-esterified cholesterol) content in the liver of the hamsters. This increase was not due to an increase in the expression of the liver SR-BI indicates that the flux of cholesterol through the reverse pathway could be even greater in this group. This assumption can be substantiated by a higher cholesteryl ester (and non-esterified cholesterol) content in the liver of the hamsters that failed to show differences in HDL-cholesterol while given CLA-mix (Blankson et al. 2000; Benito et al. 2001; Noone et al. 2002) or a cis-9,trans-11-CLA-fortified blend (Noone et al. 2002) when compared with the respective control groups.

<table>
<thead>
<tr>
<th>Dietary groups</th>
<th>Total cholesterol</th>
<th>Cholesteryl esters</th>
<th>Non-esterified cholesterol</th>
<th>Triacylglycerol</th>
<th>Phospholipid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SEM</td>
<td>Mean</td>
<td>SEM</td>
<td>Mean</td>
</tr>
<tr>
<td>Control</td>
<td>31.6</td>
<td>2.6</td>
<td>48.2</td>
<td>4.1</td>
<td>2.8</td>
</tr>
<tr>
<td>cis-9,trans-11</td>
<td>39.2</td>
<td>2.3</td>
<td>59.8</td>
<td>10.6</td>
<td>3.9</td>
</tr>
<tr>
<td>CLA-mix</td>
<td>34.2</td>
<td>2.3</td>
<td>52.1</td>
<td>3.9</td>
<td>3.1</td>
</tr>
<tr>
<td>CLA-mix + fish oil</td>
<td>37.4</td>
<td>2.3</td>
<td>58.3</td>
<td>3.9</td>
<td>2.8</td>
</tr>
<tr>
<td>Fish oil</td>
<td>33.2</td>
<td>3.1</td>
<td>51.0</td>
<td>5.2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Table 2. Lipid content (μmol/g liver) in the liver of hamsters fed for 8 weeks on either the control diet or the control diet supplemented with cis-9,trans-11-CLA, CLA mixture (CLA-mix), fish oil, or CLA-mix + fish oil (50:50 w/w)+

(Mean values with their standard errors for eight to ten hamsters per group)

+ Values with unlike superscript letters in the same column were significantly different (one-way ANOVA, P<0.05).
+ For details of diets and procedures, see Table 1 and p. 192.
† Liver weight did not differ among groups.

might provide an explanation between that study and our present study. Strikingly, there was 100 % incidence of pigment gallstones in the gallbladder of hamsters fed the CLA-mix. The incidence in the control group was also unusually high (40 %). We did not distinguish whether the gallstones were mixed or solely pigmentary. One may hypothesize that this effect is attributable to the trans-10,cis-12-isomer contained in the mixture and not to cis-9,trans-11-CLA, since the hamsters fed only cis-9,trans-11-isomer did not differ from the control group with regard to gallstones incidence. The pathogenesis of black pigment stones has been associated with changes in haem metabolism or bilirubin absorption (Donovan, 1999) and to the pathophysiology of liver cirrhosis in a hamster model (Sakata et al. 1997). Therefore, further studies are necessary to clarify the relationship between the formation of such gallstones, hepatotoxicity and the dietary intake of the trans-10,cis-12-CLA.

Similarly to the results of the study by de Deckere et al. (1999), but not those of Gavino et al. (2000), in our present experiment only hamsters fed CLA-mix had greater fasting total plasma triacylglycerol and VLDL-triacylglycerol at 8 weeks, both in mmol/l and as % lipid per lipoprotein particle (results not shown). This cannot arise from higher total liver weight and therefore higher en masse VLDL-triacylglycerol secretion in the CLA-mix group, since the liver weight of the hamsters did not differ among the groups (results not shown). In our present hamsters, we previously found that the CLA-mix prevented whole-body triacylglycerol accumulation (Bouthegourd et al. 2002); this effect could be related to the inhibitory effect of the trans-10,cis-12-isomer on adipose tissue lipoprotein lipase (Pariza et al. 2001). This hypothesis is also substantiated by the slight insulin resistance (HOMA index) detected in the CLA-mix group in our present study, which could account for a lower activity of the lipase. Therefore, a lower clearance through the lipoprotein lipase pathway could explain at least in part some of the increase of the VLDL-triacylglycerol in the CLA-mix group. A greater flux of NEFA from adipose tissue to the liver in the CLA-mix group (de Deckere et al. 1999) can
As mentioned earlier, our present study also established that only the hamsters in the CLA-mix group developed a relative insulin resistance as determined by the HOMA values. This result is consistent with results published from studies in mice (Tsuboyama-Kasaoka et al. 2000), swine (Stangl et al. 1999) and even in human subjects (Riserus et al. 2002; Medina et al. 2000), and therefore seems to be a common feature for CLA-mix containing the trans-10,cis-12-isomer. It remains to be determined whether this phenomenon is transient (Hamura et al. 2001) or prolonged.

One of the most striking results of our present study is the demonstration that the addition of fish-oil fatty acids at the same level as the CLA-mix (i.e. 10 g/kg diet) in the basal diet can completely abolish the CLA effect. In particular, this is the case for the HDL-phospholipid, HDL-triacylglycerol and hepatic LDL-r status. The reverse holds true in other instances, since co-administration of CLA-mix with fish oil can lead to a dominating CLA-mix effect (pigment gallstones, VLDL-triacylglycerol, faecal sterols, hepatic HB2 status). Unless otherwise stated, for most of our present observations there are dominating

![Fig. 3. Selected lipid composition in bile and faeces of hamsters fed the control diet, the cis-9,trans-11-isomer-supplemented diet, the conjugated linoleic acid isomer mixture (CLA-mix)-supplemented diet, the CLA-mix + fish-oil-supplemented diet or the fish-oil-supplemented diet. For details of diets and procedures, see Table 1 and p. 192. (A), bile sterols (non-esterified cholesterol (\(\text{A}\)) and bile acids (\(\text{B}\))); non-esterified cholesterol 2.7 (SEM 0.3) mmol/l, bile acids 172 (SEM 17) mmol/l. (B), bile phospholipids. (C), neutral (total cholesterol; \(\text{A}\)) and acidic sterols (lithocholic and chenodeoxycholic acids; \(\text{B}\)) in faeces; neutral sterols (control) 5.3 (SEM 0.5) mmol/d, acidic sterols 434 (SEM 29) mmol/d. Values are means with their standard errors shown by vertical bars (seven to eight hamsters per group). a,b Mean values with unlike superscript letters were significantly different (one-way ANOVA, \(P < 0.05\)).](https://www.cambridge.org/core/terms). https://doi.org/10.1079/BJN20031057

![Fig. 4. Incidence of pigment gallstones outcome in the gallbladder of hamsters fed the control diet (\(\text{C}\)), the cis-9,trans-11-isomer-supplemented diet (\(\text{D}\)), the conjugated linoleic acid isomer mixture (CLA-mix)-supplemented diet (\(\text{E}\)), the CLA-mix + fish-oil-supplemented diet (\(\text{F}\)) or the fish-oil-supplemented diet (\(\text{G}\)). For details of diets and procedures, see Table 1 and p. 192. Values are means for seven to eight hamsters per group. a,b Mean values with unlike superscript letters were significantly different (\(x^2\) test, \(P < 0.05\)).](https://www.cambridge.org/core/terms). https://doi.org/10.1079/BJN20031057

![Fig. 5. Glucose and insulin values in 18 h food-deprived hamsters and calculated index of insulin resistance (homeostatic model assessment, HOMA) in hamsters fed the control diet, the cis-9,trans-11-isomer-supplemented diet, the conjugated linoleic acid isomer mixture (CLA-mix)-supplemented diet, the CLA-mix + fish-oil-supplemented diet or the fish-oil-supplemented diet. For details of diets and procedures, see Table 1 and p. 192. \(\text{A}\), Insulin glucose (pmol/l \(\times 10; \text{B}\), glucose (mmol/l)). HOMA. Values are means with their standard errors shown by vertical bars (seven to eight hamsters per group). a,b Mean values with unlike superscript letters were significantly different (one-way ANOVA, \(P < 0.05\)).](https://www.cambridge.org/core/terms). https://doi.org/10.1079/BJN20031057

Conjugated linoleic acid and atherogenic risk

197
effects arising from the consumption of either the CLA-mix or the fish oil. The reason for this could be a competition between CLA and n-3 long-chain fatty acids for common biochemical pathways at the nuclear transcription factors level, such as PPAR, sterol regulatory element binding protein and liver X receptors (Tsunobayama-Kasaoka et al. 2000; Jump, 2002; Roche et al. 2002). Such an issue would certainly be interesting to investigate in further detail. A similar effect of n-3 long-chain PUFA (Li et al. 1999) or even 18:2n-6 (Brown et al. 2001) in the modulation of CLA has already been observed in other studies. This underlines further the care that should be taken in the dietary environment when evaluating the health effect of CLA.

In conclusion, we have established that part of the effects of CLA evaluated in our present study can be ascribed to the cis-9,trans-11-isomer, and these are generally distinct from those of fish oil. Our present results also emphasize that the physiological activity of CLA can be clearly affected by the PUFA content of the diet, especially the long-chain n-3 fatty acids. It is now necessary to study the influence of this dietary factor more carefully in order to understand the variations in the results among studies and to determine the conditions that provide the best potential for CLA effects in human subjects. Finally, the effects of CLA on plasma lipids appeared modest, and one should now evaluate the real impact of the CLA isomers on the development of atherosclerosis.

Acknowledgement

K. V. is a recipient of an ARILAIT/CERIN and French Ministry of Research Fellowship (grant no. 727/2000).

References

