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MODULES WHOSE CLOSED SUBMODULES ARE FINITELY
GENERATED
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A module M is called a CC-module if every closed submodule of M is cyclic. It is shown that a cyclic module
M is a direct sum of indecomposable submodules if all quotients of cyclic submodules of M are CC-modules.
This theorem generalizes a recent result of B. L. Osofsky and P. F. Smith on cyclic completely CS-modules.
Some further applications are given for cyclic modules which are decomposed into projectives and injectives.
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In [6, 7] Osofsky proved that a ring R is semisimple Artinian if every cyclic right
R-module is injective. Since that time, this important theorem has been extensively
investigated and extended by several authors (see e.g. [2, 3,10, 11]). More recently, in
Huynh-Dung [4], an attempt was made to generalize Osofsky’s theorem to cyclic
injective modules. Using a result of Damiano [3], it was shown in [4] that a cyclic
finitely presented module is semisimple if all quotients of cyclic submodules of M are
injective. In the recent work [8], Osofsky and Smith have shown that the hypothesis
“finitely presented” can be removed. More generally, they have proved that a cyclic
module M has finite uniform dimension if all quotients of cyclic submodules of M are
CS-modules. This general theorem covers all previously known results in the area.

The purpose of this note is to present some extensions of Osofsky—Smith’s theorem in
[8]. First we show that a cyclic module M is a direct sum of indecomposable
submodules if all quotients of cyclic submodules of M have closed submodules cyclic.
Our arguments use the idea of proof in [8]. A similar result holds also for finitely
generated modules with closed submodules finitely generated. Further we prove that a
finitely generated module M has finite uniform dimension if every quotient of a cyclic
submodule of M is a direct sum of a projective module and a CS-module. As a
consequence, we obtain a module-theoretic version of a result in [8] that right CDPI-
rings are right Noetherian. Finally, an application is given for right linearly topologized
rings.

1. Definitions and notation

Throughout this paper we consider associative rings with identity element and unitary
right modules. A module M is said to have finite uniform dimension if M does not
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contain infinite direct sums of non-zero submodules. A submodule K of M is called
essential in M if K~ L##0 for every non-zero submodule L of M. In this case, M is
called an essential extension of K. A submodule C of M is closed in Miff C is the only
essential extension of C in M.

Following [1], a module M is called CS provided every closed submodule of M is a
direct summand of M, or equivalently, every submodule of M is essential in a direct
summand of M. Now we introduce some new notions which generalize the concept of
cyclic CS-modules.

Definition 1. We will call a module M a CC-module if every closed submodule of M
is cyclic. .

Definition 2. A module M is called a CF-module if every closed submodule of M is
finitely generated.

It is clear that M is a CC-module (resp. CF-module) iff every submodule of M has a
cyclic (resp. finitely generated) essential extension.

M is called completely CC (resp. completely CF) provided every quotient of M is also
a CC-module (resp. CF-module).

For a module M, Soc(M) will denote the socle of M. M is semisimple iff M = Soc(M).

2. CC-modules and CF-modules

It is obvious that the class of cyclic CC-modules contains properly the class of cyclic
CS-modules. Therefore our next result may be regarded as an extension of the theorem
of Osofsky and Smith mentioned in the introduction.

Theorem 2.1. Let M be a cyclic module such that all cyclic submodules of M are
completely CC-modules. Then M is a direct sum of indecomposable submodules.

Proof. Assume that M can not be decomposed as a direct sum of indecomposable
submodules. Then there are non-zero submodules 4,, B; of M such that M=A4,®B,,
and B, is not a direct sum of indecomposable submodules. Again we have B, =A4,®B,,
where B, is not a direct sum of indecomposable submodules. Continuing in this
manner, by finite induction, we get infinite sequences {4;} and {B;} of non-zero
submodules of M such that M =(@);-, A)®B, and P+, 4,S B, for each n21. Each
A; is cyclic, hence A; contains a maximal submodule X;. Consider the quotient module
K=M/@P2,X;. Then S=P2, A,/P2,X; is a semisimple submodule of K. By
hypothesis, K is a CC-module, thus S has a cyclic essential extension N in K. Now we
aim to show that N/S is not a CC-module which would give us the desired
contradiction. First we notice that by the construction, for each n, S,=F.,(4/X,) is a
direct summand of K=((P}-, 4,)®B,)/@P X;, hence S, is a direct summand of N. It
follows that every finitely generated submodule of S, being a direct summand of some
S,, must be a direct summand of N.
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Now we proceed similarly as in [8]. Since S is infinitely generated, we can write
S=@P, Fi, where each F, is infinitely generated. Since N is a CC-module, each F; has
a cyclic essential extension D, in N. Clearly D;# F, for each i. Assume that N'=N/S is a
CC-module, then (P2, D;+ S)/S has a cyclic essential extension E’ in N'. There exists a
cyclic submodule E in N such that (E+S)/S=E'". Clearly D, E+S for each i. Since S is
semisimple, there is a submodule T of S such that S=(EnS)®T, then E+S=E®T.
Suppose that D, E=0 for some i, then D; is isomorphic to a submodule of T, thus D;
is semisimple, a contradiction. It implies that D, E#0, hence F;n E#0. So for each i
we can take a non-zero simple submodule V,.<F,nE. Since E is a CC-module,
V=@,V has a cyclic essential extension L in E. Obviously L¢S, hence L'=
(L+S)/S#0. We claim that LN @72, D;<S. In fact, for each n,

(Ln é}lDi>r\S=Lmi€j—2F,-=i€=’{l—2 V.

But as we have remarked, ®7=1 V; is a direct summand of N, and since S is essential in
N, it follows that L~ @)}., D,<S. This shows that Ln @2, D,cS, contradicting the
fact that E’ is an essential extension of (@?‘LID,-+S)/S. This completes the proof of the
theorem.

Corollary 2.2 (Osofsky—Smith [8]). Let M be a cyclic module such that all quotients
of cyclic submodules of M are CS-modules. Then M is a direct sum of uniform submodules.

Proof. By Theorem 2.1, M is a direct sum of indecomposable submodules. Now the
result follows from the easily-proved fact that an indecomposable module is CS iff it is
uniform.

Corollary 2.3. Let R be a ring such that every cyclic right R-module is a CC-module.
Then every cyclic right R-module is a direct sum of indecomposable submodules.

Recall that a right R-module M is called singular if for each element x in M there
exists an essential right ideal K of R such that xK=0. From Theorem 2.1 we
immediately derive:

Corollary 24. Let R be a ring such that every cyclic singular right R-module is a
CC-module. Then every cyclic singular right R-module is a direct sum of indecomposable
submodules.

Next we will consider CF-modules. The following result can be obtained with a proof
similar to that of Theorem 2.1.
Theorem 2.5. Let M be a finitely generated module such that every finitely generated

submodule of M is completely CF. Then M is a direct sum of indecomposable submodules.

As an immediate consequence of Theorem 2.5 we have:
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Corollary 2.6. Let R be a ring for which every finitely generated right module is a CF-
module. Then every finitely generated right R-module is a direct sum of indecomposable
submodules.

Corollaries 2.3 and 2.6 suggest the following natural question.

Question. Let R be a ring with the property that every cyclic right R-module is a
CF-module. Is R necessarily a direct sum of indecomposable right ideals?

By Theorem 2.1, it is easily seen that the answer is “yes” if every finitely generated
right ideal of R is principal. In particular, if R is a von Neumann regular ring, then R is
semisimple Artinian iff every cyclic right R-module is a CF-module.

3. Decomposing cyclic modules into projectives and injectives

A ring R is called right PCI if every cyclic right R-module is injective or isomorphic
to Ri (see Cozzens—Faith [2]). Damiano [3] proved that right PCI-rings are right
Noetherian right hereditary. As a generalization of right PCI-rings, Smith [10, 11]
introduced and investigated right CDPI-rings as those rings for which each cyclic right
module is a direct sum of a projective module and an injective module. It was
established recently in Osofsky—Smith [8, Proposition 2] that right CDPI-rings are right
Noetherian right hereditary. In this section we shall prove a module-theoretic version of
this result. It will be an easy consequence of the following more general theorem which
is of independent interest.

Theorem 3.1. Let M be a finitely generated module such that every quotient of a cyclic
submodule of M is a direct sum of a projective module and a CS-module. Then M has
finite uniform dimension.

Proof. First we consider the case when M is a cyclic module. Let K be an essential
submodule of M, then by hypothesis M/K is a direct sum of a projective module and a
CS-module. It is easy to see that the projective direct summand must be zero, so M/K is
CS. Similarly, all quotients of cyclic submodules of M/K are also CS. By Corollary 2.2,
M/K has finite uniform dimension. It follows that if A and B are submodules of M such
that A is essential in B, then B/A has finite uniform dimension. Let S=Soc(M) and E
be a submodule of M with S E. We show that M/E has finite uniform dimension. By
Zorn’s lemma, there is a submodule L of M such that En L=0 and E®L is essential in
M. Since M/(E+ L) has finite uniform dimension, it is enough to show that L also has
this property. Similarly as in [5, Lemma 2], we assume that L contains an infinite direct
sum @2, X; of non-zero submodules X Since X;n Soc(M)=0, each X, contains a
proper essential submodule Y. Then @ ,Y; is essential in P2, X;, and P2, X,/
@, Y; has infinite uniform dimension, a contradiction. Thus M/E has finite uniform
dimension.

Now consider a quotient module N of M such that N is a CS-module. We claim that
N has finite uniform dimension. To see this, we first note that N/Soc(N)=M/E for
some submodule E containing S, thus N/Soc(N) has finite uniform dimension. If Soc(N)
is infinitely generated, then we can write Soc(N)=@P, T;, where each T; is infinitely
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generated. Since N is CS, each T; is essential in a direct summand D; of N. Clearly D, is
cyclic, hence D;# T;. Then N/Soc(N) contains an infinite direct sum P72, (D/T) of
non-zero submodaules, a contradiction. This shows that Soc(N) is finitely generated, thus
N has finite uniform dimension. _

To prove that S=Soc(M) is finitely generated, we apply the techniques used in the
proof of [12, Lemma 2.6]. Assume the contrary that S is infinitely generated, then
S=8,DS,, where each S, is infinitely generated. By hypothesis, M/S; is a direct sum of
a projective module and a CS-module. Then there is a direct summand 4, of M such
that S, = A4, and A4,/S, is CS. From the argument above, we know that 4,/S, has finite
uniform dimension. Let M =A4,@4,, then S=Soc(4,)®Soc(4,). Since Soc(4,)/S, is
finitely generated, it follows that Soc(A,) is infinitely generated. Thus we have

M/S=(A,/S0c(4,))B(4,/Soc(4,)),

where A;#Soc(A4;), i=1,2. Since each A4; has the same properties as M does, we can
apply the same argument to get a similar decomposition for A;. Continuing in this
manner, by induction, we conclude that M/S does not have finite uniform dimension, a
contradiction. Therefore § is finitely generated which implies that M has finite uniform
dimension.

If M is finitely generated, then M=M, + -+ M,, where each M; is cyclic. As we
have shown, all quotients of each M; have finite uniform dimension. We have

(M, +M)/M =M, [(M, " M,).

From this it follows that M, + M, has finite uniform dimension. By finite induction we
get easily that M has finite uniform dimension. The proof is now complete.
As a consequence of Theorem 3.1 we obtain:

Proposition 3.2. Let M be a finitely generated module such that each quotient of a
cyclic submodule of M is a direct sum of a projective module and an injective module. Then
M is Noetherian. In addition, if M is projective, then every submodule of M is projective.

Proof. To prove that M is Noetherian, it is enough to consider the case when M is
cyclic. Let K be an essential submodule of M. Similarly as in the proof of Theorem 3.1,
we see that all quotients of cyclic submodules of M/K must be injective. Now from
Corollary 2.2 it is clear that M/K must be semisimple. By [5, Lemma 2] we know that
M/Soc(M) is Noetherian. On the other hand, by Theorem 3.1, M has finite uniform
dimension, thus Soc (M) is finitely generated. This implies that M is Noetherian.

Now suppose that M is projective. Then every cyclic submodule of M is clearly
projective. Let X be a cyclic submodule and P be a projective submodule of M. We will
show that X + P is projective. By hypothesis, (X + P)/P=A®B, where A is injective and
B is projective. Since the inverse image of B in X + P is isomorphic to P@® B which is
projective, without loss of generality we may assume that B=0. Then

M/P=((X + P)/P)®(Y/P)
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for some submodule Y containing P. There is a homomorphism from (X + P)@Y onto
M with a kernel isomorphic to P. Thus X +P is isomorphic to a direct summand of
M®P, so X+P is projective. Since every submodule of M is finitely generated, the
result follows now by finite induction.

Finally, as an application of Proposition 3.2, we obtain an analogue to [8,
Proposition 2] for linearly topologized rings. Recall that a topological ring R is called
right linearly topologized if the open right ideals of R form a base of neighbourhoods of
zero. In addition, if for each open right ideal A of R, R/4 is a Noetherian right R-
module, then R is called a right topologically Noetherian ring (see Sharpe-Vamos [9]).
Now from Proposition 3.2 immediately follows:

Corollary 3.3. Let R be a right linearly topologized ring. If each cyclic discrete right
R-module is a direct sum of a projective module and an injective module, then R is right
topologically Noetherian.
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