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Abstract

Let K be an arbitrary field of characteristic 2, F a free group of countably infinite rank. We construct
a finitely generated fully invariant subgroup U in F such that the relatively free group F/ U satisfies
the maximal condition on fully invariant subgroups but the group algebra K(F/ U) does not satisfy the
maximal condition on fully invariant ideals. This solves a problem posed by Plotkin and Vovsi. Using the
developed techniques we also construct the first example of a non-finitely based (nilpotent of class 2)-by-
(nilpotent of class 2) variety whose Abelian-by-(nilpotent of class at most 2) groups form a hereditarily
finitely based subvariety.
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1. Introduction

1. Let F be a free group. A relatively free group is a group of the form F/ V, where
V is a fully invariant subgroup (that is a subgroup closed under all endomorphisms
of F). In particular, F itself is relatively free. A subgroup in a relatively free group
FI V is verbal if and only if it is fully invariant (if G is not relatively free then it
may contain fully invariant subgroups which are not verbal; see [6] for a definition of
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'verbal' in the general case). A relatively free group G is called verbally Noetherian
if it satisfies the maximal condition on verbal subgroups (equivalently, if every verbal
subgroup in G is finitely generated as a verbal subgroup).

Let K be an associative and commutative ring with an identity element, F / V a
relatively free group, K(F/V) the group algebra of F/ V over K. An ideal in K (F/ V)
is verbal if and only if it is fully invariant, that is closed under all endomorphisms of
K{F/ V) induced by the endomorphisms of F/ V (if G is not relatively free then verbal
ideals are fully invariant in K(G) but the converse, in general, does not hold). For
terminology and basic facts related to identities and varieties of group representations
we refer to Plotkin and Vovsi [8] and Vovsi [12]. The group algebra K{G) of a
relatively free group G is called verbally Noetherian if K (G) satisfies the maximal
condition on verbal ideals (equivalently, if every verbal ideal in K(G) is finitely
generated as a verbal ideal).

Clearly, if a relatively free group F/ V is not verbally Noetherian then so is the
group algebra K(F / V) for every K (if N is a non-finitely generated verbal subgroup
in FI V then the ideal generated by the set (N — 1) is a non-finitely generated verbal
ideal in K(F/ V)). No other ways to get examples of non-(verbally Noetherian) group
algebras of relatively free groups of countably infinite rank over a Noetherian ring
were known. The following problem is equivalent to the one posed by Plotkin and
Vovsi (see [8, Problem 4.2.8]).

Does there exist a verbal subgroup U in a free group F of countably infinite rank
such that U is finitely generated (as a verbal subgroup) and satisfies the following
conditions:

(i) FI U is verbally Noetherian;
(ii) over some field K the group algebra K(F/ U) is not verbally Noetherian?

We resolve this by proving the following theorem. Let(x, y) = xy—yx, {x, y, z) =
((x, y), z) — xyz — yxz — zxy + zyx and let ab = b~xab. Define aU v ) = axya~~yx

and a(x-y-z) = axyza-yxzar"yazyx. Let a"v = (au)v.

THEOREM 1. Let K be an arbitrary field of characteristic 2, F the free group of
countably infinite rank on free generators x\, X2, • •., U the verbal subgroup of F
generated (as a verbal subgroup) by the elements

(1) [[*1,*2,.X3L[*4.*5,*6]].

(2) [xux2,x3]
(M'Xi-x<')(Xl-x*).

Then the group F/ U is verbally Noetherian but the group algebra K(F/ U) is not
verbally Noetherian.
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REMARK. In fact, some extra calculations show that Theorem 1 remains valid if
one replaces the element (2) with [xux2, x3Y

Xi>X5-X6).

2. The techniques developed in order to prove Theorem 1 can be applied to
varieties of groups. Let x\, x2,... be free generators of the free group F. For any
v — v(x\,... ,xn) 6 F, v = 1 is said to be an identity (or a law or an identical
relation) of a group G if v(gu ... , gn) = 1 for all gu ... , gn € G. The class of
all groups satisfying a given set of identities is called a variety of groups. We refer
to Neumann [6] for terminology and basic facts related to identities and varieties of
groups. A variety of groups V is called finitely based if V can be defined by a finite
set of identities. A group variety V is called Specht (or hereditarily finitely based) if
all subvarieties of V including V itself are finitely based (equivalently: if each group
in V has a finite basis for its identities).

Many varieties of groups are known to be Specht; in particular, this applies to the
variety NCA of all (nilpotent of class at most c)-by-Abelian groups for each c (Cohen
[2] for c = 1, Bryant and Newman [1] for c = 2, Krasil'nikov [5] for arbitrary c) and
each variety var (G) generated by a finite group G (Oates and Powell [10]). On the
other hand, the variety N2N2 of all (nilpotent of class at most 2)-by-(nilpotent of class
at most 2) groups is known to be non-Specht (Vaughan-Lee [11]) as well as the variety
ZAN2 of all centre-by-Abelian-by-(nilpotent of class at most 2) groups (Gupta and
Krasil'nikov [3]).

A variety V is called just non-Specht or just non-finitely based if V is non-Specht
but all proper subvarieties of V are Specht (equivalently, if V is non-finitely based but
all proper subvarieties of V are finitely based). It follows easily from Zorn's lemma
that each non-Specht variety contains a just non-Specht subvariety so just non-Specht
varieties of groups 'form the border' between Specht and non-Specht varieties. It is
known that there are infinitely many just non-Specht varieties of groups (Newman
[7]) but no examples of such varieties are as yet known. The following theorem
gives the first example of a non-finitely based subvariety V of the variety N2N2 whose
intersection with AN2 is Specht. The variety V comes closest to being just non-Specht.
We hope that it could give an approach to construct a just non-Specht variety of groups
(a problem which remains open).

Recall that a(x-y) = axyaTyx and a(x-y-z) = c?yza-yxzarv'yazyx. Let a"'-«»-'«« =
(a1" "'- ')" ' for all k > 1.

THEOREM 2. Let V be the variety of groups defined by the identities

(3) [[xux2,x3],[x4,x5,x6],[x1,xs]] = 1

and

( 4 ) Tx x x •\<,xt,xi,X(,)(x1,xt,x9)(xla,xn
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Then the variety V is not Specht but the intersection variety V D AN2 (which is defined
by the identities [[x{, x2, * 3 ] , [JC4, x5, x6]] = 1 and (4)) is Specht.

REMARK. Theorem 2, in fact, remains valid if one replaces the identity (4) with the
identity [x{, x2, Xi\

{x*-Xi-xMxi<x'-x^ = 1. The proof remains valid as well although some
additional calculations are needed.

3. Let it be a positive integer, Uk the verbal subgroup of the free group F of
countably infinite rank generated (as a verbal subgroup of F) by the elements

f v V V l(Jt4.->r5.-*6)(*7.-*8.-*9)-(*3*-2.Jr3*-l.*M)

L*1,-*2>*3J

Ut the variety of groups corresponding to the verbal subgroup Uk so that U* is defined
by the identities

l\X\, X2, X3\, L-*4> ^5-» ^aJJ = It lX\,X2,X3i = 1 .

To prove that the variety V D AN2 is Specht and the relatively free group F/ U defined
in Theorem 1 is verbally Noetherian we need the following.

PROPOSITION 1. For every positive integer k the relatively free group F/ Uk is

verbally Noetherian.

Since V n AN2 C U5 and Uk C U for all k > 2, Proposition 1 implies that the
variety V n AN2 is Specht and the relatively free group F/ U is verbally Noetherian.

Let M be the set of all positive integers and let $ be the set of all functions
<f> : N -> N such that a(f> < b<t> when a < b. We also write O for the corresponding
sets of endomorphisms of F (such that Xj</> = xi<t> for all i) and of F/ Uk. A subgroup
L in F (in F/ Uk) is called a ^-subgroup if L is closed under all endomorphisms

In fact, rather than Proposition 1 we shall prove the following stronger assertion.

PROPOSITION 2. For every positive integer k the relatively free group F / Uk satisfies
the maximal condition on normal <b-subgroups.

2. Proof of Theorem 1

We write Z for the set of integers and N for the set of all positive integers. Since
FI U is verbally Noetherian by Proposition 1, to prove Theorem 1 it suffices to check
that K(F/ U) is not verbally Noetherian. Let yx, y2,... be free generators of the
relatively free group F/ U. For every m e N, define vm e K(F/ U) by

vm = , y2, y3] - l ) ( [y 4 , y5] - l ) • • • ([y2 m + 2, v2m+3] - l)([yi,y2, y3] - l ) .
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Let / be the verbal ideal in K(F/ U) generated by the elements vm (m € N). Let, for
each k, lk denote the verbal ideal generated by all vm (m ^ k). Using a construction
from [3] we shall prove that, for each k, the element vk is not contained in Ik and so 7
is not finitely generated as a verbal ideal.

In [3, Theorem 2'] for each k € N there were constructed an algebra R* over a field
K of characteristic 2 and a subgroup Hk of the group of units [/(R*) which satisfy, in
particular, the following conditions:

(i) vm(hu h2,... , h2m+3) = 0 for all ht e H , , m / k;
(ii) vk(h\,h2, ...h2k+?,) # 0 for some huh2,... , h2k+3 € H*.

To check that vk 4 h it suffices to prove the following lemma.

LEMMA 1. For each k e N the group H* satisfies the identities

(5) [[Xi,x2,x3],[x4,x5,x6]] = 1,

(6) [je,,Jt2,JC3]c'r4l*5l*s)U7>*l) = 1.

Indeed, let h \,... , h2M be elements of H* such that vk {h i,... , h2M) ^ 0 and let
X be the map of the set (y, | / e N] into H* such that v,x = h,^ for i = 1 , . . . , 2k + 3,
y:X = 1 for / > 2k + 3. By Lemma 1, x can be extended to a homomorphism of
FI U into H* which, in its turn, can be extended to a homomorphism (also denoted
by x) of the algebra K(F/ U) into Rk. Then, by (i), hx = 0 but, by (ii), vkx ^ 0 so
vk & Ik as required.

PROOF (of Lemma 1). Let AT be an arbitrary field of characteristic 2,kan arbitrary
fixed positive integer. The algebra Rk and the group Hk were constructed in [3,
Theorem 2'] in the following way.

Let G be a group given by the presentation

(7) G = {xux2,...\ xf, [Xi,,xi2,xh], i, iu i2, h e N)

and let G = G/ G. For each g e G put g = gG' e G. Note that for each c e G ' w e
have c2 = 1 (because [Xj,Xj]2 = [xf,Xj] = 1 for every i,j e IN).

Let T denote the ideal of the group algebra K(G) generated by all elements

(8)
)( ( )( ft] +1)- «i,&. ^3, ft e G.

Denote S = K{G)/ T. For each / e ATG put / = (/ + T) e 5. Let Mk be the left
X"(G)-submodule of K(G) <giK S generated by all elements

l(g>£ (g#G'), 1®1 and 1 (8) ([ft, ft] + 1) • • • (igTm-u hm\ + 1)

(m ^k, gx,...g2m e G).
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The algebra Rk is the algebra of matrices

R* =

which is the quotient algebra of the algebra

fK(G) K(G)®KS

modulo the ideal

0
0

/°0
Vo

s
0

0
0
0

MA

°
0 /

s
K

The group Hk is the subgroup of the group of units of Rk generated by the matrix C
and all matrices g (g € G), where

so that H t = BG is the semidirect product of B = sgp {Cg | g e G} with G =

sgp {g \g € G], where

(9) a =

Now we are in position to prove that H t satisfies the identity (5). Let h i , . . . , h6 €
H t , C\ = [h , ,h2,h3] , C2 = [h4,h5,h6] . Since Q, C2 e B, they are products of
elements of the form (9) so for some / , , gj e G

o I / \o o i
(entries denoted by * are not important for the argument). Therefore,

/ I 0
[C,,C2]= 0 1 0

\ 0 0 1
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where

Note that if fig'1 & G' for some i,j then gjf~x & G and

On the other hand, if figj ' = c e G' for some i, j then g ; / ;
 l = c~* = c € G' and

^-7 , -So

7T1 ® M"1 - « / ' ® ft/)"1 = 7~l ®c-j:l®c = o.

Thus, P = 0 (mod Mk) and [[hi, h2, h3], [h4, h5, h6]] = 1 for all h^ . . . , h6 e Uk,
that is Hi satisfies the identity (5).

Let us check that Hk satisfies the identity (6) as well. It was checked in [3, page 361]
that for every g,, g2, gi e G

(10) (8ug2.g3)=0.

Let h i , . . . h g € H*. Let D = [h1,h2,h3], h, = g,b,, where g, e G, b, e B
(i = 4 , . . . , 8). Then

/ I a *>
D = 0 1 b

\ 0 0

and

p12 *
£)(ll4,h5,h«) _ £)g4fog6-fog4g6-g6g4g5+g6g5g4 _ | Q J p

\0 0 1

where

!„;-; l^ii- lag6g4g5+g6g5g4 Xag6g5g4

= 84 l8s '^6 la(84g5g6 — §5§4g6 ~

= g~4~l85l8~6la(84, §5, ge)
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and

Pn = (g4§5g6)~lb - (g5g4g6)~lb - (gegAgs)'1b + (g6g5g4)~l b

= (g6l§5lg4l - gelg4lg5l - g~5lg4~lg6l + £4"' £5~' &T' ) *>

= (g41J;l^6l)b.

So, by (10), F12 = P23 = 0 and [h,, h2, h3](h4h5h<') is a matrix of the form

where P G K(G) ®K S/Mk. It remains to note that

'i o p\blb* / i o ? 7 ? a p \ / l o
0 1 0 1 = 1 0 1 0 = 0 1 0

\0 0 1 / \ 0 0 1 / VO 0 1

that is [h,, h2, h3](h*'h5^)h7h8 = [h,, h2, h3]
(h4h5h«)h«h7, so

[h,,h2,h3]( lu 'h5'W(l l7 'h8) = ([h1,h2,h3](h4h5h6))(h7h8"ll8h7) = 1.

Thus, the identity (6) is satisfied in Ht . This completes the proof of Lemma 1 and the
proof of Theorem 1 (provided that Proposition 1 is proved). •

REMARK. It is possible to check that H* satisfies the stronger identity

as well.

3. Proof of Theorem 2

Since the intersection variety V n AN2 is Specht by Proposition 1, to prove The-
orem 2 it suffices to prove that V is not Specht. We shall show this by proving the
following.

THEOREM 3. Let

wk = wk(xu ... ,x2k+3) = [[*,,x2,x3]lx*-x>hlx™^-M], [xux2,x3]],

(k € N), W the subvariety of\ defined by the system of identities {wk = 1 | k e N}.
Then W is non-finitely based.
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In order to prove Theorem 3 we shall construct, for each k e N, a group Jifk e V
which satisfies the identity wk = 1 (so J!fk satisfies all identities u>( = 1 for / < k) but
does not satisfy the identity wk+i = 1.

Let F2 = Z/2Z, k an arbitrary but fixed positive integer. Let G be a group given by
the presentation (7), T the ideal of the group algebra F2G generated by all elements
(8). Let f denote the ideal of F2G generated by all elements

(tei, gi\ + 1)([&, g*\ + 1) (gu 82, g3, 8* e G)

so that T c f. Denote 5 = ¥2G/T, S = F2G/f. For each / e F2G put
/ = (f + T) e 5, / = (/ + f) e 5. Let ^ be the left 5-submodule of 5 <8>F2 5
generated by all elements

\®g (8<?G'), 1®1 and 1 ® <lgltg2] + 1) • • • ([&™-i,ft«] + D

( « <k,gu--- ,8im e G).

Define ^ to be the algebra of matrices

which is the quotient algebra of the algebra

modulo the ideal

Let Jf?k be the subgroup of the group U{3f.k) of all units of 3?,k generated by the matrix
C and all matrices g (g € G), where

/ I 1 0\ /£ 0
C = 0 1 1 , g = 0 g 0

\0 0 1/ \ 0 0

Then J% = BG is the semidirect product of B = sgpJC8 | g 6 G} with G =
sgp (g I 8 € G}, where

/I f-'®£ 0
(ID <?= o i r 1

\ 0 0 1

https://doi.org/10.1017/S1446788700002056 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002056


338 C. K. Gupta and A. N. Krasil'nikov [10]

The following lemma can be proved similarly to corresponding assertions in the
proof of Theorem 1.

LEMMA 2. For every positive integer k we have Jfk e V.

To complete the proof of Theorem 3 we need the following result.

LEMMA 3. Let D e Bk,

(1 Ei£T'®i?' * \ /c * *\

0 1 E.-lr1 - c = (o c * I (ce G).
0 0 1 / \0 0 1/

Then
/ I 0 PN

[D\ D] = 0 1 0
\0 0 1

PROOF. Since

\0 0

we have

= (c + 1) ( j ] gf1) ® 2 + (c

where / y = gf' ® gig~]c + gjx ® g;!,"1^ If /i/^'c ^ G' then hjh;lc # G so
fij e Nk. If hthjlc = c' € G then /i^r 'c = d, hj = h,cd so

(c + l)/,y = (c + l ) ^ 1 ® c + (5 + \)h-lcc ® c

= (c + l)(cc + l)^"1 ® c = 0 <g> c = 0.

Thus,(c+l)E,-<;/«+^* = ^andsoP = (c+l)(E,-gr1)®c+^t as required.
This completes the proof of Lemma 3. •
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Lemma 3 implies that .#* satisfies the identity wk = 1. Indeed, for every
hu h2, h3 e Jf?k, [hu h2, hy] e Bk so

for some g, e G. If c — [h4, hs] • • • [h2k+2, h2k+3], h, e J4?k for all i, then c is of the

form

where c e G, c = [g4, gs] • • • [g2k+2, g2k+3] for some g,; € G (i = 4 , . . . , 2k + 3) .

Therefore, by Lemma 3,

where P = (? + 1)(£\ ^"') ®c + Nk. Note that

is a F2-linear combination (in the group algebra F2G) of elements of the form

d/1,/2] + 1) • • • (l/a-i./z/] + 1) (/ < *), /,• e G (i = 1, . . . , 2Z), so P = Nk

Thus, wk(hi,... , h2k+i) = 1 for all hi,... , h2k+3 e J%1, so the identity wk = 1 is
satisfied in Jf?k.

To prove that Jffk does not satisfy the identity wk+l = 1 it suffices to check that
wk+i(C, x2, x 3 , . . . , \2k+s) ^ 1, where

/ I 1 0 \ /xt 0 0 \
C = I 0 1 1 , x,, = 0 jc,- 0 (i = 2, 3 , . . . , 2k + 5).

\ 0 0 1/ \0 0 1/

It is easy to check that

'I 012 *
[ C , x 2 , x 3 ] = | 0 1 <2 2 3 | ,

0 1
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where Qi2 = l®l+x^1®x2+*3"~1®*3+*3~"1*2~1®*2-*3, G23 =

Let c = [x4, x5] • • • [x2k+4, x2k+5] and let

(c 0 0\

c = JO c 0 I .
\0 0 1/

Then, by Lemma 3,

'\ 0
[ [ C , x 2 , x 3 ] c , [ C , x 2 , x 3 ] ] = | o 1 0 ) ,

\ 0 0 1

where P = (1 + x^1 + i3" ' + ̂ " ' x f 1 ) ^ +l)®c + Nk. Note that

(=2

and

i=k+\ i=t+l

i=2 i=2

i=2

where/ e ATt. Therefore,

i=*+l i=t+l i=*+l !=*+!

= E /'(1) + E /'2) + E /«0) + E //
1=2 1=2 1=2

„ , ( . » „ f (1) _ f f ( 2 ) _

where/; —/;,/, — — 3̂ / n / i — *3 2̂ / »

/ , = ([JC2.-+2, JC2,+3] + 1) ® ( [ I ([*«+2,JC2,+3] + 1) 1 •

The following lemmas can be deduced easily from the proof of Theorem 2 in [3].

LEMMA 4. S <S>F2 S/Nk is a free left S-module freely generated by the set

{1 ® ([*,,, xh] + ! ) • • • ([i,2,_,, JC,-2,] + 1) + Nk | / > jt, i, < i2 < • • • < i2l).
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LEMMA 5. Let

Ux = [xi, • • • *;, | / > 0, I'I < • • • < it),

U2 = {*„ • ••xil([xjl,XjJ] + 1) | / > 0, i, < • • • < //,;, < j 2 } .

Let U = UiU U2. Then U is a basis ofS over F2.

Lemmas 4 and 5 implies that the set

{f^ + Nk\2<i<k+l,l<j <4}

is linearly independent over F2, so P ^ 0 (mod Nk) and

wM(C, x 2 , . . . , x2k+5) = [[C, \2, x3]c, [C, x2, x3]] ^ 1.

Thus, the group Jft does not satisfy the identity u>t+1 = 1.
This completes the proof of Theorem 3 as well as that of Theorem 2 (provided that

Proposition 1 is proved).

4. Auxiliary results

Let @ be an arbitrary associative ring generated by dt (i e I) and let 17 be the
two-sided ideal in ty generated by all elements of the form

(12) (Kl,«2,H3) («<€#).

LEMMA 6 ([9]). 3T is generated (as an ideal) by all elements of the forms

(13) (dh,dh,dh) (ii, 12,13 6 I),

(14) (4,, 4)(4-3,44) + (dh, duKdh, 4 ) d"i, «2, is, t4 e I).

PROOF. Assume that & is the free associative ring on a free generating set [dt \ i e 1}
(it clearly suffices to prove Lemma under this assumption). Let &' be the two-sided
ideal in 3) generated by all elements (13)—(14).

Using the identity (uv, w) = u(v, w) + (u, w)v, one can check easily that

3, U2, U4) = M,(M3, U2, U4) + (Mi, M2, U4)U3 + (uu U2)(u^, U4) + (« i , M4)(«3,

so all elements of the form

(15) (ui, u2)(u3, u4) + (uu u4)(u3, u2) (ui,u2,u3,u4e @)
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are contained in ST. Therefore, &' c &.
Since elements (12) and (15) are multilinear with respect to «,-, one can assume

that all ut in (12) and (15) are monomials (on {d, | i e I}). We shall prove that &'
contains all elements of the forms (12) and (15) (and so & = &') by induction on the
degree of such an element.

Let / 6 S> be of the form (12) or (15). Note that every element/ of the form (12)
of degree 3 is contained in &' and so is every element/ of the form (15) of degree 4
(because such / is of the form (13) or (14)). Suppose that / is of degree k (k > 4)
and all elements of the forms (12) and (15) of degrees less than k are contained in S'.

Consider / = (MI, M2)(M3, M4) + (u\, M4)(M3, M2) of degree k. Suppose that
M4 = «4«4', where M4, H4 are monomials of degree at least 1. Then

= (« , , H2)(«3, «4M4') + («1, M4

= (Mi, M 2 )U 4 (M 3 , M4) + (Mi, H2)(«3, « 4 )« 4

Since

(Ml, M2)M4(M3, « 4 ) + U'4(UU M4)(M3, U2)

= M 4 [(«l , U2)(U3, M4) + ( « i , M4)(M3, M2)] + (M,, M2, M 4 ) ( M 3 , < )

is contained in &' and so is (by the same argument)

(Mi, M2)(M3, U4)U4' + («[ , M4)M4'(M3, U2),

we have/ 6 5" .
Note that if M4 is of degree 1 but for some i (1 < i < 3) ut = M';M", where u\, u"

are monomials of degree at least 1 then one can prove / 6 &' in a quite similar way.
Thus, under the inductive assumption each element / of the form (15) of degree k is
contained in &'.

Consider/ = (M^ M2, M3) of degree k. If w3 = M3M3', where M3, M3' are monomials
of degree at least 1 then

/ = (« , , M2, U3U3') = M3(M1? M2, MJ) + (Ml, M2, U3)Uj € 5 " .

If M2 = u'2u2' then

/ = ( « ! , M2M'2', M3) = (M2(H,, M2') + (Mi, «i)j4', M3)

= M2(«i, M2, M3) + (M2, M3)(M,, M2) + (Ui, M2)(M2, M3) + (Mn M2, M3)M2' G ^ ' .

(If M2, M3 are of degree 1 but u\ = u,\u'l where u\, u" are monomials of degree at least
1 then the proof is quite similar). Thus, under the inductive assumption each element
of the form (15) and of degree k is contained in &'.

This completes the proof of Lemma 6. •
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Let A = F/yiiF), I(A) the group ring of A. Suppose that a, = *,y3(F) (i g N)
so that {a, | / g N) is a free generating set of A. Let T be the two-sided ideal in 2(A)
generated by all elements of the form (ui, u2, u3) (u\, u2, K3 g 2(A)).

LEMMA 7. T is generated (as an ideal in Z(A)) by all elements of the form

(16) ([a,,, ah] - 1 ) (K, au] - 1) + {[ah,ait\ - l){[ah, ah] - l),

where i\, i2, h, U £ N.

PROOF. By Lemma 6, T is the two-sided ideal generated by all elements

(17) « ' , fl£, a£) (ilf i2, ij € N, £ l , e2, £3 e {-1, 1})

and

(18) «,a-)(flJ,<) + «,a-)«,<)

O'i, i2,h, U G N, £1,£2,£3,e4 € {-1, 1}).

Let T\ be the two-sided ideal in Z(A) generated by all elements

(19) « ; , < 2 ) ( < J , < 3 ) ( i 1 , i 2 , i 3 6 N , e , , e 2 , < ? 3 € { - l , l } ) .

Since

for all /,, i2, J3 e N, £,, e2, £3 e {-1, 1}, 7, c r .
Note that the ideal Tx is generated by elements

(20) ( K , flil] - l)([ah, ah] - 1) (ilf I2J 13 € N).

Indeed,

(21) (af'.flf) = flf <•([<', flf ] - 1) = flf af'([fli>flJ"« - 1)

and

(22) ([a,-, a,]"1 - l) = -[f l<1 aj-'dfl,-, a,\ - 1)

so
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for all iu i2, h 6 N, eit e2, £3 € (—1,1} and some g € A, e e {—1,1} which depend
on I'I, i2, h and eu e2, £3. Therefore, the elements (19) and (20) generate the same
ideal (which is the ideal 7*0.

Further, if ik =j, = q for some k,l,(\ <k,l<2) then

[ < ' , < ] - 1 ) (K , ah] - 1) = {[ap, a,]1' - l){[aq, ar]
h ~ l)

= eg([ap, aq] - l)([a,, ar] - 1) €

p e {ii,i2}, r e I/1.72}. 5i,52,£e {-1,1}, g e A

so

(23) [ < , a«]([ah, ah] - 1) = ([a,,, ah] - 1) (mod 7,)

if {11, f2} n U1.72} ̂  0- By (21),

so, by (23),

« , < ) « , < ) =<a<X<(K,a,2r2 - l)([«i3.^r4 - 1) (mod 7,).

Similarly,

« ,< )« .< ) =««([a,-,,aje"4 - l)(k,.a/2r
3 - 1) (mod r,).

so

«' ,<)«,<) + « , <)«.<) = < ' < « 7 (mod TO,

where

/ = ( K . a J " * 1 - l)([ah,auF'* - l) + ([fl,-,,^]*"4 - l ) ( K , a , 2 r £ ' - l).

By (22) and (23),

= sgn (Sis2£3s4)([ah,ai2] - \)([ah, au] - 1) (mod 7*0,

while

= sgn (£i£2£3£4)([a,,, ait] - l)([a,,, a,J - 1) (mod 7*0,
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so for all i[, i2, h, U € N, e I ; e2, e3, e4 e {—1, 1}

+ (K, a,J - D([ah, ah] - 1)) (mod r,).

Therefore, the two-sided ideal T2 in 1(A) generated by 7} and the elements (18)
coincides with the ideal generated by T\ and the elements (16). Since 7i can be
generated by the elements (20) which are also of the form (16), it is clear that T2 is
generated by the elements (16).

Finally, it is easy to check using (21), (22) and (23) that every element

of the form (17) is contained in 7i. Thus, T2 is generated by all elements (17) and (18)
that is T2 = T. This completes the proof of Lemma 7. •

Let J( be the set of all elements of 1(A)/ T of the form

(24) a? a"2
2 • • • ([a,-,, ah] - 1) • • • (K_,, ah,] - 1) + T

(I > 0, /, < i2 < • • • < i2/_i < in),

where n, e 1 for all j € N and rij = 0 for almost all y.

LEMMA 8. 1{A)/T is spanned by J(.

PROOF. Since each element of A can be written in the form a"'a%2 • • • c, where
c € A', it suffices to prove that (c — 1) + T is a linear combination of elements

( K , flij - 1) • • • ([flia.,, fl/a] - 1) + T (ii < i2 < • • • < i2/_i < i2i)

for every c 6 A'. Note that, for each c € A', (c— 1) + T is clearly a linear combination
of elements of the form

(25) ([«,,, al2r - 1) • • • (K_,, a,Jm' - l) + T.

Further, for each m e Z

(26) ([a,, a,]m - 1) + T = m([ah a, ] - 1) + T.

Indeed, if m > 0 then

([a,, fl;]- - 1) + T = ([a,, fl;] - l)([fl|-, a , -]-1 + • • • + [a,, a j + l) + T
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which is equal, by (23), to m([ai, aj] - 1) + T. If m < 0 then

([a,, aj]m - 1) + T = -[ah a,]m([a,, a,-]1"1 - 1) + T

= -\m\[ai,aj]maai,aj)-\) + T

which is equal, by (23), to - |m| ( [a f , a,] - 1) + T = m([a,, a,] - 1) + 7\
By (26), each element of the form (25) is a linear combination of elements

(27) ([a,,, ai2] - 1) • • • ([a/2/_,, a , J - 1) + T,

where, by (23), ip ^ /, for all p ^ q (\ <p,q < 21). Further,

aaj,ar] - 1) = -{[ay, aj] - 1) (mod T)

by (22), (23) and

([ah, ah] - l)([ah, au] - 1) = -([a,-,, au] - l)([ah, aj2] - 1) (mod T)

because every element (16) is contained in T. These equations imply that for every
irjr (1 < r < 4) such that {/,, i2, i3, k) = U1J2J3J4} we have

(28) ([a,,, a,2] - Dtfa,,, ayj - 1) = £ ( K , aH] - 1)(K, a,J - 1) (mod 7"),

where e e {—1, 1}. Thus, for every c e A' the element (c — 1) + T is a linear
combination of elements of the form (27) with /j < i2 < • • • < iV This completes
the proof of Lemma 8. •

LEMMA 9. {Z(A)/ T, +) is a free Abelian group with a basis M'.

PROOF. By Lemma 8, it suffices to prove that the set ^# is linearly independent
over 1.

Let E be an associative algebra over Q with an identity element 1 defined by

E = {e, (i € N) | e] = 0, e,ej = -<?,<?, (ij e N)>

Then E is (isomorphic to) the Grassmann (or exterior) algebra on a countably infinite-
dimensional vector space over Q with a basis [e,; | i e N}. It is well-known (and easy
to prove) that the set

[eH • • • e k | k > 0 , /, < i 2 < ••• < i k ]

is a basis of E over Q. Since e] = 0, elements 1 + et (i € N) are invertable in E and
(1 + <?,)"' — 1 - et. Note that

[1 + e,, 1 + ej] = (1 - e,)(l - «,)(! + e,)(l + e,) = 1 + 2<?,e;
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for all i,j € N. Since elements etej are central in E, the (multiplicative) group
Sf generated by {1 + et | i e N} is nilpotent of class 2. Therefore, the mapping
f : a,—• 1 + e, (/ e N) can be extended to a homomorphism of A onto S? which, in
its turn, can be extended to a homomorphism of the group ring Z(A) into E. Since

(([a,-,, a,J - 1)(K, a,J - 1) + (fa,, a<J - l)(fa3, a,J -

= 4eheheiiek + 4eheueheh = 0

for all iu i2, i^, u, we have 7 c ker £ so there is a homomorphism £ : Z(A)/ 7 -> £
such that (a,- + 7 ) f = 1 + e, (i € N). Since

((fa,. «/J - 1) • • • (K,_,, al2/] - 1) + r ) f = 2leheh • • • ei2l,

the set

{([a,,, ah] - 1) • • • (K , . , , a,2J - 1) + T | Z > 0, i, < i2 < • • • < i2,}

is linearly independent, so it forms a Z-basis for ZA' + 7 / 7.
Now to complete the proof of Lemma 9 it remains to note that if T is an ideal of

Z(A) generated by elements of Z(A') such that (Z(A') + T/T, +> is a free abelian
group and {vj + T \ j e J] is a Z-basis of Z(A') + T/T then the set of all elements

a l ' a f - ' - V j + T ( j e J )

with rii € Z for all / e N and nt = 0 for almost all / is a basis of Z(A)/ 7 over Z. •

Let ^ be a positive integer, N? the set of ordered ^-tuples of elements of N. Suppose
that Mq is the free right /(A)-module generated by all elements (I'I, i2,... , iq) e hi9.

Recall that O is the set of all functions 0 : N -> N such that a<j> < b(f> when
a < b. We also write <$> for the corresponding sets of endomorphisms of Z(A)
(such that a,0 = ai<t> for all i) and of Z-linear mappings of Mq into itself such that
( ( / , , . . . , iq)f)4> = (i\4>,... , iq(t>)(f4>), where / e Z(A). A Z(A)-submodule L in
Mq is called a <&-submodule if L is closed under all mappings <j> € <I>.

The main result of the section is as follows.

PROPOSITIONS. For every positive integer q the module Mq/MqT satisfies the
maximal condition on Q-submodules.

PROOF. Recall that Ji is the set of all elements in Z(A)/ 7 which are of the form
(24). Define on Jt a linear order denoted by < and a partial order denoted by •<. Let
m, m' e Jt', m = mxmj, m' = m\m'2, where m,, m\ € ^ (i = 1, 2),

(29) m , = al'a? • • • + 7 , « ' , = a";a2
ni • • • + 7 ,

(30) m 2 = ( f a , , ai2] - 1) • • • ([ai2,_,, a,2J - 1) + 7 ( ! , < • • • < i2l),

(31) m^ = ([a,-;, flj;] - ! ) • • • ( [a , ; , ,, a ^ ] - 1) + 7 ( / ; < • • • < ^ , )
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Define

1, i f n > 0 ;

sgn(n) = 0 , ifn = 0;

- 1 , i f n < 0 .

We write mx < m\ if and only if one of the following conditions (i)-(ii) holds:

(i) \nk\ < \n'k\ for some it but \tij \ = \n'j | for all j > k;
(ii) \rij \ = \n'j\ for ally e N, sgn(n*) < s g n ^ ) for some k but sgn(n,•,) — sgn(nj)

for all j > k.

Define m2 < m2 if and only if /2/-* < *2/'-* f° r s o m e * but ^i-j = i'1V-j f° r ^ J >
0 < j < k or i2i-j — i'2l,_j for all j , 0 < j < 21, and / < /'. Put m < m' if and only if
one of the following conditions (i')-(ii') holds:

(i') w, < m',;
(ii') m\ — m\, m2 < m'2.

It is easy to prove that {M', <) is well-ordered.
We write m\ <m\ if and only if the following conditions (j)~(jj) hold:

(j) K l < In; I for a l l ; € N;

(jj) sgn(n7) = sgn(n^) for all j € N such that ny ^ 0.

Put m2 < m'2 if and only if {i 'i , . . . , hi) ^ [i[,... , i2r}- Define m < m' if m\ •< m\

and m2 •< m'2.

LEMMA 10. Let m •< m' (m, m' G J(). Then there exist f e Z(A) such that the

following conditions hold:

(i) mf = m'\

(ii) ifm < m (m e ^#) then mf = 0 ormf = ^ e , m , , where £; € {—1, 1} and
rh~j < m' for all i.

PROOF. Let m = ni\m2, m' = m\m'2, where m,, m\ are as in (29)—(31). Suppose

that b = a{"'l~ni) a2
2~n2) • • • € A. Then mxb = m\c for some c e A'. Let

and l e t / 2 = ([a,», aq] - 1) • • • ([a,»,, ,, a,»J - 1). By (28), there is e 6 {-1, 1} such
that emxfi = m'2. T a k e / = ebc~lf2 then mf = /n'.

L e t m € ^ , m = ~m~\m2, w h e r e m i = a"'a"2 • • • + T,

m2 = ([aj,,ah] - 1) • • • ( [ a , a _ , , aht] - 1) + T (j] < ••• < j 2 k )

and let m < m. Consider mf and suppose first that ~ni\ = mx. Then m2 < m2 and
it is easy to check that sm2f2 = Im'2, where s e {—1, 1}, m'2 is of the form (30) and
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m2 < em2f2 = m'2 (or m2f2 = 0 if {jx,... ,j2k} D [i'{,... , i'2'r,} ^ 0). Therefore,
mf = £mibc~[Tn2f2 = ~em\7n2 = ~eTn', where rn < m' or 7n' = 0.

Further, suppose that m, < nt\. Then m | k " ' = m',c, where c 6 A', m\ =
a"1 a^2 • • •. It is easy to check that m\ < m\. Therefore, mf = em1bc~lm2f2 —
em^cf2ln2, where £c/2m2 = 0 or scf2m2 — J^eim^ with m2

l) of the form (30) and
e, € {—1, 1} for all i. Since m\ < m\, nii = m\m2

l) < m\m'2 = m' for all / as
required. This completes the proof of Lemma 10. •

Let < denote the lexicographic order on N9 (that is ( / ' i , . . . ,jq) < ( / [ , . . . ,j') if
and only if there exists k such thaty* < j'k buty'/ = j \ for all/ < k). Let W = N? x M'.
Since the free Z(A)/ T-module freely generated by all elements ( i ' i , . . . , iq) € Hq is
naturally isomorphic to Mq/Mq T, we may assume that W C Mq/Mq T and Mq/Mq T
is spanned by W. Define on W a linear order denoted by < and a partial order denoted
by ±4,. Let w, w' e W, w = <ju ... ,jq)m, w' = O'l, • • • ,j'q)m', where jhj', e N
for all I, m,m' e M'.

We write w < w' if and only if one of the following conditions holds:

(l) (/I.--- Jq) < U'v- J'q)l
(ii) j , = _/(' for all /, 1 < I < q and m < m'.

Note that ( ^ , <) is well-ordered.
We write w <̂t> w' if and only if there exists 0 € $ such that the following

conditions hold:

(j) 7;0 = ; ; for all/, 1 < / < < ? ;
(jj) m0 ^ /n'.

LEMMA II. Let W <# w' (w, w' e W). Then there exist <p e <2> and f G Z(A)
5«cft ?/i<3? the following conditions hold:

(j) («;0)/ = w'\
(jj) ifw<w(we W) then (u7</>)/ = 0 or (w(p)f = Yl£iW0)> where e, e

{-1, l}anduJ(l) < w'for alii.

PROOF. Let u> = 0'i. • • • ,jq)m, w' = (j[,... ,j'q)m', where j , , j[ e N (1 < / <
q), m,m' e JM. Since w <& w', there exists </> € $ such thaty;0 = y'/ for all /
and nt(j> ^ m'. Since m<p < m', by Lemma 10 there exists / G Z(A) which satisfies
the conditions (i)-(ii) of Lemma 10 (if one replace m with m<p in (i)-(ii)). By (i),
(m<j))f = m' so the condition (j) of Lemma 11 holds.

Let w 6 /^, w — (j;,, . . . ,jq)m, where j , e N (1 < / < g), m e ^ # . Suppose
that w < w. Then (/",,... , ; ' , ) < (ju--- Jq) o r (7i»--- Jq) = (ju--- Jq),
m < m.

Suppose that ( J 1 ? . . . ,jq) < (ju ... ,jq). Then

(32) (Jrf J , 0 ) < O " i 0 . . . . . 7 » = O"i'.--- J'q)
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so, (w<j))f = 0 or (w<j>)f — ^sw(i\ where w(i) = (j,0,... ,jq<t>)m(i) for some

m(/ ) e J( and, by (32), w(i) <{][,... ,j'q)rri = w' for all i.

Suppose that ( / , , . . . , j ) = (j\,... ,jq), m < m. Then it is easy to check that
m</> < m<p so by Lemma 10 (replacing m with m<j)) (rn(p)f — 0 or (m</>)/ = £ £i'"(l)>
where w(l) e ^ # , m(l) < m'. Thus, (u>0)/ = 0 or (w<f>)f = X>ft</0, w h e r e

wli) = ( / , ' . • • • J'qW
l) < (j'v • • • J'q)

m' = w' a n d s,- e { - l , H for al l i .

Therefore, the condition (jj) of Lemma 11 holds. The proof of Lemma 11 is
completed. •

Let J denote the set of non-negative integers. Let S2 — {0,1}, 53 = ( - 1 , 0 , 1}.
Let 5 = J x 53 x S2, 0 = (0,0, 0) e 5. We shall write V(5) = V(S, 0) for the set
of all sequences (s, | i € N) of elements of 5 in which the set [i \ Sj ^ 0} is finite.
For q € N, we shall write Vq(S) = Vq(S, 0) = N« x V(S) for the set of pairs (w, v)
(M G N«, v € V(S)).

Define the partial order ^ on 5 by putting

(n, s\, s2) •< («', s{, 4 ) ("' " ' e ^;si< s'i € 53, 52» 4 e 52)

if and

Then

only if

we can define a

n < ri,

partial order ^ 4, on

= 5
f

P

(5) . We

= s'2.

write

( ( / i i , . . . , n , ) , (Sj | i G N)) ^ ^ ((«'„ . . . , n'q), {s\ \ i € N))

if and only if there is an element <p of $ such that n*</> = n't (1 <k<q) and s,- ^ 5,'̂

for all i e N.

Let R be an arbitrary non-empty set, < a partial order on R. Recall that (R, <)

is called partially well-ordered if and only if every infinite sequence r\, r2,... of

elements of R contains an infinite subsequence r,,, r,-2, . . . ( / , < i2 < • • •) such that

(see [4] for equivalent definitions).
Note that (5, ;<) is clearly partially well-ordered so the following lemma can

be deduced easily from [1, Lemma 3.2] which, in its turn, is deduced from [4,
Theorem 4.3].

LEMMA 12. (Vq(S), <$) is partially well-ordered.

Define a mapping v : W —> Vq(S). Let w = (ju ... ,jq)m, m = /ni/n2, where

m, = ai'a^ •••+T,m2 = ([aH,ai2] - 1) • • • ( K _ , , a,v] - 1) + T ( / , < • • • < i2/).

Put
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where s, = (|n,-|, sgn (n,), s3i),

I I, if is = i for some s,l < s <2l;

0 otherwise.

Clearly, v is injective.

LEMMA 13. Let w,w' eW and wv <$ w'v. Then w <$ w'.

PROOF. Let w = (jlt ... ,jq)m, w' = ( / , ' , . . . ,j'q)m', m = mim2, m' = m\m'2,
where mt, m'{ are of the forms (29)-(31). Then wv = ((j\,... , ; g ) , ( s , I ' e
N)), w'v = ( ( / I , . . . , ; ; ) , (*,' I i e N)), where s, = (\n,\, sgn («,-), i3,-), *,' =
(Kl , sgn («;.), ^,.) for all i.

Since IDV ^ * w'v, there exists 0 6 * such thai ji<j> = j[ (1 < / < q) and s, ^ s^
for all i € N that is |n,| < \rii<t>\, sgn («,) = sgn (n'^), s3i = ^ ( j 0 ) for all / e N. To
prove w <̂t> io' it suffices to check that m<p < m'.

Let m" = m0. Then m" = m'lm'2, where

m'[ = a" :aj ; • • • + T,

I n,, if y = / 0 ,

0, if; $ U<t>

for ally e N. To prove m" < m' (equivalently, m'[ < m\ and mj ^ m'2) we have to
check that \ri-\ < \n'j\ for ally, sgn(«p = sgn(np for ally such that n'J ^ 0 and
Ui<p,... ,12/0} c {/;,... , ^ ( , } .

Let ; e N 0 J = i0. Then \n'j\ = |n,| < \n'^\ = |BJ | and sgn(«p = sgn(n,) =
sgn(n-0) = sgn(np. Let n o w ; ^ N0. Then n'J = 0 so |nj | < |«}|. Therefore,

Consider an arbitrary s, 1 < s < 21. Then s3lj = 1 = s'3(islj>) so 40 = i'r for some r,
that is 40 e {/],... , i'2l,}. Therefore, {i\<j>,... , *'2/0) c {/J,... , i'̂ -} and m'2' ^ m^.
Thus, m0 = m" < rri'. This completes the proof of Lemma 13. •

Let(w, I i e N) be an arbitrary sequence of elements of "W. Consider the sequence
(WjV I / 6 N). By Lemma 12, there exists a subsequence (u>,,v | / 6 N) such that

whv < $ whv ; < o • • • ( i i < i2 < • • • ) •

Then, by Lemma 13,

w,, ^ * wh < * ••• ( h < i2 < • • • ) •

Thus, we have the following.
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LEMMA 14. (W, <$) is partially well-ordered.

Now we can complete the proof of Proposition 3 in a standard way (see [1,2]).
Suppose, in order to get a contradiction, that

M(D c M(2) c . . .

is a strictly ascending chain of <I>-submodules in MqjMqT (that is M(l) ^ M( l + I )

for all /)• For each i e N let ^ be the set of all elements w € W such that there
exists h e Mu+l)\MU), h = nw + ^rijWj, n ^ 0, Wj < w for all j . Since
M ( ' + 1 ) \M ( 0 ^ 0, so is Wt. Let w0) be the smallest (in the well-order <) element of Wt

and let h™ = n(i)wU) + ^ n f i o j 0 , /i<0 e M(i+l)\Mu\ where nu\ nf e 1, n(i) ^ 0,
w(p < wU) for ally . By Lemma 14, (W, ^* ) is partially well-ordered. Therefore, by
passing to an infinite subsequence we may assume that

Let & = ideal {n(l) | / e N}, & c Z. Then there is w e N such that ^ =
ideal {n(0 | i = 1 , . . . , m] so n(ra+l) = ^™=1 n

( 'X for some «;. € Z (i = 1, . . . , m).
Consider hU) = n(i)w{i) + Y.^wf e MO + 1 ) \M( | ) , i = 1 , . . . ,m + 1. Since
wi0 <<& w(m+u for / = 1 , . . . , m, there exist 0, e $ and / , e Z(A) (i = 1 , . . . , m)
such that (wU)<t>i)f, = w(m+l) but (lyj'V,)/, = Ey krfl^i w h e r e ^] t < w < m +" f o r

al l«, ; , jfc. Therefore, /i<m+1» - £ £ , n ; ^ " ^ , ) / , - = Ey « j m + " < + 1 ) - E , M « > ; > j * ,
where wf+X) < u)(m+1), io]2 < w{m+l) for all i, 1 < / < m, and ally, it. This contra-
dicts the choice of /i(ra+1) because (/i(m+l) - E7=i n'^h^cpdf,) € M(m+1)\M(m). The
proof of Proposition 3 is completed. •

COROLLARY 4. For every positive integers q,l the module Mq/Mq T' satisfies the
maximal condition on Q-submodules.

PROOF. By an inductive argument it suffices to prove that MqT'~l/MqT' satisfies
the maximal condition on O-submodules. It is easily deduced from Lemma 7 that
T'~l is generated (as Z(A)-module) by the elements of the form

where

fjM* = ([*;••«;,] - I X k v *,J ~ 1) + (t«;,- aj4] - l)([aJ}, aj2] - 1)

for all ji,J2,J3,J4- Put q' = q + 4(1 — 1). Define a Z(A)-linear map x of Mq. onto
MqT'-l/MqP by
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Since MqT c kerx, one can define a Z(A)-linear map ~x from Mq,/Mq>T onto
MqT'-l/MqT

l by

(Oi jq-)f +Mq,T)x = (ju... Jf)xf +MqT
l O ' t e N , / eZ(A)).

It is clear that x 0 = <t>X for all 0 € <J>.
Suppose that

M(l) C M(2) C • • •

is an infinite strictly ascending chain of <t>-submodules in Mq T
l~l/Mq T

l. Then

is an infinite strictly ascending chain of <J>-submodules in Mq>/Mq, T. This contradicts
Proposition 3 and completes the proof of Corollary 4. •

5. Proof of Proposition 2

It is well known that F/y3(F) satisfies the maximal condition on normal
<t>-subgroups. Therefore, to prove Proposition 2 it suffices to show that the group
Yi(F)/ Uk satisfies the maximal condition on normal <E>-subgroups of F/ Uk contained
in y3(F)/Uk.

Recall that A = F/y^F). Let V = [yi(F),y3(F)]. Clearly, y3(F)/V is an
abelian subgroup in F/ V generated by the elements

(33) [ x h , x ] 2 , x h Y • V ( J 1 J 2 J 3 € M , g e F).

Then one can consider y^{F)/ V as a right multiplicative Z(A)-module generated by
elements

[XJ^XJ^XJ,]- V (J1J2J3 e N)

with elements of A acting by conjugation:

[Xjl,xh,xh]
s • V = g-^xj^xj^xj^g • V.

Note that Uk/ V is generated (as a subgroup in F/ V) by all elements of the form

[ v i , v 2 , 1 ) 3 ] < « I - » I - " J > - < « » - » . « » - « . » * - J > « . v ( v h U j , u e F ) .
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Since [vt ,v2,v3]- V is a product of elements of the form (33) and their inverses, the
group Uk/ V is generated by the elements of the form

(34) [xh,xh,xhy • V if el),

where / is the two-sided ideal in Z(A) generated by the elements

(«i , u2, M3) • • • (H 3 *_ 5 , M3t_4, M3t_3) (u, € A) .

Note that / = Tk~x (recall that T is the ideal in 1(A) generated by all elements
(MI , w2, «3), where M, e 1{A)). Indeed, obviously / c Tk~l. On the other hand, since

W ( M , , M 2 , M 3 ) = ( U i M 2 , M 3 , V) - ( « 2 M l , M 3 , V) + ( « , , U2, Uj)V

for all ui, v e A, each element

Ul(« l , M2, U3)V2 • • • Vk-i(u3k-.s, M3t_4, U3k.3)vk (M,-, VJ G A)

can be rewritten in the form

(M'P «'2, K'J) • • • (M'3J1_5, u'3k_4, u'3k^)v' («;, u' € A)

so 7*-1 c / .
Define a Z(A)-linear mapping a of M3 onto yi(F)/ V by

(ji,J2,J3)a = [xh,xh,xh]- V.

Clearly, (pa = cup for every $ e <I>. Let ̂  be the natural homomorphism of y3{F)/ V
onto y3(F)/Uk. Since £/*/ V is a Z(A)-submodule in y}(F)/V closed under all
mappings 0 e <I>, y3(F)/ Uk is a right Z(A)-module with mappings (p e 4> acting on
it in such a way that $<$> = <pfi.

Define [i = ap, /x : M3 —> y3(F)/f/t. Then /̂</> = (p/x for all 0 € <J>. Since
(U\,J2,J3)f)fi< if € / ) is of the form (34), A/3T*-1 c ker(^) so one can define a
2(A)-linear homomorphism/I of M3/M3T*~' onto y3(F)/ Uk by (w + M3T

k~l)JI =
mix for all m e M3. Clearly, 7I</> = 0/Z for all 0 e <t>. Note that if N is a normal
subgroup of FI Uk contained in y3(F)/ Uk then N is a Z(A)-submodule in y3(F)/ I/t

so N/I"1 is a Z(A)-submodule in M3/M3 T~l and if N is closed under all 0 e O then
so is NJL"1.

Now Proposition 2 follows immediately from Corollary 4. Indeed, if

N 1 C J V 2 C -
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is an infinite strictly ascending chain of normal <t>-subgroups of F/ Uk contained in

K(F)/Uk then

Wi/I"' C N2JI-1 c • • •

is an infinite strictly ascending chain of <l>-submodules in M-$/M-$Tk~l. This contra-

dicts Corollary 4 and completes the proof of Proposition 2.
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