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A UNIFIED APPROACH TO CONTINUOUS AND
CERTAIN NON-CONTINUOUS FUNCTIONS II

J.K. KOHLI

A unified theory of continuous and certain non-continuous functions, initiated in
an earlier paper, is further elaborated. The proposed theory provides a com-
mon platform for dealing simultaneously with continuous functions and a host
of non-continuous functions including lower (upper) semicontinuous functions, al-
most continuous functions, weakly continuous functions (encountered in functional
analysis), c-continuous functions, S-continuous functions, semiconnected functions,
iif-continuous functions s-continuous functions, e-continuous functions of Klee and
several other variants of continuity.

1. INTRODUCTION.

In [19] we developed a unified and coherent theory of continuous and certain non-
continuous functions and introduced the notions of P-continuous functions and semi-
P-functions (or P-proper maps) as unifying tools. It turns out that the theory of
P-continuous functions encompasses in one the theories of continuous functions, up-
per (lower) semicontinuous functions, c-continuous functions [12], almost continuous
functions [51], c*-continuous functions [46], s-continuous functions [20], .ff-continuous
functions [30], ^-continuous functions [23], Ti-continuous functions [1], £-continuous
functions ([17, 18]), and several other generalisations of continuity. In the same vein
the theory of P-proper maps (— semi P-functions) provides a unified framework for
dealing with continuous functions, ^-continuous functions [44], semiconnected functions
([16, 28]), ^-continuous functions [53], strongly c-continuous functions [10], strongly
^-continuous functions [11], R-m&ps ([4, 45]), and other similar variants of continuity.

Certain of the variants of continuity mentioned above arise in topological applica-
tions, while others have been studied because of their intrinsic interest and yet others
seem natural in connection with the mathematical modelling of certain physical prob-
lems (see for example [18]). The notions of P-continuous functions and P-proper maps
also arise naturally in many topologico-analytic situations, where there is an interplay
between two or more topologies on the same underlying set. For example, in locally
convex linear topological spaces the interrelations among strong topology, weak topol-
ogy, Mackey topology and other topologies lead to considerations which fall under the
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purview of P-continuous functions and P-proper maps. Similarly, on the space of oper-
ators on a Hilbert space, interaction among the norm topology, strong operator topology
and weak operator topology leads to analogous situations. In this paper we continue
our study in the style of [19] and elaborate further on the theory of P-continuous func-
tions and P-proper maps. Applications of P-continuous functions and P-proper maps
to functional analysis will be published elsewhere. The accompanying table shows the
variants of continuity we shall consider in this paper.

REMARK. In addition to those in the table, notions of (weakly) F-continuous functions
due to Wagner [61], 7-continuous functions introduced by Commaroto and Faro [6],
WC-continuous studied by Commarato and Noiri [7], and weakly continuous functions
studied in functional analysis also fit nicely into the present framework.

Section 2 is devoted to preliminaries and a brief review of the unified framework
is given in Section 3. Basic properties of P-continuous functions and P-proper maps
are studied in Section 4. In Section 5, we obtain several sufficient conditions for the
continuity of P-continuous functions. The concept of P-Hausdorff space is introduced in
Section 6. The notion of a P-Hausdorff space represents an abstraction of the concepts
of a Hausdorff space, functionally Hausdorff space, ultra Hausdorff space, (countably)
compact Hausdorff space and many other topological invariants.

2. BASIC DEFINITIONS AND PRELIMINARIES

Let X be a topological space. A subset A of X is said to be regularly closed if it
is the closure of its interior. A 6-closed set [60] is the intersection of any collection of
regularly closed sets and a ir-set [63] is the intersection of finitely many regularly closed
sets. A z-closed set is the intersection of any collection of zero sets. The complement
of a regularly closed set is called regularly open. A subset A of X is said to be strongly
regularly open [59] if A = int ker Cl A, where ker B denotes the intersection of all open
sets containing B. The complement of a strongly regular open set is called strongly
regular closed. A subset F of X is said to be a point closure [24] if it is the closure of
a singleton.

A subset A of a space X with topology r is called quasi H-closed relative to X
[47] if each T-open family which covers A has a finite subfamily whose union is T-dense
in A. A subset 5 of A" is said to be iV-closed [5] if for any open cover U of S there
is a finite subcollection V of U such that 5 C |J{int Cl V | V G V}.

A family T of closed sets in X is called a strongly closed Gs-family [3] if each
F 6 T is the countable intersection F = f){X — F{ \ Fi 6 F}\ the members of any
such family T are called strongly closed Gs-sets [3]. It turns out that strongly closed
Gs-sets are precisely the Z?-closed sets [13].
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3. A UNIFIED FRAMEWORK

Throughout the paper P will denote a topological property enjoyed by certain
subsets of a topological space. In the original formulation [19] property P is not
necessarily required to be a topological invariant. We adopt this restriction for similicity;
it essentially covers all the variants of continuity discussed in this paper except the e-
continuity of Klee [17]. The properties with which we shall be dealing in this paper
are quite diverse and include among others, the property of being a zero set, or a G(-
set, being a (regularly) closed set, being a point closure, being a connected set or a
compact set, being a strongly regular closed set et cetera; a complete list is given in the
accompanying table.

DEFINITION 3.1. ([19, 24]). Let X be a topological space and let A C X. We say
that

(i) A is a P-set if A possesses property P ;
(ii) A has P-complement if X — A possesses property P.

DEFINITION 3.2. A property P is said to be finitely additive (multiplicative) if the
finite union (intersection) of P-sets is a P-set.

DEFINITION 3.3. [19] Let / : X -» Y be a function from a topological space X into a
topological space Y. Then / is called

(1) P-continuoxis if for each x €E X and each open set V containing f(x)
and having P-complement there is an open set U containing x such that
W)CV;

(2) a P-proper map if for each closed P-set K C Y, f~^(K) is a closed P-set
in X.

As was remarked in the introduction, the notions of P-continuous functions and
P-proper maps represent a simultaneous abstraction of the concepts of continuous func-
tions and a host of other non-continuous functions. We refer the reader to the table
for the type of P-continuous function and P-proper map corresponding to a particular
property P . Referencs are quoted as an aid to the literature and an attempt has been
made to include the reference in which a concept or notion appears for the first time.
However, no claim is made to completeness or originality of the source.

REMARK 3.1. If Pi and P2 denote two properties such that P\ implies P2, then every
P2-continuous function is a Pi-continuous function while the reverse implication does
not hold in general. In contrast to this the classes of Pj-proper maps and P2-proper
maps may not be even comparable in general. For example, if P\ — regularly closed
(respectively, ^-closed) set and P2 = closed set, then a P-proper map = an /2-map
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[4] (respectively, ^-continuous function [44]) and a iVproper map = a continuous
function.

THEOREM 3 . 1 . [19] Let f: X —> Y be a function from a topological space X
into a topological space Y. The following statements are equivalent:

(a) / is P-continuous;

(b) if V is an open subset of Y having P-complement, then f~1{V) is an
open subset of X;

(c) for each closed P-set K C Y, /^{K) is closed in X.

4. PROPERTIES OF P-CONTINUOUS FUNCTIONS AND P-PROPER MAPS

In this section we continue to investigate the properties of P-continuous functions
and P-proper maps in the same spirit as in [19]. It will become clear in the sequel that
the results obtained in the process embody in themselves so much information that
besides improving and unifying known results, they often suggest new results.

THEOREM 4 . 1 . Let P denote a topological property such that a product space
has P if and only if each co-ordinate space has P. For each a £ A, let fa: Xa —> Ya

be a function such that Ya possesses property P. Let f: ]\Xa —> n Ya be defined by
f((xa)) = {fa{xa)) for each (xa) in \\ Xa. If f is a P-proper function, then each fa

is a P-proper function and each Xa has property P.

PROOF: For each a 6 A, let pa : Yl^a —* Xa and qa : Y[ Ya —* Ya be projections.
Then in view of the definition of / , it follows that qa o f = fa o pa, for each a G A.
Let K C Ya be any closed P-set. Now, since each Ya possesses property P and since

P is productive, qal(K) = I II /̂» I x K 1S a closed P-set in I]*a- Again, since /

is a P-proper function, f~1(jj~1(K)) is a closed P-set in f[Xa. But

= (qa o f)~\K) = (faoPa)-\K) = p-'{f

By the hypothesis on the property P , it is immediate that / ^ ( i iQ is a closed P-set in
Xa and so fa is a P-proper function. Since each Ya enjoys property, it follows that
each Xa also enjoys P . D

REMARK 4.1. If P denotes connectedness in the above theorem, then we obtain the
latter part of Theorem 2.2 of [21] pertaining to semiconnected functions. Similarly, the
substitution P = 5-dosed set in Theorem 4.1 yields a result of Mathur [37] pertaining
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to ^-continuous functions and with P = zero set it gives a corresponding version for
z-continuous function.

THEOREM 4 . 2 . Let P denote a property which is productive. For each a € A,
let fa: Xa —» Ya be a /unction suci that each point of Ya is contained in a closed
P-subset ofYa. Suppose f: Y\Xa -+ l\Ya, defined by f(xa) = {fa{xa)) tor each
(xa) in Y\a>

JS P-continuous. Then each fa is P-continuous.

PROOF: Let Fp be a closed P-subset of Yp and let (y£) be a point in the im-
age of / . By hypothesis on the spaces Ya, for each a, there is a closed P-subset
Ka of Ya containing y^. In view of the productivity of the property P , it fol-

lows that Fp x I Yl K<* I is a closed P-subset of J~J Ya. Since / is P-continuous,

We )
by Theorem 3.1, we infer that f~l I Fp X ( n K<* I I i s closed in ]\Xa. But

V W
and so f~\Fp) is closed in

Xp and thus fp is P-continuous. D

REMARK 4.2. Reading from the table, the above theorem contains several results in the
literature. For example, with P = conpactness it gives an assertion which generalises
Theorem 2.3 of Long and Herrington [33] pertaining to c-continuous functions and
with P = regularly closed it yields Theorem 1 of Long and Herrington [32] (this is also
the necessity part of Theorem 1 of Noiri [40]) concerning almost continuous functions.
Similarly, with P = quasi ff-closed it yields a version which generalises Theorem 4.3
of Noiri [42] pertaining to ^-continuous functions.

THEOREM 4 . 3 . Let f: X —> Il-^a be a P-continuous function into a product
space such that each Xa enjoys property P, and suppose that P is productive. Then
each pa° f is P-continuous.

PROOF: Let Fp be a closed P-subset of Xp. Then

and in view of the productivity of P it follows that, Fp x I Yl Xa I is a closed P-set

W Jin Yl Xa • Now, since / is P-continuous, the result is immediate in view of Theorem
3.1. D
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REMARK 4.3. The substitution P = connectedness in Theorem 4.3 gives [21, Theorem
2.3] pertaining to a-continuous functions and with P = regularly closed set it yields
Theorem 2.11 of Singal and Singal [51] concerning almost continuous functions (see
also Long and Herrington [32, Theorem 3]). Moreover, the substitution P = quasi
If-closed in Theorem 4.3 yields an assertion which shows that "IT-closed" in Theorem
4.7 of Noiri [42] can be weakened to "quasi JJ-closed".

THEOREM 4 . 4 . Let f: X —» Y be a P-continuous function such that for each
relatively closed P-set A C f(X), Cly A is a P-set. Then f: X -> f(X) is P-
continuous.

PROOF: Let K be a relatively closed P-subset of f(X). Then C\Y K is a closed
P-subset of Y. Since / is P-continuous, by Theorem 3.1, / - 1 (Cly K) is closed in X,

and the conclusion is immediate in view of the fact that f-1(K) — /~1(Cly K). D

REMARK 4.4. Since a compact set in a Hausdorff space is closed, the substitution
P = compactness in Theorem 4.1 yields an assertion which includes Theorems 2.13 and
2.14 of Long and Herrington [33] pertaining to c-continuous functions. Similarly, the
substitution P = countable compactness gives a version which includes Theorems 3.4
and 3.5 of Long and Herrington [33] concerning c*-continuous functions.

REMARK 4.5. The function f: X -> Y in [33, Example 2.12] is c*-continuous but
f:X—> f(X) is not even c-continuous. Thus the hypothesis on Y in Theorem 4.4
cannot be omitted.

THEOREM 4 . 5 . Let f : X — * Y be either an open or closed surjection, and let
g:Y—*Z be any function such that gof is P-continuous. Then g is P-continuous.

PROOF: Suppose / is open (respectively, closed), and let V C Z be an open
set having P-complement (respectively, V C Z be a closed P-set). Since g o / is
P-continuous, by Theorem 3.1 ( f f o / ) ^ ^ ) = f~1{s~1{V)) is an open set (respec-
tively, a closed set). Since / is an open surjection (respectively, a closed surjection),
f(f~1(g~1(V))) — </~1(Vr) is an open set (respectively, a closed set) and thus g is
P-continuous. Q

REMARK 4.6. The substitution P — connectedness in Theorem 4.6 yields [21, Theorem
2.5] on s-continuous functions and with P = regularly closed set we get an assertion
which is a significant improvement of Theorem 2.5 of Singal and Singal [51] pertaining
to almost continuous functions.

REMARK 4.7. The hypothesis of being either open or closed in Theorem 4.5 cannot be
omitted (see [21, Remark 2.2]).

THEOREM 4 . 6 . Let g: Y -> Z be a function which maps P-sets in Y to P-sets
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in Z. Let f:X—*Y be a function such that g o / is P-continuous. If g is an open
bijection (or a closed injection), then f is P-continuous.

PROOF: Case I. g is an open bijection. Let V be an open set in Y having P-
complement. Since g preserves P-sets and since g is an open bijection, g[Y — V) =
Z — g(V) and so g(V) is an open set in Z having P-complement. Again, since g o
/ is P-continuous, in view of Theorem 3.1 and the injectivity of g, it follows that
(gofVHgiV)) = f-^g'HgiV))) = f-^V) is an open set in X and hence / is P-
continuous.
Case II. g is a closed injection. Let F be a closed P-set in Y. Then g(F) is a closed
P-set in Z, since g preserves P-sets. Again, since g o / is P continuous, by Theorem
3.1 and injectivity of g if follows that (g o /) -1(5(F)) = f'1 (g^^F))) = f~l{F) is
a closed set in X and thus / is P-continuous. D

REMARK 4.8. The substitution P = connectedness in Theorem 4.6 yields an assertion
which includes Theorem 2.6 of [21] pertaining to s-continuous functions. Similarly,
with P = closed set it shows that if g is a closed injection and g o / is continuous, then
/ is continuous.

DEFINITION 4.1. [34]. A function / : X —» Y is said to have strongly closed graph in
the case that for each (x, y) £ G(f) there exist open sets U and V containing x and
y, respectively, such that U x V is disjoint from G(f).

THEOREM 4 . 7 . Let f: X -» Y be a. P-continuous function into a Hausdorff
space Y such that each point in Y has a neighbourhood whose closure is a P-set. If
P is a regularly closed hereditary property, then f has strongly closed graph.

PROOF: Let (x,y) £ G(f). Then /(x) £'y and so in view of the Hausdorffness of
Y there is an open set V containing y such that /(z) £ V. By the hypothesis on Y
there exists an open set W in Y containing y such that W is a P-set. Then V D W
is an open set containing y such that V D W C W. Since the closure of an open set is
regularly closed and since P is a regularly closed hereditary property, V n W is a P-set
which does not contain f(x). Therefore, Y - V D W is an open set containing f(x)
and having P-complement and so in view of the P-continuity of / , there is an open
set U in X containing x such that f{U) CY- VnW. Consequently, U x VTTW
contains no point of G(f), and hence G(f) is strongly closed. D

REMARK 4.9. Reading from the table, Theorem 4.7 contains several results in the liter-
ature. Since a regularly closed subset of a .ff-closed space is iT-closed, the substitution
P = quasi if-closed (respectively, P = countable compactness, respectively, P = regu-
larly closed compact set) in Theorem 4.7 yields an assertion which generalises Theorem
8 of Long and Hamlett [30] (respectively, [33, Theorem 3.2] of Long and Herrington,
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respectively [43, Theorem 3.4] of Noiri). Similarly, with P = regularly closed it shows
that an almost continuous function into a Hausdorff space has strongly closed graph, a
result due to Long and Herrington [32, Theorem 1] (also see Noiri [41, Theorem 1]).

THEOREM 4 . 8 . Let P denote a property enjoyed by every clopen set. Then
every P-continuous image of a connected space is connected.

PROOF: Let / : X —* Y be a P-continuous surjection from a connected space X
onto a space Y. Suppose Y is not connected and let Y = A U B be a partition of Y.
Then A and B are nonempty complementary clopen sets and hence P-subsets of Y.
In view of the P-continuity of / , it follows that f-1(A) and f~1(B) are open sets in
X. Again, since /^(A) and /^(B) are disjoint, X = f~l(A) U /^(B) constitutes
a partition of X. This contradiction to the fact that X is connected shows that Y is
connected. D

REMARK 4.10. Since every clopen set is regularly closed, with P = regularly closed
Theorem 4.8 yields Theorem 4 of Long and Carnahan [29] pertaining to almost contin-
uous functions. The substitution P = clopen set in Theorem 4.8 shows that a mildly
continuous image of a connected space is connected [54]. Similarly, with P = zero set
we obtain that the ^-continuous image of a connected space is connected [53].

5. CONTINUITY OF P-CONTINUOUS FUNCTIONS

In [19], we obtained several sufficient conditions on the domain and/or range imply-
ing continuity of P-continuous functions. In this section we offer a few more sufficient
conditions, in the spirit of [19], which in their turn yield sufficient conditions for con-
tinuity of a host of not necessarily continuous functions. The results obtained in the
process improve and unify scores of known results on various non-continuous functions,
and often suggest new results.

DEFINITION 5.1. [8]. A subset A of atopological space X is said to be sequentially
open if whenever a sequence in X converges to a point in A, it is eventually in A. A
topological space X is said to be sequential li every sequentially open set in X is open.

THEOREM 5 . 1 . Let f: X —* Y be a P-continuous /unction from a sequential
space X into a countabiy compact Hausdorff space Y such that Y possesses a base of
closed P-neighbourhoods. Then f is continuous.

PROOF: Suppose / is not continuous. Then there is an open set Y C Y such that
/ - 1 ( V) is not open in X and so in view of the fact that X is a sequential space, f~1(V)
is not sequentially open. Hence there is a sequence {xn} in X—f~x{V) which converges
to a point x € / - 1 ( V ) , and the sequence {f(xn)} does not converge to f(x). By the
countable compactness of Y, the sequence {/(in)} clusters at a point y G Y — V. By
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the Hausdorffness of Y there are disjoint open sets V\ and V2 containing f{x) and y,
respectively, and such that Vx C V. Also there is a closed P-neighbourhood W — W
of y such that W C V2. Thus W is a closed P-set such that /^(W) is not closed
because it does not contain its limit point x. This contradiction to Theorem 3.1 shows
that / is continuous. U

REMARK 5.1. Since a first countable space is sequential, Theorem 5.1 includes Theo-
rem 4.5 of [19]. Moreover, it contains several results in the literature. For example,
with P = compactness it yields Theorem 2.11 of [23] pertaining to c-continuous func-
tions and hence includes Theorem 12 of Long and Hendrix [31]. Similarly, with P =
connectedness it gives Theorem 3.1 of [22] pertaining to ^-continuous functions and
thus includes Theorem 2.1 of [21].

THEOREM 5 . 2 . Suppose P is a property which is closed hereditary and let f :
X —> Y be a P-continuous function such that f(X) is contained in a closed P-subset
of Y. Then f is continuous.

PROOF: Let F be a closed P-subset of Y containing f(X) and let V be any open
subset of Y. Since P is closed hereditary, V U (Y — F) is an open subset of Y having
P-complement. Since / is P-continuous by Theorem 3.1 f~1(V U (Y — F)) is open in
X and the proof is complete in view of the fact that / ^ ( V ) = f~l{V U (Y - F)).

REMARK 5.2. Using the table, Theorem 5.2 contains several known results in the lit-
erature. For example, with P = compactness it gives Theorem 5 of Gentry and Hoyle
[12] pertaining to c-continuous functions and with P = Lindelofness it yields Theo-
rem 2.9 of [23] corresponding to ^-continuous functions. Similarly, for P = countable
compactness it gives a sufficient condition for a c*-continuous function to be continuous.

THEOREM 5 . 3 . Let f:X—*Y be a P-continuous connected function from a
locally connected space X into a metric space (Y, d) in which every closed and bounded
set is a P-set. Then f is continuous.

PROOF: Let x € X and let Ne(f(x)) be a basic open set in Y containing f(x).
Let V = Y - N2c(f(x)). Then Ne(f(x)) U V is an open subset of Y containing /(as)
whose complement is a closed and bounded set in Y and hence a P-set. Since / is
P-continuous, there is an open set W containing x such that f(W) C Ne(f{x)) U V.
Since X is locally connected, we may assume that W is connected and consequently,
f(W) is connected, / being a connected function. Again, since Ne(f(x)) and V are
disjoint open sets, and since f(x) £ f(W) D Ne(f(x)), f(W) C Ne(f(x)), and so / is
continuous. Q

REMARK 5.3. According to the table, the above theorem includes several results in
the literature. For example, with P = compactness it yields Theorem 8 of Gentry and
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Hoyle [12] concerning c-continuous functions and for P = the Lindelof property it gives
Theorem 2.10 of [23] pertaining to ^-continuous functions.

THEOREM 5 . 4 . Suppose P is closed hereditary and let f: X -> Y be a P-
continuous function from a space X into a metric space Y such that every closed and
bounded subset of Y is a P-set. If f is locally bounded, then f is continuous.

PROOF: Let x be any point in X. Since / is locally bounded, there is an open
set U containing x such that f(U) is bounded and so f(U) is contained in a closed
and bounded set K C Y, which in view of the hypothesis on Y is a P-set. Again,
since / is P-continuous, by [19, Theorem 3.6] / | U: U —* Y is P-continuous. Thus,
the restriction / | U: V —> Y satisfies the hypotheses of Theorem 5.2 and hence it is
continuous. Consequently, / is continuous on X. u

REMARK 5.4. The substitution P = compactness in the above theorem yields Theorem
2.4 of Long and Herrington [33] pertaining to c-continuous functions.

6. P-HAUSDORFF SPACES

In this section we introduce the notion of a P-Hausdorff space which represents
a simultaneous abstraction of the concepts of a Hausdorff space, functionally Haus-
dorff space, ultra Hausdorff space [48], (countably) compact Hausdorff space, Lindelof
Hausdorff space and many other topological invariants.

DEFINITION 6.1. ([19, 24]). A topological space X is called a semilocally P-space if
for each x £ X and each open set U containing x there is an open set V such that
x £ V C U and X — V is the union of finitely many closed P-sets.

DEFINITION 6.2. A topological space X is said to be P-Hausdorff if any two distinct
points are contained in disjoint open sets having P-complements.

Clearly, every P-Hausdorff space is Hausdorff and the converse is not true in gen-
eral. The table illustrates the type of semilocally P-space and P-Hausdorff space
determined by a property P and also reflects upon the relationship between the two
notions.

PROPOSITION 6 . 1 . HP denotes a finitely additive property, then every Haus-
dorff semilocally P-space is P-Hausdorff.

PROOF: Let X be a Hausdorff semilocally P-space and let x, y be any pair of
distinct points in X. Then there exist disjoint open sets U and V containing x and
y, respectively. Since X is also a semilocally P-space, there are disjoint open sets U\
and Vi such that

x £ Ui C U and y 6 Vi C V
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and both X — U\ and X — V\ are finite unions of closed P-sets. Since P is finitely
additive, X - Ut and X - V1 are P-sets and so X is P-Hausdorff. D

THEOREM 6 . 2 . If f,g: X —>Y are P-continuous functions into a P-Hausdorff

space Y, then the equaliser E = {x e X \ f(x) — g(x)} of f and g is a closed subset

of X. In particular, a P-continuous retract of a P-Hausdorff space is closed.

PROOF: We shall show that X - E is open. To this end, let x £ X - E. Then
f(x) ^ g(x) and so by the hypothesis on Y, there exist disjoint open sets U and V
containing f(x) and g(x), respectively, such that Y — U and Y — V are P-sets. Since
/ and g are P-continuous, in view of Theorem 3.1 it follows that f~1(U) and g~1(V)
are open sets in X containing x. Let G = f~1(U) C\g~1(V). Then G is an open set
containing x and disjoint from E and so E is closed in X.

The last part of the theorem now follows by taking / to be the identity mapping
on X and g to be the retraction mapping. D

COROLLARY 6 . 3 . Tie set of fixed points of a P-continuous function into a P-

Hausdorff space is closed.

COROLLARY 6 . 4 . If two P-continuous functions into a P-Hausdorff space co-
incide on a dense subset of the domain, then they are identical.

REMARK 6.1. According to the table, Theorem 6.2 contains several results in the lit-
erature. For example, with P = regularly closed it shows that the equaliser of two
almost continuous functions into a Hausdorff space is closed, a result due to Long and
Herrington [32, Theorem 4] (also Noiri [39, Theorem 7]) and hence an almost con-
tinuous retract of a Hausdorff space is closed (Long and Carnahan [29, Theorem 3]).
Similarly, with P = zero set it yields that the equaliser of two 2-continuous functions
into a functionally Hausdorff space is closed and hence every z-continuous retract of a
functionally Hausdorff space is closed.

THEOREM 6 . 5 . Let f: X —> Y be a P-continuous function from a space X

into a P-Hausdorff space Y. Then the set {(zi, Z2) | f(xi) = f{x2)} i S closed in the

product space X x X.

PROOF: Let A = {(zi, x2) | /(a:i) = f{x2)}- To show that A is closed, let
[x, z) £ A. Then f(x) ^ f(z). Since Y is P-Hausdorff, there are disjoint open
sets U and V containing f(x) and f(z), respectively and having P-complements. In
view of the P-continuity of / , it follows that f~1(U) and f~1(V) are open sets in X
containing x and z, respectively, and so f~1(U) X f-1(V) is an open set containing
(x, z) disjoint from A. Hence A is closed in X x X. D

REMARK 6.2. If P denotes regularly closed set, then the above theorem yields Theorem
8 of Noiri [39] pertaining to almost continuous functions.
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S.No. Property P Type of P-continuous
function

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

closed

regularly closed

^-closed

7r-set

finite set

countable

cardinality < m

compactness

countable compactness

quasi ZZ-closed

Lindelof property

iV-dosed

clop en set

connected set

continuous

almost continuous [51]

almost continuous

almost continuous

inverses of finite
closed
sets are closed

inverses of countable
closed sets are closed

inverses of closed
sets of cardinality
< m are closed

c-continuous [12]

c*-continuous [46]

J7-continuous [30]

^-continuous [23]

TV-continuous [36]

mildly continuous [54]

j-continuous [20]

https://doi.org/10.1017/S0004972700017858 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017858


[13] Continuous and non-continuous functions 69

Type of P-proper
map

Type of semilocally
P-space

Type of P-Hausdorff
space

continuous

J?-map ([4, 45])

^-continuous [44]

7r-map

inverses of finite
closed
sets are finite and
closed
inverses of countable
closed
sets are countable and
closed

inverses of closed
sets of cardinality
< m are closed sets
of cardinality < m

strongly c-continuous
[10]

strongly c*-continuous

strongly ^-continuous

strongly ^-continuous

[11]
strong iV-continuous
[38]

strongly mild conti-
nuous
semiconnected [16]

topological

semiregular [57]

semiregular

semiregular

contained in the
cofinite topology

contained in the
cocountable topology

the space has a base
of open sets having
complements of car-
of cardinality < m

compact

countably compact

strongly quasi fl"-closed

Lindelof space

strongly nearly compact

zero dimensional

semilocally connected
[62]

topological

Hausdorff

Hausdorff

Hausdorff

finite Hausdorff
space

countable Hausdorff
space

Hausdorff space of
cardinality < m

compact Hausdorff

countably compact
Hausdorff

27-closed space

Lindelof Hausdorff

nearly compact
Hausdorff [54]

ultra Hausdorff [48]

any two distinct
points are contained
in disjoint open sets
having connected
complement
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S.No. Property P Type of P-continuous
function

15.

16.

17+.

18+.

19*.

20.

21.

22.

23.

24.

25.

26.

having finitely many
components

(a) zero set
(b) z-closed set

being a ray of the
type {x: x < a}

being a ray of the
type {z : x > a}

having increasing
complement

paracompactness

regularly closed
and compact

quasi if-closed
regularly closed
set

being the boundary
of an open set

Gs-set

strongly closed

point closure

s-continuous

z-continuous [53]

lower semicontinuous

upper semicontinuous

Tj-continuous [1]

para-continuous [35]

almost c-continuous
[58]

almost ^-continuous [9]

weak* continuous [27][50

£>-continuous [25]

weakly D-continuous [26]

inverse images of point
closures are closed

27++.

28.

hard set

strongly
closed

[49]

regularly

/i-continuous [26]

rather weak almost
continuous [59]

+ Here the underlying space is either the real line with the usual topology
* Here the underlying space is a partially ordered topological space.

++ Here the space is assumed to be a Tychonoff space.
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Type of P-proper
map

Type of semilocally
P-space

Type of P-Hausdorff
space

nearly semiconnected semilocally connected

z-continuous completely regular

any two distinct points
are contained in disjoint
open sets having
finitely many components
functionally Hausdorff

right order topology
[56]

left order topology [56]

the space has a base of
increasing open sets [1]

paracompact

semiregular compact

paracompact Hausdorff

compact Hausdorff

semiregular quasi
.ff-closed

minimal Hausdorff

strongly D- continuous

weakly £>-continuous

inverse images of
point closures are
point closures

fc-proper map [26]

D-regular [14]

.D-complelely regular

[2]
the space has a base of
open sets which are
complements of closures
of finite sets

realcompact space [15]

strongly semiregular
space [59]

D-Hausdorff [25]

strongly D-Hausdorff
[26]

at most a two point
discrete space

realcompact space

Hausdorff

or a unearly order space endowed with the order topology.
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