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MAPPINGS RELATED TO CONTRACTIONS 

BY 

MO TAK KIANG 

Summary. Some results generalizing a fixed point theorem due to R. Kannan 
are presented. 

0. Let !F be a family of self-mappings of a metric space (X, d). In [1], [2], 
Kannan considered the following conditions: 

A mapping/: X-+X is said to satisfy condition (a) if there exists P with 0</?<l/2 
such that d[f(x),f(y)]<!^{dlx,f(x)]+dlyj(y)]} for every x,yeX. 

Two mappings/, g:X-> X are said to satisfy condition (b) if there exists ft with 
0<£<l/2, such that d[f(x)9g(y)]<p{d[x9f(x)]+d[y9g(y)]} for every x,yeX. 

We first obtain the conclusion of [2] under considerably weaker hypotheses. 
Also considered are variants of the above condition. 

1. For a mapping/:X-*X, points x9y eXand ft, ft e ÏR. Let 

m(x, y; ft, ft) = ft d[x,/(x)]+& d[y,f(y)] 
and 

M(x, y; ft, ft) = max{m(x, y; ft, ft), m(x, j ; ft, ft)}. 

The following conditions on the mapping/will be considered: 
{A9 < , ;<): there exist ft>0 and ft>0 with ft+ft<l such that for every 

x, y e X, d[f(x)9f(y)]<M(x9y; ft, ft); 
(A9 <̂> <)• there exist ft>0, and ft>0, with ft+ft^l such that for every 

x, yeX9 and X7ÉJ, d[f(x),f(y)]<M(x,y;Pl9pJ; 
{A, <;, <) : there exist ft>0 and ft^O, with ft+ft<Çl such that for every 

x, y E X, d[f(x)9f(y)]<M(x9y; ft, ft). 
For two mappings,/, g\X-> X9 points x,y eX and ft, ft G R. Let 

m(x, )>;/, g; ft, ft) = ft d[x,/(x)]+ft d[y, g(>)] 
and 

M(x, y;f, g; ft, ft) = max{m(x, y;/, g; ft, ft), m(x, j>;/, g; ft, ft)}. 

The following conditions on the mappings /and g will be considered: 

(B, <> <D: there exist ft>0, and ft>0 with ft+ft<l such that for every x9 

yeX9 d[f(x)9 g(y)]<M(x9y;f9 g; ft, ft); 
{B9 < , <) : there exist ft>0 and ft>0, with ft+ft^l such that for every x9 

y G X and x ^ , 4 / 0 ) , g(y)]<M(x9y;f9 g; ft, ft); 
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C#> <> < ) : there exist /?i>0 and /?2>0> with /?i+/?2<l such that for every x, 
yeX, dlf(x), g(y)]<M(x, y;f, g; pl9 &). 

Clearly conditions (a) and (b) of Kannan are stronger than conditions (A, < , < ) 
and (B, < , < ) respectively. 

EXAMPLE 1. Let Z = [0,1] with the usual metric. Suppose/: X -> X is defined by : 
/ ( x ) = * / 3 where x G [0,1) a n d / ( l ) = 0 . 

It is easily checked that/fails condition (a) if #=1/3 , j = 0 and satisfies condition 
(A, <9 < ) when /?i=5/9 and /?a=l/3. 

It is also clear that/fails to be a contraction. 

EXAMPLE 2. Let X=[0, 1] with the usual metric. Let /(x)=x/3 where x e[0,1) 
a n d / ( l ) = 0 , while g(x)=x/4, where x G [0, 1) and g( l )=0. Clearly/, g fail con
dition (b) when x = l / 3 and j = 0 . However , / g satisfy condition (i?, < , <;) if 
jffi=5/8 and ^ = 1 / 4 . 

EXAMPLE 3. While Example 1 shows that a mapping satisfying condition 
(A, <> < ) may fail to be a contraction, this example establishes the independence 
of the two notions. Let Z = [0,1] with the usual metric. Suppose/: X -> X is defined 
by/(*)=9*/10 for x e [0, 1]. Clearly/is a contraction. However,/fails condition 
0*, < , < ) if x=l and j = 0 . 

EXAMPLE 4. Let X= [0,1] with the usual metric. Let^ r={fn;n=3, 4 , . . . } where 
each/ , is defined byfn(x)=x/n where x G [0, 1) and / n ( l )=0 . 

It can be easily checked that: 

(1) / 3 satisfies condition (A, < , < ) when /?i=5/9 and /?2= 1/3, (2) for n>4, each 
/ w satisfies condition (A, < , <Q when/?x=3/8 and/?2= 1/2, (3) condition (J5, < , < ) 
is satisfied by every distinct pair of mappings in IF when /31=5/8 and /?2=l/4. 

LEMMA 1. Let f be a mapping of(X, d) into itself. 

(i) If/satisfies (A, < , ;<), then there is an r G R , with 0 < > < 1 , such that 

d[fn+1(x),fn(x)] < r d[fn{x)Jn-\x)] for all xeX, 
and . . 

w > 1. 

(ii) If/satisfies (̂ 4, <[, < ) , then there is an r G R , with 0 < r < l , such that 

d[fn+\x),fn(x)] < r d[f\x)Jn'\x)] for all xeX, 
with n*)*r-\x\ 
where n>\. 

(hi) If/satisfies {A, <!, <[), then there is an r e R , with 0 < > < 1 such that 

d[fn+\x)Jn(x)] < r d[fn{x\r-\x)} for all xeX9 

and 
n> 1. 
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Proof, (i) Since / satisfies (A, < , <;), there exist ^ and /?2 (/?i>0, z= l , 2 ) 
with P±+pz<l such that J [ / ( x ) , / ( j ) ] < M ( x , j ; &, &). Let r=max{ i81/(l- iS2), 
&/ ( ! -&)}• Then r < l , and d[fn+1(x), fn(x)]<r dlfMJ^Qc)]. The conclusion 
of (ii) and (iii) can be obtained similarly. 

PROPOSITION 1. Let f be a mapping on (X, d) into itself which satisfies (A, < , < ) . 
Suppose for some p e l , the sequence {fn(p):n=l, 2 , . . . } contains a convergent 
subsequence, then f has a unique fixed point. 

Proof. By Lemma 1, the sequence {fn(p):n=l9 2 , . . . } is Cauchy. Hence 
u=^limn^o0f

n(p) exists. Let /?=max{/?l5 (32}; where /?1? /32 are as guaranteed by 
04, < , < ) . Then rf|/(ii)Jn(^)]^/î{^J(«)]+^l/,|-1(p),/w(^)]}. As w - o o , 
d[f(u), u] </? d[w,/(w)]. Since /?< 1, d[f(u), u] = 0 showing that w is a fixed point of 
/ . Suppose w G X satisfies f(w)=w. Since d(w, u)=d[f(w)9f(u)]<P{dlw9f(w)] + 
d[u9f(u)]}=09 we have w=u9 showing the uniqueness of u. 

COROLLARY. Let f be a mapping of (X9 d) into itself which satisfies condition 
(A9 < , < ) . IfXis complete, or if for some p e X9 the sequence {fn(p):n—l, 2, . . .} 
contains a convergent subsequence 9 then f has a unique fixed point. 

Proof. This follows immediately from Lemma 1 and Proposition 1. 

REMARK. It is immediate that Theorem 1 [2] follows from the above Corollary. 
It is also noted tha t / i s not assumed to be continuous at/? in our result. 

PROPOSITION 2 (cf. Theorem 1 of [1]). Let (X9 d) be a complete metric space and 
SF an arbitrary nonempty family of mappings of X into itself. Suppose (B, < , < ) is 
satisfied by every f g e SF. Then JF has a unique common fixed point. 

Proof. It is clear that by the Corollary to Proposition 1, e a c h / e J^ has a 
unique fixed point in X. Let / , j G « f w i th / ^g . Suppose u and z are the unique 
fixed points of/and g respectively. By condition^, < 5 <C)9d(u9 z)=d]f(u),g(z)]<! 

0, Hence u—z and J^ has a unique common fixed point. 

COROLLARY. Let (X9 d) be a metric space and &> an arbitrary nonempty family of 
mappings of X into itself. Suppose (i) condition (B, < , < ) is satisfied by every f9 

g G J^ and (ii) for every fe SF', there exists p e X such that {fn(p)\ n=l, 2 , . . .} has 
a convergent subsequence. Then ^ has a unique common fixed point. 

Proof. Use the Corollary to Proposition 1, and the proof of Proposition 2. 

LEMMA 2. Let f be a continuous mapping of(X, d) into itself satisfying (A, <, < ) . 
Suppose there exists z G Xs. Then fis an isometry on each pair fn(z),fn~1(z), where 
w=1, 2 , . . . . (Xf is the set of points x e X such that there exists p G X and a sequence 
of integers mi with limi^O0f

mi(p)=x). 
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Proof. For every point xeX, and any n=\, 2,..., by Lemma 1, d[fn(x), 
fn+1(x)]<,d[fn(x),fn-\x)]. Hence, for any m>n+2, dlf^^x),/^)]^ 
d[fn+1(x),fn(x)]. Since zeXf there exists/? e X and a sequence of integers m* such 
that lim^OT/™(/>)=lim^M/m3.-(/>)=z. Hence, 

d[fn+m3t-l(p)Jn+m3i(p)] < d[fn+mi+l(p)jn+mi(p)l 

As / - M O , d[f^1(z)J\z)]£dlf*+1(z),fn(z)], and we have 4 f + 1 ( z ) , / " ( z ) ] = 
d[f n-Kz),f\z)]for n=l, 2,.... 

PROPOSITION 3. Let f be a continuous mapping of (X, d) into itself satisfying 
(A> <> <)• Suppose for every xeX with x^f{x)9 there exists an integer K, K>\, 
such that d[f^(x),f^1(x)]<d[f^~1(x),f^(x)] whenever d[f^~1(x),f^(x)]>09 

and there exists z e Xf. Then z is a unique fixed point off 

Proof. By the previous lemma and the hypotheses, f(z)=z. The uniqueness of Z 
follows by a similar argument as in the proof of Proposition 1. 

The following corollaries are immediate consequences of Lemma 1 and Prop
osition 3. 

COROLLARY 1. Let f be a continuous mapping of (X, d) into itself satisfying 
(A, < , < ) . Suppose there exists u e Xf. Then u is a unique fixed point off 

COROLLARY 2. Let ^ be an arbitrary nonempty family of continuous mappings of 
(X, d) into itself such that (B, < , < ) is satisfied by every two members f g^ZF. 
Suppose each fG^ satisfies condition (A, <., < ) . If for each fe^ there exists 
z e Xf, then z is a unique common fixed point of£F. 

2. Condition (a) is generalized in another direction by Reich [3] to obtain the 
following condition on a mapping/from (X, d) into itself: (R): d[f(x),f(y)]< 
Pi d[x,f(x)]+p2 d[y,f(y)]+pz d(x,y), where & > 0 , f = l , 2, 3 and & + & + & < ! -
However, by interchanging the role of x and y, condition (R) actually reduces to 
condition ( i T ) : d [ / ( x ) , / ( ^ ^ 

As a result, when /?3=0, condition (R) reduces to condition (a) of Kannan, but 
not to condition (A, < , < ) . 

Using the idea of involving the term d(x, j ) , conditions (A, < , < ) (A, < , < ) , 
and (A, <Ç, <i) can be further generalized as follows: 
(A*9 < , :<): there exist 0l9 P2 and /?3(A>0, * = 1, 2, 3) with P±+p2+Pz<l such 
that for every x,yeX, d[f(x),f(y)]£M(x,y; pl9 p2)+p3 d(x9 y); 
(-4*, ^ , < ) : there exist 0l9 p2 and pz(fit>09 i = l , 2, 3) with A + ^ + ^ l , such 
that for every x,yeX9 (x^y), d[f(x),f(y)]<M(x, y; pl9 p2)+pz d(x,y); 
(A*9 <,, <>): there exist pu p2 and pz (&>0, / = 1 , 2, 3) with A + ^ + A ^ l , such 
that for every x,yeX, d[f(x),f(y)]<iM(x, y; 0l9 p2)+pz d(x9y). 

Previous results involving conditions (A, < , < ) , (A, < , < ) and (A, < , < ) 
remain valid when these conditions are replaced by (A*, < , <!), (A*, < , < ) and 
04* ? :<> <D respectively. These follow readily after observing that the assertions 
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of Lemma 1 remain valid when the conditions^, < , <i),(A, <C, <)a.nd(A9 <Ç, ;<) 
are replaced by (A*9 < , <,), (A*9 < , < ) and (A*, <Ç, <;) respectively. 

3. In this section we introduce conditions related to those discussed previously. 
As before, let /be a mapping of (X, d) into itself. For every x, j e X, ft, ft e IR, let 

Kx, y; ft, ft) = |8i{d[x, / (x)]+d[*^^ 

We consider the following condition: 
(GL) : there exist ft and ft (ft > 0 , / = 1 , 2), with ft+ft < 1 and for every x j e l , 
there exists a nonnegative integer JV such that for n>N, 

d[fn+1(x),fn+\y)]+d[r+\x),r+2(y)] < k(fn(x),ny); ft, ft). 

PROPOSITION 4. Let f map (X, d) into itself and satisfy condition (GL). Suppose 
X is either complete, or for some xeX, the sequence {fn(x)\ n=l, 2,. . .} contains 
a convergent subsequence. If fis continuous, then f has a unique fixed point. 

Proof. This result is immediate since it can be easily shown that for every xeX, 
the sequence {fn(x):n=l, 2 , . . .} is Cauchy. 

4. Let J^ be a commutative semigroup of self-mappings on (X, d). For every 
x, y e X,f9 g e X9 and ft, ft e R ; let 

k(x,y;f,g,n;Pl9pJ 

= ft{4/wgWJw+1gW]+fl/ng(y),f+1g(j)]} 

The following condition on SF is introduced: 
(SX*) there exist ft, ft ( f t>0, i = l , 2) and A>0, with ft+ft<A; and for every 

x, y e X, there exists ge^ such that for a l l / e ^*, w = 0 , 1 , . . . , 

^ [ / n + 2 g ( * Jn+2g(y)]+d[fn+1g(x),r+1g(y)]} < k(x, y;f, g, n; ft, ft) 

PROPOSITION 5. Let (X, d)be a complete metric space and £F a commutative semi
group of continuous mappings of X into itself satisfying (*S£*). Suppose eachfe^ 
satisfies (A, < , < ) , then IF has a unique common fixed point. 

Proof. Let ft and ft be as in condition (££*). For every x e X9 if h e 3F is such 
that h(x)j£x then there e x i s t s ^ e ^ such that 

d[hn+1g(x), hn+*g(x)]+d[hn+2g(x), hn+3g(x)] 

< (Na~PMd[hng(x)9 h^g(x)]+d[hn+1g(x)9 h"**g(x)]} 

Since ft/(l—ft)<l the sequence {hng(x)} is Cauchy, and the conclusion of the 
proposition is immediate. 
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