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TANGENT LOCI AND CERTAIN LINEAR
SECTIONS OF ADJOINT VARIETIES

HAJIME KAJI anpD OSAMI YASUKURA

Abstract. An adjoint variety X (g) associated to a complex simple Lie algebra
g is by definition a projective variety in P.(g) obtained as the projectivization
of the (unique) non-zero, minimal nilpotent orbit in g. We first describe the
tangent loci of X (g) in terms of sla-triples. Secondly for a graded decomposition
of contact type g = @ _,, ., 8:, we show that the intersection of X(g) and
the linear subspace P.(g1) in P.(g) coincides with the cubic Veronese variety
associated to g.

Introduction

The purpose of this article is to study tangent loci and certain linear
sections of adjoint varieties.

Let g be a complex simple Lie algebra, G the inner automorphism of g,
A the highest root of g with respect to some Cartan subalgebra and to some
basis of the roots, and Xy, the root vectors such that (X, H, X_)) forms
an slp-triple for some H € g. Consider the adjoint orbit G- X C g, which is
the (unique) non-zero, minimal nilpotent orbit. We call its projectivization
(G - X)) C P.(g) the adjoint variety associated to g, and set

X(g) =7(G - X)),

where 7 : g\ {0} — P.(g) is the canonical projection with P.(g) := (g \
{0})/C* (see, for example, [KOY]).

For a smooth projective variety X C PV, the tangent locus ©, with
respect to a point z € PV is defined by

0, ={re X |T,X >z},

where T, X denotes the embedded tangent space to X at x, that is, the
unique linear subspace L of PV such that the (abstract) tangent spaces
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to X and to L at z coincide in that of PV as vector subspaces (see, for
example, [FR]).
The first result here describes tangent loci of adjoint varieties as follows:

THEOREM A. For z,y € X(g) in general position, we have

®[x,y} = {.’L’, y}:

1

where we set [x,y] = w([7~ xﬂfly])-

Let Sec X (g) be the secant variety of X(g) C P.(g), that is, the closure
of the union of all projective lines which contain two or more points of X (g).
According to [KOY, Proposition 5.3], the adjoint orbit G - 7H is dense in
Sec X (g). Therefore from Theorem A it turns out that for z € Sec X(g) in
general position, ©, consists of exactly two points and if ©, = {x,y}, then
there exists an sly-triple (X, K,Y) such that X =z, 7Y =y and 7K = 2.
Note that Sec X (g) coincides with the tangential variety, that is, the union
of all embedded tangent spaces of X(g) (see [KOY, §5]).

Next, we set

g, ={Yeg|(adH)Y =iV},
M:={Y cg,|Y #0,(adY)?g_5 = 0}.

We obtain a linear subspace P,(g1) of P.(g). The second result is

THEOREM B. We have

X(g) NPu(g1) = 7M.

The projective varieties TM C P,(g1) appeared above are known as the
cubic Veronese varieties, while M are known as Freudenthal’s varieties of
planes (see, for example, [F], [M]).

§1. Preliminaries

LemMA 1. (cf. [KOY, §3]) We have

G- X,={Yeg|Y#0, (adY)’gCC-Y}.
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Proof. For the inclusion C, it suffices to show that (ad X )%g C C- X,
and this is clear since X is a highest root vector.

For the converse, let Y € g be a non-zero element such that (ad Y)?g C
C - Y. Since Y is nilpotent with (adY)? = 0, according to a theorem of
Jacobson-Morozov (see, for example, [CM, §3.3]), there exist K, Z € g such
that (Y, K, Z) forms an sly-triple with semi-simple element K. Set g} :=
{Xeg|(adK)X =iX}. Then g = @, g;, and g, = 0 if |i] > 2 (see, for
example, [CM, §§3.4-3.5]). Moreover, it follows from (adY)?g C C-Y that

gp=C-Y.

Indeed, we have (adY)? o (ad Z)Q]g/2 = 4idy , whose image is contained in

C - Y. This implies that Y is a highest root vector with respect to some
Cartan subalgebra §’ containing K and to the lexicographic order on the
roots defined by a basis of §’ of the form, Hy := K, Hs, ..., H; withrkg = [.
Thus, we have Y € G - X. 0

LEMMA 2. We have
G-X,Ng C M.
Proof. f Y € G- X N g, then it follows from Lemma 1 that
(adY)?X_,€C-YNgoCg Ngo = {0}
Therefore (ad Y)2X_, = 0, that is, Y € M. 0
Following [A1], [A2], we introduce a skew-symmetric form
(, ):gxg —C
and a symmetric bi-linear product
X g1 X g1 — do;
which are respectively defined by

2<P, Q>X)\ = [Pv Q],
—2P x Q := [P]Q, X_,\]] + [Q[P, X_.]],

for P,Q, R € g1. Note that using this notation we have

M={Pcg |P#0,PxP=0}
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PROPOSITION 1. (a) For P,Q € g1, we have
PxQ=0,PecM=— (P,Q)=0.
(b) For P € g1, Z € g, set Z% := [P, Z] € g1. Then we have
PeM = PxZ% =0,
hence (P, Z%) = 0.

Proof. (a) Since P € M, using the Jacobi identity we have

(P[P, X-,]Q)] = —[Q[P[P, X_,\]]] - [P, X-\][Q, P]]
—[Q, 0] + 2(P, Q)[[P, X -] X)]
= 2(P,Q)P.

On the other hand, we have

(PP, X—A]QH —[PlQ; PIX ]| = [P[[X -, QI P]]
—2(Q, P)[P, H] = [P, (=2P x Q — [Q[P, X_,]])]
—2(P, Q)P +2[P, P x Q] + [P[Q[P, X_,]]],
so that [P[[P,X_,]Q]] = —(P,Q)P since P x Q = 0. Therefore it follows

3(P,Q)P = 0, hence (P,Q) = 0 whether P = 0 or not.
(b) Using the Jacobi identity and the assumption P € M, since
[Z,X_\] € g_2, we have

[PIZ%, X 5] = [P[P, Z]X Al
1,

= —[Pl[Z, X\]P]] - [P[[X -, P]Z]]
=[P [[X P21
[Z#1P, X_5]) = [P, 2), [P, X_)]]
= —[[Z[P, X\]P] — ([P, XA} P)Z]
= —[lZ[P, X,]]P).
Thus we obtain P x Z# = —L{[P[Z# X_,]| + [Z#|P, X_,]]} = 0. i

Next we consider a subalgebra of gg as follows:

@0 = {Z € go | (ad Z)g,g = O}
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LEMMA 3. [go,90] C Do.

Proof. Since [go, H] = 0, we have [go,g90] = [P0 P C-H,DydC- H| =
(D0, Do] € Do. O

PROPOSITION 2. (a) g1 X g1 € Dy.
(b) ForY € g_1, P € g1, we have

[Y,P]=-Y" xP— (YT P)H,
where we set Y+ := [X),Y].

Proof. (a) It follows from the Jacobi identity that for Py, P» € g1 we
have

(B[ Py, X HXA] =[P, X AIXA i) = [[ X, B, [Py, X ]]
=[P, Bi] = [0, [P, X 5]

[sz ]]’
where [X), P;] € g3 = 0. Therefore we have
—2[P1 x Py, X)\| = [([PL[P2, Xp]]+[R2[P1, X)]]), Xi] = [P, P]+ [P, P1] =0,

so that P, x Py € ®y.
(b) Dividing into two, applying the Jacobi identity to the latter term
below, we have

¥, P) = [[X_, ¥ P
= SIXC0 YHIP] 4 X, VP
= X5 YFIP)+ S (— [V, PIX ]~ ([P X 3] ))
= %([[X_,\,YJF]P] + [[X_x, PIYT]) = (YF, P)[X), X_)]

=-Y"xP— (YT P)H.

https://doi.org/10.1017/50027763000007297 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007297

68 H. KAJI AND O. YASUKURA

§2. Tangent loci
Proof of Theorem A. We first show that
(’“)ﬂ—H = {7TX)\,7TX,)\}.

Since TrpX(g) = Pi([g, P]) for P € G - X, (see [KOY, Lemma 2.1]), in
terms of Lie algebra, this is equivalent to showing that

{PEG'X)\’[g,P]BH}:CX'X)\UCX~X,)\.

Since the inclusion 2 is trivial, it suffices to show that for g € Gand Y € g
we have
H=[Y,gX)] = gXy€gUg 2.
Here we have
9gXx € i

for some 7 with —2 < ¢ < 2: Indeed, it follows from Lemma 1 that
[H, gX)] = [[Y,gX)\]gX)] = (ad gX1)?Y € C - gX),

so that g.X, is an eigenvector of ad H.

If we write Y = 23272 Y; with Y; € g;, then we have

2

H=1Y,gX)\] = Z Y}, g X))

Since H € go and [Y}, X)) € gi+j, by taking the component of degree 0 we
obtain
H = [Y—iagX)\]'

Thus taking YV :=Y_;, we may assume Y € g_;.
Now we first claim that ¢ £ 0. Suppose ¢ = 0: it follows from Lemma 3
that
H =1[Y,9X,] € [90,80] € Do,

that is, H € Dg. This contradicts to [H, X,] = 2X, # 0. Thus we have
i #0.

Next we claim that ¢ # +1. Suppose i = 1: we have Y € g_1, ¢ X € g1,
and it follows from Proposition 2 (b) that

H=[Y,gX)] = -Y" xgX\— (Y, gX))H.
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Taking account of the decomposition go = ©¢@C- H and Proposition 2 (a),
comparing both sides above, we obtain two equalities,

YT xgXy=0 and (YT1,¢X))=—1.

Now it follows from Lemma 2 that gX, € M. Therefore, by Proposi-
tion 1 (a) we obtain from the former equality that (Y*,¢gX,) = 0. But
this contradicts to the latter equality. Thus, ¢ # 1. Similarly we obtain
i#£ —1.
Therefore i = 2 or ¢ = —2, and this completes the proof of our claim.
Now the statement for general case follows from the claim above. In-
deed, there exists g € G such that

([xay]vx’y) =g- (h)er?x*)v

since the orbit G - (x4, z_) is dense in X (g) X X(g), where we set h := 7H
and x4 := wX4). The density is checked by counting the dimension of
the orbit G - (z4,z_). Indeed, in terms of the stabilizers Cg(zy) of x4,
respectively, the stabilizer of (x4, x_) is given by Cg(x4) N Cq(z—), whose
Lie algebra is go since the Lie algebras of Cg(x4) are respectively equal to
90 D g+1 D g+o. Therefore,

dimG - (z4,2_) = dim@gi = 2dim X (g).
i#0

§3. Cubic veronese varieties
Proof of Theorem B. The claim obviously follows from
G-X\Ngi =M,

and we here show the inclusion D: the converse is just Lemma 2. By virtue
of Lemma 1, it suffices to show that if Y € M, then

(adY)?ZeC-Y

for all Z € g; with =2 <1 < 2.
In case of ¢ = —2, this is obvious from the definition of M. If i > 0,
then the claim follows since (ad Y)2Z € g;42 = 0 with i +2 > 2.
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In case of i = 0, set Z# := [Y, Z]. According to Proposition 1 (b), we
have (Y, Z#) = 0, that is, [Y, Z#] = 0 and the claim follows.

In case of i = —1, set ZT := [X), Z]. We have (adY)%Z = 4(Y, Z1)Y.
Indeed, applying the Jacobi identity twice, we have

(adY)?Z = [Y[Y[X_», 27]]
= —[Y[XA[Z" V)] = [V[Z]Y, X ]
= —2(Z7,V)[Y[X_5, X,
HUZTY, XY+ [V, XL [V, 27 )]
= 22", Y)Y, —H] + [Z7,0] + 2(Y, Z")[[Y, X_,] X))
=20Y,ZT)Y +0+2(Y,Z")Y
=AY, Z")Y.

O

We finally give a few examples where, using Theorem B, one can easily
as well as geometrically determine cubic Veronese varieties.

ExAMPLE 1. The cubic Veronese variety 7M C P,(g;) is P2 U PI=2
a disjoint union of two linear subspaces in P?=3 ~ P,(g;) if g is of type
A;. Indeed, in this case, X (g) is realized as the projectivization of the set
of traceless matrices [2;;]o<i j<i With rank 1 (see, for example [FH, p. 389]).
On the other hand, taking H := diag(1,0,...,0,—1), we have that g; is the
subspace given by zgg0 = 2o = 2z = 0 and z;; = 0 for all 7, j with ¢ > 0
and j < [. Therefore the intersection X (g) NP.(g1) is the (disjoint) union
of linear subspaces defined by zpp = 2o = 2;; = 0 for all 4, j with ¢ > 0 and
by zo = 2y = #z;; = 0 for all 4, j with j <.

EXAMPLE 2. The cubic Veronese variety mM C P, (g1) is empty if g is
of type C;. Indeed, in this case, X(g) is the Veronese embedding of P?~1 of
degree 2 (see, for example [KOY, §5]), then a simple calculation shows that

X(9) NTrx, X(g) = {mXi}.
On the other hand, for any adjoint variety X (g) we have
Trx, X(g) 2 Pu(g1) Z mX.

Therefore the intersection X (g) NP.(g1) is empty.
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