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MODULAR FORMS OF DEGREE n AND REPRESENTATION
BY QUADRATIC FORMS IV

YOSHIYUKI KITAOKA

Let M be a quadratic lattice with positive definite quadratic form
over the ring of rational integers, M’ a submodule of finite index, S a
finite set of primes containing all prime divisors of 2[M: M’] and such
that M, is unimodular for p ¢ S. In [2] we showed that there is a constant
¢ such that for every lattice N with positive definite quadratic form and

every collection (f,),cs of isometries f,: N,— M, there is an isometry f:
N — M satisfying

f = f,mod M, for every p|[M: M'],
f(IN,) is primitive in M, for every pe S,

provided the minimum of N = ¢ and rank M > 3rank N + 3.

Our aim is to show that the condition rank M = 3rank N + 3 can be
weakened to rank M = 2rank NV + 3 if rank N = 2. The argument sug-
gests that it is the case without limit on rank V.

In Section 1 we complete a result of van der Blij [8], in Section 2
we take out the Eisenstein series from the generating theta series, in
Section 3 we give an estimate of local densities from below and in Section
4 we give an asymptotic formula for numbers of isometries and show the
existence of an isometry in question.

Noration. We denote by Z,Q,Z, and @, the ring of rational in-
tegers, the field of rational numbers and their p-adic completions respec-
tively. If Ais a commutative ring, M, ,(A) is the set of m X n matrices
with entries in A. For Xe M, .(A) ‘X means the transposed matrix and
we put Y[X] = ‘XYX for Ye M, ,.(A). 1, is the unit matrix of order m.
Let M be a module over A and N a submodule. N is called primitive if
M|N is a free module. Similarly Pe M, .(A) (m = n) is called primitive
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if it can be completed to a matrix in M, ,(A) whose determinant is a
unit in A. For a quadratic module we denote by B(, ), () the as-
sociated bilinear form, quadratic form with Q(x) = B(x, x) respectively.

§1.

Let SeM, (Z), Te M, (Z) (m = n) be symmetric positive definite
matrices respectively, P e M, .(Z) and v a natural number. They are fixed
once and for all in this section. By PE(S,v) we denote a set of all posi-
tive definite matrices S’ in M, ,(Z) such that 8’ = S[U,] for some U, ¢
GL,(Z,) with U, =1, modvZ, for every prime p. If for S’, S” € &(S, »)
there is a unimodular matrix Ue GL,(Z) such that S’ = S"[U}], U=1,
mod v, then we say that S’ and S” are equivalent and write S’ S”. Put

A(S, T; P,v) = ${X e M, .{Z)|S[X] = T, X = Pmod »},
E(S,») = A(S, S; 1, v),
M, = > 1/E(S,),

BE(S,»)/598

A(S, T; P,y) = M(S,»)”" >, A(S, T; P,v)/E(S,v),

BO(S,)/5S"

(tp(s, T; P, p) = 27 m2 lim (pa)n(n+l)2—mn

a—rco

X ${XeM, (Z,/p°Z,)|S[X] = Tmod p°Z,, X = Pmod vZ,} .

Here S’ runs over a complete set of representatives of equivalence classes
in PE(S, v) and 4,,, is the Kronecker’s delta function.

The purpose of this section is to prove the following theorem which
is already proved in [8] if P is primitive as an element in M, .(Z,) for

Dplv.
THEOREM.

A(S, T; P,v) = €d,,mnl mal ST 22 [ a (S, T; P,v) ,
p

where
1 ifm>n+1lorm=n=1,
- {1/2 otherwise,
Tppn = 2" WA TS (M — R)[2)7,
1 ifm+£norifv=12,
Opmn = 320077 if m=nand if v=3 and (v,4) =2,

200)-1 otherwise.
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Here o(v) denotes the number of different prime factors of ».

The proof is proceeded along the original idea of Siegel [7].

Since Theorem is proved for v = 1, we may assume v > 1 and we fix,
once and for all a natural number v, of a power of v such that v, is
divided by |T}* in Z, for p|v. Then y, = 4 holds. Put

G.(r) = {Ge GL(Z)|G = 1, mod r}

for a natural number r and then it is known that G,(r) is torsion-free
for r = 3.

Lemma 1. For S’ e (S, v) we have
E(S’, v)#({H e BO(S, )| H 7 8} 7)) = [Guv): Guw)] -
Proof. Considering the mapping 8’ — S’[U] (U € G,(v)), we have
B({H e RO(S, )| H 5 8}/ 57) = $(O(S") N G, (0)\G,()[Gr(0)

where O(S’) is {Xe GL,(Z)|S’[X] = S’} as usual. For Ue G,(v) the num-
ber of G,(v,) cosets in the double coset (O(S’) N G, (W)UG,.(v,) :s equa. to
#HOSHN G WAV e OS) N G0)| VUG, (») = UG,(w)}) = $(O(S) N G(v)) =
E(S’,v), noting that VUG,(v,) = UG,(v) implies Ve G,(v,) and hence V
=1, since V is of finite order and v, = 3. This completes the proof.

LemMMa 2. For S’ e PE&(S,v), we have
A(S, T; P,v)|E(S,v) = [G,.(): G.(»)]"' 22 AH, T; P,v)
where H runs over a complete set of equivalence classes
{HeBE(S, v)|H~S}5 .
Proof. For H = S’[U], Ue G,(v), we have

AH,T; P,y) = ${Xe M, (Z)H[X] = T, X = Pmod v}
= #XeM, (2)S'[UX] =T, UX = Pmod v}
= A(S,T;P,v).
Hence Lemma 2 follows from Lemma 1.

Let {P;} be a complete set of representatives of {P’ € M, .(Z)|P’
Pmod v} mod v,; then P; can be chosen so that rank P, =n and P, =

U](BJOA,) where U, e GL,(Z), A,, B,e M, (Z) satisfies
(B,,») =1 and uAj'e M, (Z).

il
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We fix such P,, A, once and for all hereafter.
LemMmA 3. Put Q = P,, A= A,. Then we have for S’ € PE(S, v)
A(Sly T’ Q, ”0) = Z A(S/’ T[A_l]) (Q + l"()G)‘4d19 ’)0) .

GEMm,n(Z)/Mmn(Z)A

Proof. Suppose S'[X] =T, X=@ mody, for Xe M, ,(Z). For F =
v (X — Q)e M, (Z) we have S'[XA™'] = T[A™'] and

XA = QA + »FA ' e M, (Z).

If, conversely S/[Y] = T[A™Y], Y= (Q + v\G)A'mody, then S/[YA] =T
and YA = @ mody, hold.

LEmMmA 4. Let P;, A, be those as above. Then we have
AO(S’ T; Py )J) = M(S’ ’JO)M(S’ 1")-'l[G'm.(’J): Gm(yo)]—leav,m,nrm,n
X AS[ T =22 1T (S, T P, v)
plv
X 22{2 2 A+t

Si Pj GEMnm,n(Z)/ Mm,n(Z)A;

X 11:1[ a, (S, TIAF'T; (P; 4+ viG)AY v},

where P, runs over a complete set of representatives of {P'e M, .(Z)|P’' =
P mod v} mod v, given above and {S,} is given so that P&(S, v) = [], P&(S,, vy)
(disjoint union).

Proof. By definition we have
A(S, T; P,y) = M(S,»)"' >3 A(S', T; P,v)[E(S',v)

PO(S,»)/528’

= M(S,»)7[Gn(): Gulol™ || 2, 2LAMH, T; Py,

®(S/598"
by Lemma 2, where H runs over {He R&(S,v)|H~ S}/
= M(S, v)'[G,.(): Gm(Vo)]"g‘S 2. A(H, T;P,v)

8(S,») /5o H

= M(S,v)[Gu(): Gulw)] ' 22 2. A(H, T; P,v)

Sy BO(Se,w0)/5753H

= M(S,v)7[G.(): Gu(]™* 25 >, A(H, T; Pj,v)

Pj,8 %“J(Si‘v&:)/,raaH

= M(S, v) " [G.(»): Gw)]™' >

P81 BO(Siw0) /50 H

A(H, TTA7'T; (P; + v@AT, v,

GEMpm,m(Z)/ Mm,n(Z)A;

by Lemma 3.
For He B&(S,v) we have M(H, v)™' = A(H, H; 1,,v,) = A(S, S; 1,,v,)
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= M(S, v,)"', noting that the definition implies the first and third equality
and the second follows from «,(H, H; 1,,v,) = S, S; 1,, v, in the proved
case. If T[A;'] is integral, then | A, divides |T'| and hence y,/v is divided
by |A,|; then (P, 4+ v,G)A;' = P,A;'mody. By virtue of definition of A,,
P,A;'e M, (Z,) is primitive for p|v and hence (P; 4 »,G)A;' is also primi-
tive for plv. Using Theorem which is proved for a primitive P for p|v,
we have

A(S, T; P, ) = M(S, v)M(S, v) '[Gn(»): Gp(vo)] €y, n | S|
X | T|m-n-r ;H a (S, T; P, u){PZ S A

788 CEMm,n(Z)/ Mm n(Z)A4;

X 1_|[ a(S, T[AT']; (P; + wGQ)Aj", v},
plv

since for p Yv a,(S, T[A;']; (P; + vi@Aj', v) = a)(S, T) = (S, T; P, v).

Let ¢ be a sufficiently large power of v, and put 4 = {Fe M, (Z)|F
= ‘F}.

LEmMmA 5. Put Q =P,, A=A, and denote by #Z {qR[A']|R e 4}.
Then the mapping Y — YA is bijective from

S{Y] = T[A'] + Rmod ¢,
1 3YeM, . (ZlqZ)| Y = (@ + v,G)A " mod v,
Rea/qd
’ for some Ge M, .(Z)

to
{Xe M, (Z)mod gM,, (Z)A|S[X] = Tmod q, X = @ mod v,} .

Proof. The mapping is clearly well-defined and injective. Suppose,
conversely that Xe M, .(Z) satisfies S[X] = Tmodq and X = @ mod y,.
Defining Ge M, (Z) by X = @ + v,G, XA™' = QA" + v,GA™' is integral.
For R=q¢(S[X] - T)eM, (Z) and Y = XA"' we have S[Y] = T[A™]
+ gR[A""]. This shows the surjectiveness of the mapping.

LEmma 6. Let V, W be regular quadratic spaces over Q, and M, N
lattices on V, W respectively (dim V = rank M, dim W = rank N). Let h
be an integer such that

pP"Q(x) e 2Z, for all xe M*,
where M* = {xe V|B(x, M) C Z,}. If ue Hom (M, N) satisfies
Q(x) = Q(u(x)) mod 2p"*'Z, for xe M,

then there is an isometry u from M to N such that
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(M) = wM),
u'(x) = u(x) mod p**'u(M?) for xe M.
Especially we have u': M = w(M).
Proof. Since for y,ze M* 2B(y,2) = Q(y + 2) — Q(y) — Q@) € 2p™*Z,

holds, we have B(p"y, 2) € Z, and hence p*M* C (M** = M. Next we claim
that for G = w(M*) the three conditions

Hom (M, Z,) = {x — B(u(x), w)|w € G} + Hom (M, pZ,) ,
P"Q(x)e2Z, for xe G,
Q(u(x)) = Q(x) mod 2p**'Z, for xe M

are satisfied. Let ¢ be an element of Hom (M, Z,); then there is ze M*
such that ¢(x) = B(x, 2) for xe M. For xe M we have

pre(x) = B(x, p*2) = B(u(x), p"u(2)) mod p**'Z,

since p"ze M. Thus x — ¢(x) — B(u(x), w(z)) is in Hom (M, pZ,) and the
first condition holds. For x e M* we have

Q(p"x) = Q(p"u(x)) mod 2p"*'Z,

and then p"@Q(x) = p"Q(u(x)) mod 2pZ,. From the assumption p"Q(x) € 2Z,
holds and hence p"@(u(x)) € 2Z, holds. Thus the second condition holds.
The third one is nothing but the assumption. “Satz” in Section 14 in
[5] completes the proof.

Lemma 7. For @ = P; and A = A; we have

#{X mod q|S[X] = Tmod ¢, X = @ mod v}

}S[Y] = T[A '] mod ¢ }

= HAHn+1—m # Ymodq,

GeMm,n(Z)2/‘:"lm,n(Z)A { 1Y =(Q + v»,G)A™' mod y,
Proof. By Lemma 5 we have

#{X mod q|S[X] = Tmod q, X = @ mod v}

= [AlH{X € Mp(Z)[g M, (Z)A|S[X] = Tmod g, X = Q mod v}

S[Y] = T[A™'] + Rmod q
=A™ >, #{Ymodq|Y = (Q + v,G)A™' mod v,
Reax/qd
" for some Ge M, (Z)

Here for a prime ply we define quadratic lattices M = Z,[v,, - - -, v,] and
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N=Z]Ju, -, u,] by (B(vi, vy)) = T[A™], (B(uy, uy)) = T[A7]1 + R (Re )
respectively. Define a linear mapping v € Hom (M, N) by u(v;) = u,;; then
Q(u(x)) = Q(x) mod gv;* holds for x € M since R = 0 mod qv;°. From Lemma
6 follows that there is an isometry v’ from M to NN such that

u'(x) = u(x) mod 27 'quy*u(M?*) for xe M.
If, hence we define D,e GL,(Z,) by

(u/(vl)9 ) u,(vn)) = (uls ] un)Dp ’
then T[A™'] = (T[A”'] + R)[D,] and D, = 1, mod v,Z, since q is sufficiently
large. Taking D e M,(Z) which is close to D, for p|v and considering the
mapping Y +— YD, we have
#{X mod q|S[X] = Tmod g, X = @ mod y,}
S[Y] = T[A""] mod q
=A™ 3 #{Ymodqg Y= (Q + uG)A ' mody, .
REF/q1 !
! for some Ge M, (Z)
Since #(Z/ql) = |A|"*!, we complete the proof.
Now we can prove the theorem. Since
#H{X mod q|S[X] = Tmod q, X = P mod v}
= > #{Xmod q|S[X] = T'mod q, X = P, mod v},
Pj

Lemma 7 implies
[T a S, T; P,v)
ply
=2 2 HA ] (S, TIATT; (Py 4 vGATY, )
ply

Pj GEMm,n(Z)/Mm,n(Z)Aj

and then from Lemma 4 follows

AO(S’ T; Py y) = M(S, VO)M(S’ D)-I[Gm(y): Gm(yﬂ)]-lsav,m,nrm,n
K|S AT 51 [ a(S,, T Py v) -
Sy p

Since S; e PE&(S, v) implies «,(S,, T; P,v) = (S, T; P, v), we have
A(S, T; P,v) = ced, nlmn| S| T |22 [T (S, T'; P, v)
Y4

where ¢ = M(S, v M(S, »)'[G,(v): G,.(v)]'#{S.}. Hence c depends only on
S for a sufficiently large power of v. Since Theorem holds for ¢ =1 in
case T = S, we have ¢ = 1 and complete the proof of Theorem.
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§2.

Let Se M, .(Z) be a symmetric positive definite matrix whose diago-
nals are even integers and ¢ the level of S, that is, ¢S is also integral
and diagonal entries of ¢S™' are even.

Let P be an element of M, .(Z) and v a natural number. For Z =
‘Ze M,(C) with Im Z > 0, we put

N=

6(Z, S, P,v) = >, exp(mitr(Z-S[N)),
~P mod v
where N runs over {Ne M,, .(Z)|N = —Pmod v}, and

05(Z; X, Y)
— S exp(ritr(Z-S[N — Y] + 2zi tr (NX) — 7i tr (‘XY)).

NEMm,n(Z)

It is easy to see 6(Z, S, P,v) = 0(*Z;0,v"'P), and the following lemma
is nothing but Theorem 1 in [1].

Lewva 1. Let T'§™(q) — {M - (é g) € Sp.(2)|C = 0 mod q}. Then

for any matrix M = (é g) in I'{"(q) the generalized theta series satisfies

|CZ + D™ (M{(Zy; X'A 4+ SY ‘B, S7'X ‘C 4+ Y ‘D)
= 19(M(Z; X, Y)
where X$(M) is some eighth root of unity not depending on X or Y.
For M = (é 1B;> € Sp,(Z) with C=0modq?, D=1,mody we put
M = (ij‘z %2> Then we have M’ e ['{"(q) and putting X =0, Y =v"'P

and Z — 1*Z in the lemma we have

|CZ + D|"™™69(*M(ZY; vSP 'B, v='P ‘D)
= XML (P Z; 0, 7' P)
= 1P(M)Z, S, P, v).

Since vSP ‘B is integral and tr!(wSP ‘B)'P ‘D = tr B'PSP 'D = tr (S[P]-
tDB) = 0mod 2, we have

09 M(ZY;vSP ‘B, v P 'D) = 0P M{(Z; 0, "' P) = 0(M(Z), S, P, v) .

Thus we have proved
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LemmA 2. For M = (‘é g) € Sp.(Z) with M = 1,, mod qv* we have

|CZ + DI""*9(M(Z>, S, P,v) = 2(M)8(Z, S, P, v),

where 1(M) is some eighth root of unity not depending on P.
Next we prove

Lemma 3. Let S’ e PE(S, v) in the sense of Section 1. Then for M =
<é g) € Sp.(Z) the constant term of the Fourier expansion of

|CZ + D™ 0(MLZ), S, P,v) — 0(M{Z), S’, P, v))

vanishes.

Proof. For M = (é ]_B;) € Sp,(Z) we put

oZ, S, P, )

(‘é 5) =|CZ + D|""*0(M(Z), S, P, ).

First suppose |C| = 0; then noting M{(Z) = (AZ + B)(CZ + D)' = AC™*
—(Z 4+ C'D)7'[C™"], we have

(¢ o)

CD

= |CZ + DI ™09 MCZY; 0, v P)

—|CZ + D|"™PFAC™ — A(Z + C'D)'[C7]; 0, v~'P)

=|CZ+ D|™™* 3, exp(aitr PAC' —(Z + C'D)'[C'])

NEMm,n(Z)

X S[N —v~'P]).

0(Z, S, P, v)

Decomposing N as N = N, + |C|N,, we have
tr PAC'.S[N — v 'P]) = tr (AC™"-S[vN, — P]) mod 2.

(‘é g) is equal to

|CZ + D|™™* > exp(zitr (AC™'-S[vN, — PJ]))

Nimod [C]

Thus 6(Z, S, P, v)

X >, exp(—aitr ((Z+ C'D)'[C'])-S[yN, + v|C|N, — PJ))

N2 €My, n(Z)

—|CZ+ D™ 3 exp(xitr (AC™'-S[N, — PJ)

Njimod |C|
X 09(—#|CHZ + CD)[C71; 0,5 |C|"P — |C'N))
=|CZ + D|™™* > exp(aitr AC™'-S[yN, — P])

Nimod |C]

https://doi.org/10.1017/5S002776300000252X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000252X

34 YOSHIYUKI KITAOKA

XS CHZ + CT'D)'[CTIT™ 052" | CI"H(Z + C'D)['CI;
v C|7'P —[CI"'N,, 0)

by Lemma 2 in [1]. Here

|CZ + D|""#|i?|CH(Z + C~' D)~ [C]|™"

is a constant (M) depending only on /. Hence the constant term of
0(Z, S, P,v)| M is equal to

M)|S|"” ST exp(xitr AC'-S[N, — P]).
N C|

1 mod |

Since S’ e PE(S, v), we have {S’| = |S| and there is some Ue M, (Z) such
that (U], v|C]) = 1, S = S'[U] mod 2|C| and U = 1 mod ». Hence it is clear
that the constant term of 6(Z, S, P, v)|M depends only on BE(S, v).

If the determinant of the C-part of M vanishes, then there is an in-

tegral symmetric matrix F such that M = (é S)(—(—)l %.) with |C] # 0.

Putting M’ = (‘é g), from the above follows

6(Z, S, P, v)| M’
~ f(M)\S| 37 exp(zitr AC- SN, — P))
[ed}

N1 mod |
X 08,0 CIHZ + C'D)[Cl; v |C|'P — |C|"'N,, 0) .
Hence we have
60(Z, S, P,v)| M
= g(M)|S|""* > exp(ritr AC'-SpN — P))

N mod |C|

X 0§2.(v"*|C|(Z + CT'D)['C]; v~ |C|'P — |C|"'N, 0)’(_01 }) .

Here we don’t care for the choice of the branch of |x|™™* since it is in-
dependent of S.

02674 C1HE + CD)CL O P — 1N 0| ( 0 F)
is equal to
| =2 + F| 0§07 Cl (= Z + F)™* + CD)[Cl; »~'|CI"P — [N, 0)
=|—Z+ FI"™ 3 exp(ritr 2| CI"(—Z + F)' + C'D)[!C]

GEMm,n(Z)

% S™Y[G]) + 2xi tr ‘G| CI"'P — |C|"'N)).
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Putting G = ¢*|C[G, + G,, we have

tr @ CIM(—Z + F)' + C'D)['C]-S7'[G] + 2tr ‘G(»~'|C|"'P — |C|"'N)
=tr (v CI™(—2 + F)"'C]-S7[¢|CFG, + Gl
+ v CIED'C-STG,)) + 2tr ‘Go(v | CIT'P — |C"'N) mod 2.

Hence

O CIH(Z + CD)CLy el P — (e, 0| () F)
=|—Z+F| ™ Y exp(riv?C| " tr D'C-S[Gy]

G2 mod ¢u2|C|2
+ 2xitr ‘G,(v'|C|"'P — |C|7'N))
X 3 exp (zig'|Cl tr (—Z + F)"['CIS7[G: + ¢7» 7 C|G.)

=|—Z+F|™ > exp(siv|C| " tr D'C-S-[G)]

G2 mod gu2|C|2

+ 2ritr ‘Gy(» | C|'P — |C|'N))

X 082(q"V |CH(—Z + F)7'['CL; 0, —g™v*|C|*G)
=|—-Z+ F|™* 3>, exp(@iv?|C|*tr D'C-S'G]

G mod ¢v2|C|2
+ 2i tr ‘G| C|"'P — |CI"'N))| S~! |-
X | —ig"*|CH(—=Z + F)~'['C]| "
X 05°(=q v |CI"(—=Z + F)[CT]; —¢™v7*|C7°G, 0),

where | —~Z + F || —igh*|C/(—Z + F)'['C]|™™" is independent of Z and
denoting it by # (M)

= /(M)|S"* 3 exp(mivC| 7 tr D'C-S7'[G]

G mod ¢u2|C|2
+ 2ri tr ‘G| C| P — |C|'N))
X 0°(q" | C|™(Z — F)[C™']; —q™v"*|C|™G, 0) .

Thus the constant term of 6(Z, S, P, v)| M is

k(MH|S|* > exp(ritr AC™'-S[yN — P]
N (o]

mod |

X K(M)|S[* > exp (ziv*|C[™* tr D*C-S[G]

G mod ¢v2|C|

+ 2aitr ‘G(~Y|C|"'P — |C|"'N))
= /c(M’)/c’(M)N > exp(aitr AC™'-S[N]

od v| O}
N=-P mod v
G mod qv2(C|2

+ 7y | C[ tr D ‘C-S[G] — 2ziv~'[C|™ tr ‘GN)).
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Since S’ € BE(S, v), there is some Ue M, (Z) such that

S = S'[U] mod 2qv*| CF| S},
(U, 2qv|ClIS) =1,
U=1modyv.

Taking an integral matrix V such that UV = 1 mod 2¢v*|C[F|S|F and mul-
tiplying integral matrices |S|S™,|S|VS"' to S = ‘US’U mod 2qv*|CF|S}
from the left, the right respectively, we have

|SPVS’~t = |SES~'*U mod 2¢v*| C| ST
and hence we have
S~ = 8’7'[*'V] mod 2¢v*|C}* .
Hence the above constant term is

/c(M’)x’(M)N modZv[CI exp (zi tr AC~'.S’[UN]

N=- Pmod v
G mod ¢q»2|C|2

+ 7iv|C| " tr D'C-S"['VG] — 2ziv"|C|" tr “¢ VG)(UN))
= o(M)(M) 3 exp(mitr AC.S/[N]

N mod »|C|
N=~P mod vy
G mod ¢v2|C|2

+ @iy *|C|* tr D*C-S'7'[G] — 2miv™'|C| ™ tr ‘GN) .
Thus we have proved Lemma 3.

Put E(Z) S, P: V) = M(S’ u)‘l ZS’G%@(S,»)/;‘ E(S/9 V)_lﬁ(Zy Sl) P’ l")' Then
gZ)=6(Z, S, P,v) — E(Z, S, P,v) is a Siegel modular form of level g%
weight m/2 such that the constant term of g|M vanishes for every M in

Sp.(Z).
The Fourier coefficient of E(Z, S, P, v) is

A(S, T; —P,v) for T>0,
and for Fourier coefficients a(T") of g(Z) we have ([3] or [4])
o(T) = O ((min T)*~"PR|T[™-98)  for T'> 0

if n=2and m = 2n + 3.
Clearly we have, for every integral positive definite matrix T

A(S’ T; —P9 y) = AO(S, T; —P9 ”) + a(T) .
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§ 3.

Let p be a prime and fix an integer a.

Let Se M, . (Z,), Te M, (Z, be regular symmetric matrices with m >
2n + 3 respectively and Pe M,, (Z,). An aim in this section is to prove

ProrosiTioN. There is a positive number r(S, P, a) such that oS,
T; P, p®) > &(S, P, a) if (S, T; P,p®) # 0.

We need several lemmas.

LemmA 1. Let M be a regular quadratic lattice over Z, with vk M = m
and N a submodule of M with tk N = n. If m = 2n, then there is a con-
stant (M) independent of N such that there is a regular submodule N> N
of M with vk N = 2n and ord, dN < «(M).

Proof. We use the induction on n. We may suppose that B(x,y) e Z,
for all x,y e M without loss of generality. Suppose that n =1 and M N
Q,N = Z,v. Suppose B(v, M) = B(v,w)Z, = p*Z, for w € M; then p* divides
dM since v is primitive. If p***!|@Q(v), then we put N = Z,[v,w]. It is
clear that ord, dN =2k <2 ord,dM. If p**' ¥ Q(v), then we consider a
set

S ={Z,v C Mlord, Q') < 2ord,dM} (2Zv).

We can take a finite set {Z,u,} © S such that S = |, O(M)Z,u,. For each
u, we take w, € uj such that ord, Qw, = min,e,; ord, Q(w), and put N,
= Z,[u, w;)]. Then for v there is w e M such that N = Z,[v, w] is regular
and ord, dN < max, ord, dN,. Thus we can take max (2 ord, dM, max; ord,
dN,) as (M) for n =1. Let N= Z,[v, ---,v,] be a submodule of M and
2n < m. Take N, C M such that N, s v, ord, dN, < (M) and rank N, = 2,
where «,(M) is a constant depending only on M. Consider a set

S’ = [N’ C M|rank N’ = 2, ord, dN’ < (M)} > N, .

Since we can take a finite number of binary submodules N/, of M such
that 8’ = |, O(M)N/, the set {N’*|N’ e S’} is a finite set up to O(M) and
it depends only on M. Decompose [M: N, | Nilv, as [M: N, | Nilv, =
X + ¥, x, € Ny, € Ni. Since rank N =m — 2 and dim Q,[y,, - - -, ¥.] <
n—1< (m — 2)/2, applying the assumption of the induction, there is a
submodule N, C N{ such that rank N, = 2(n — 1), N,2y, (i = 2, -- -, n) and
ord, dN, < k(N{) £ maxy. s f(N'*)(=r(M)say). Put N’ =N, | N,; then
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rank N’ = 2n and ord, dN’ < k(M) + k,(M). Since N’>v, [M: N, | Nilv,
(i=2),N=MnQ,N’ contains N, rank N = 2n and ord, dN < ord, dN’ <
£(M) + k,(M). Thus we have completed the proof.

LemMA 2. Let M be a regular quadratic lattice over Z, with rank M
= m and N a regular submodule of M with rank N = n, and suppose that
m = 2n + 3. Then there is a constant k(M) dependent only on M satisfy-
ing ‘the following condition. Suppose that for a basis {v;} of N Z,[v,, ---,
v,] is primitive in M. Then there are vectors w; € M such that

w, =0, for1<i<r,
B(w,, w;) = B(v,, vy) for 1<i,j<n,
Q,w, -, w]lNM:ZJw, ---,w,]] <«M).

Proof. We use the induction on n — r. Suppose n — r = 1. By virtue
of the previous lemma, there are vectors vy, ---,v,.;€ M such that for
N =ZJv, -, 0,_, U}, -+, U,y ] rank N'* = 2(n — 1) and ord, dN’ < x(M)
hold for some constant k(). Since rank N'* =m — 2(n — 1) =5, N'* is
isotropic. We fix a maximal lattice K C N’* and decompose K as

K =2ZJe,e] | K,

where Q(el) = Q(ez) =0, B(e, e,) = p".
Put v, = u + ae, + a.e, + z, where ue Q,N’, a,,a,,€ Q,,2¢ Q,K,. We
claim that there are x,, x, € Z, such that

XX, + %0, + 00, = 0, (x, + a,, %, + @) £ pZ,.

If a, =0, then we put x, =0 and for some x,c Z, both conditions are
clearly satisfied. The case @, = 0 is similar. Suppose a,a¢; = 0 and ord,
a, £ ord,a, If a € Z, then we choose x,€ Z, so that x, + a,. € Z;. Then

we have only to put x, = —xa(x, + a))”". If a,¢ Z,, a, € Z,, then we have
only to put x, = a,/a, € Z,, x, = —x,a,(x, + a,)7', since x, = —(1 + a7') '€
Zy and x, + a,¢pZ, If a,a,¢Z, then putting x, =ar'c Z, x, = —(a;"

+ a;)"' € Z,, we have x,x, + x,a, + x,0, = 0 and x, + @, ¢ Z,. Thus we have
showed our claim.
Put w,=v, for 1<i<n—1 and w, = v, + xe, + xe,; then we
have
B(v,, w,) = B(v,, v,) fori<n-—1,
Q(w,) = Q(v,) + B(xie, + x.e0, x10, + X0, + 20,)
= Q).
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Thus B(w,, w;) = B(v;, v;) follows for 1 < i,j <n. Suppose that for y e M,

pyeZjw, -, wl],p"ye Zw, ---,w] (s=1); then p'y=377bv, +
bnwn = ZZL;; bivi + bnu + bn(xl + al)el + bn(xZ + a‘Z)eZ + bnz hOIdS' From
the assumption (b,, -- -, b,) = 1 follows. Since Z,[v,, ---,v,_,] is primitive

in M, b, is in Z;. Since ye M, [M: N’ | N'*]ye N’ | N’* and hence [M:
N’ | N (p~*b,(x; + a)e;, + p~*b,(x; + a))e. + p~*b,2) € N’t; then [N’+: K]
[M: N’ | N'*]1(p~*b.(x, + a)e, + p~*b,(x, + ay)e,) € Z,[e,, e]. Here we note
that ord,dN’ < k(M) and K is a fixed maximal lattice in N’*, and the
number of sumbodule N of M with ord, dN < k(M) is finite up to O(M)
equivalence. Thus [N't: K] [M: N’ | N’*] < k(M) holds for some constant
k(M) depending only on M. From [N'+: K] [M: N’ | N'*p~b.(x. + a,)
€Z, for i =1 and 2 follows

s < ord, ((N"*: K][M: N | N"*)(x, + a)),

since b, € Z;.
By the choice of x,, ord,(x, + @) <0 for i =1 or 2. Thus there is a

constant x,(M) such that s < x,(M). Therefore the index [Q,[w,, ---, w,]
NM: Z,w, ---,w,]] is bounded from above by a constant depending only
on M.

Suppose n — r = 2 and put N' = Q,[v,, - - -, v, ,IN M = Z,[u,, -- -, u,_,].

We may suppose
(1) u,=v,for1<i<r,

since Z,[v,, - -+, v,] (CN’) is primitive in M.
Applying the assumption of the induction to N’ @ Z,uv,, there are
vectors u, € M such that

(2) ui=u,for1<i<n-—-1,
(3) B(u,u)) = B(u,,u) for 1 <1,j <n

where u, = v,,
(4) [Qlul, - -+, wil N M: Z,[ui, - -, wi]] <w(M),

where £ (M) is a constant depending only on M. From (4) follows
(5) [Qlui, -~ up, wlNM: ZJul, -, ul, wi]] < (M)

We choose v, e M so that

(6) Qp[uiy Tty u;, u:z] m M = Zp[UI; sty Upy U:L],
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noting u] = u, = v, for i < r by (2), (1) and the primitiveness of Z,[v,, - - -, v,].
Putting

(7)) vi=v, fori<n—1,

Zp[U;, Tty vz/z] = Zp[v7‘+l> Tty Un—l] + Zp[vb sty Uy U;,]
DZp[UrH, Ty Un~1] -+ Zp[u;’ ) u;a u:z] by (6)
= Zp[vb ey, Unlyy u’;] by (2)’ (]-)

and
(8) [Zp[UI’ Tty v1/1]: Zp[vla ey Ul u:n]] < KL(M)
follows from (5).
Put u = u, — u,; then for i < n — 1 we have
B(u,, u,) = B(u;, uy) by (3)
= B(u;, uy) by (2)

and then B(u,u) =0for i <n — 1.
Since Q,[v,, - -, v,1] = Q,luy, -+ -, u,_;], we have B(v,u) =0for i <n—1
and hence

B(vi’ u:z) = B(vz‘, un) = B(vi, vn) )

where the second equality follows from the definition of u, = v,. Thus
we can define an isometry ¢ from N to Z,[v, - -+, U._y, &,] by

(9) {0(0) v, for1<i<n

o(v,) = up,

since Q(u;) = Q(u,) = Q(.) by (3).

Hence dim @Q,[v}, - - -, v,] = dim Q,[v,, - - -, v,_,, 4] = n follows. By (6), (7)
Zvl, -+, v, v,] is primitive in M and Q,[v}, - - -, v;] = Q,lvy, - - -, Vn_y, wr]
= Q,0(N) is regular. Applying the assumption of the induction to
Z v, - -+, v,], there are vectors w; € M such that

10) w,=1vifor i=1,.---,r and n.
B(wi, w}) = B(vi,vj) for 1 < 1,j < n.
(11) [Qp[w{7 R w;] n M: Zp[w{9 Tty w:l,]] < ,Cl(M)'

Defining an isometry » by (V) = w} for 1 < i < n, we have a submodule
70(IN) of M since
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ZJv, v u ] CTZ, v
Moreover we have, by (9), (7), (10)
no(v,) = v, for 1 <r.
Now we put w, = 70(v,) for 1 < i < n; then
w, =U; fori<r,
B(w,, w;) = B(v,, v,) for1<ij<n

hold.
Finally we have

[Qp[wh ) wn] m M: Zp[w1> Ty wn]]
- [Qp[w{9 Tty w;t] ﬂ M: WU(N)]
= [Qp[wi’ Y w:z] m M: Zp[w;’ DY w;L]][Zp[wiv Y wfl]: 770-(1\].)]
< K\(M)[Zp[v;7 tty U;]: O-(ZV)] by (11)
= ’CI(M)[Zp[v{) T U:z]: Zp[vly sy Unony ul/l]] by (9)
< &(M)* by (8).
Thus we have completed the proof.

LEmMA 3. Let M be a regular quadratic lattice over Z, and N a regular
submodule of M with rank M > 2rank N + 3. For a natural number a
there is a constant (M, a) dependent only on M and a satisfying the fol-
lowing condition. There is an isometry o from N to M such that

o(x) = x mod p*M for xe N,
[Q,o(N) N M: o(N)] < k(M, a) .
Proof. We take a basis {v;} of N such that
Qme M = Zp[p_alvl’ M ',p—anvn]
with0<a, < <o, <a<a,,,<--- <a, Define u, by
p v, forir,
u, = .
p v, for i >r.
By virtue of the previous lemma, there are vectors w, € M such that
w, = u; = p-*, fori<r
B(w;, wj) = B(u,, uj)
[Qp[wla ttty wn] N M: Zp[wl, tt wn]] < ’C(M) ’
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where (M) is a constant dependent only of M.
Put z; = p*w, for i £ r and 2z, = p®w, for i > r; then we have B(v,
vj) = B(zi’ Zj)7

z, =, fori <r,
2, =v,=0modp*‘M  fori>r.

Moreover

Q,lz), -, 2] N M: Z]z, - -, z,l]
= [Q,[w:, -, w ] N M: Z [w,, - -, w,]]
X [Z[w,, -+, w]: Z[z, -+, 2,]]
= pEimer e (@ lw, -, w,] N M2 Z[w,, - -+, w,]]
= p"e(M).

We have only to put ¢(v,) = 2z, and &(M, a) = p**x(M).

Now we can prove Proposition. Let S, T, P, a be those at the be-
ginning of this section, and suppose «,(S, T; P, p®) # 0; then there is
XeM, (Z,) such that S[X] =T, X = Pmodp*. By virtue of Lemma 3
there is Ye M, .(Z,) such that Y = Pmod p? S[Y] = T and for elementary
divisors p*, - - -, p» of Y > ", a; < k(S, a) holds where (S, a) is a constant
independent of 7. Take a natural number b larger than a, a, (1 < i < n).
Clearly «,(S, T; P,p°) = a(S, T; Y, p’) + 0 holds. Let

pa’_
Y=U . .|V, UeGL(Z), Ve GL(Z,)

pﬂ
0

and put U-'Y = (6‘), A = diag (0™, - - -, p") Ve M, (Z). S[Y] = T implies

S[YA™'] = T[A™’] and hence T[A™'] is integral since YA™' = U<(1)n) We

consider the mapping X — XA from

{Xe M, . (Z,) mod p*

S[X] = T[A""] mod p*
X= U<(1)”> mod p? }
to

{Z eM, (Z,) modp'M, (Z,)A|S[Z] = T'mod p‘}
{ | Z = Ymod p®
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It is obviously well-defined and injective.

Hence we have
S, T; Y,2") 2 |Al"a(S, TIA U(). ) # 0.

The last inequality follows from S[YA-'] = T[A-"], YA~! = U((l)n). Next
we have
#{Xe M, (2,) mod p*|S[X] = T[A~] mod p', X = U((1)"> mod p"}
S[Xx] = T[A '][x] mod p**!

>p g Xe M (Z)rnodp”‘ifor every x € M, (Z,),
— myn .
X = U(é”) mod p?

by considering the canonical mapping from the latter set to the former

set,

— p—mn+n ordy| S|

iS[Xx] = T[A][x] mod p***

(2,) mod pS7 M, (z,) Tor every x € M2,

>< # Xe Mm,n
X = U(é") mod p°
x

\

for a sufficiently large ¢.
By virtue of “Satz” in Section 14 in [5]

(pt+l)n(n+1)/2-mn
| S[Xx] = T[A'][x] mod p**!
ry X € Mn,l(Zp)y

X # Xe Mm,n(Zp) modpt+ls_1 m,n(Zp) : fOI' eve
;X = U(é”) mod p?®

is constant if ¢ is larger than some constant #, which depends only on S

and b. Thus we have

C(p(S, T[A—l]’ U((1)n>, pb> 2 p~mn+n ordp |S|+to(n(n+1)/2—mn) ,

since S[YA-'] = T[A-"] and YA~ = U(};).
Noting that |A|™™ = p ™% > p~™59) we complete the proof.
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§ 4.

Let S be an integral symmetric positive definite matrix of degree m
whose diagonals are even integers and n a natural number with m = 2n
+ 3, and we take Pe M, ,(Z) and a natural number v. Let 6(Z, S, —P,v),
E(Z, S, — P, v) be Siegel modular forms of level qv*, weight m/2 and degree
n defined in Section 2, where ¢ is the level of S, and put

0(Z,S, —P,v) = >, A(S, T; P,v)exp (zitr TZ),
=0
E(Z, S, —P,v) = >, A(S, T; P,v) exp (zitr TZ),
T=0

where A(S, T; P,v) and A/S, T; P,v) are the same as those defined in
Section 1 for every positive definite matrix 7. As pointed out in Section
2 for a(T) = A(S,T; P,v) — A(S, T; P,v) > a(T) exp (zitr TZ) is a Siegel
modular form of weight m/2, degree n such that the constant term at
every cusp vanishes.

Denote by A,.(S, T; P,v) the number of Xe M, (Z) such that S[X]
=T, X = Pmodv and X is primitive in M, (Z,) for p tv and put A, . (S,
T; P,v) = M(S,v)"' X gsws,zas (Ap(S’, T; P,v)[E(S’,v)), and a,.(T) = AL(S,
T;p,v) — Ay (S, T; P,v). Our aim is to get an asymptotic formula for
A (S, T;P,yv). Let V=Qv, --,v,], W= Qlw, ---,w,] be quadratic
space with bilinear forms defined by (B(v,v,) =S, (B(w;, w;) = T re-
spectively, and ¢, a linear mapping from W to V defined by

(oo(wy), - -+, 0fw,)) = (vy, -+ -, VP,

It is clear, then, that A(S, T; P,v) is the number of isometries ¢ from W
to V such that ¢NC M and o(x) = oo(x) modvZ,M for all x in Z,N for
every prime p where we put M = Z[v,, ---, v, ), N=Z[w, ---,w,]. A,
(S, T; P,v) is the number of isometries ¢ with an additional condition that
o(Z,N) is primitive in Z,M for p fv. We write A(M, N;a,,v), A (M, N;
a,,v) for A(S, T; P,v), A,(S, T; P, v) respectively. Obviously we have

A(M) N; 009 V) = Z Apr(M, L; 0'0, V) b
LON

where L runs over submodules of W such that LD N and Z,L = Z N for
plv. Similarly putting

A(M, N; 0,v) = A(S, T; P, v),
AO,pr(M7 N; 009 ”) = Ao,pr(S, T; P, ”) ’
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we have

('ﬁ’) AO(M) N; 601 U) = Z Ao,pr(M, L; 00’ 2))
LON

where L runs over the same set as above. Using the theory of Hecke
algebra of GL as in [4], we have

Apr(Ma N; Gb’ U) == Z "T(L; N)A(M5 L; 0'\\, )J) >

LON

AO.pr(M5 N; 00, D) = Z K(Ly N)AO(M9 L; 0'0’ 2J) s
LON

where L runs over lattices of QIV containing N such that Z,L = Z N for
plv, and n(L, N) is defined as follows: Suppose that Z,L/Z,N is isomor-
phic to A, copies of Z,/[pZ, as Z, modules for every prime p; then we put

H(L, N) = T] (=D'sptats=r,
P

Otherwise we put =(L, N) = 0. For a lattice L in QN such that
LDON and Z,L = Z,N for plv,

we take a basis {w]} such that w; = w, modvZ,N for pjv and put T, =
(B(wi, w)). It is clear that A(S, T.; P,v) = A(M, L; 0,,v), and hence we
have

apr(T) =2 a(L, N)a(T,),

LDON

where L runs over the same set as above.
Suppose that

(*) o(T) = O((min T~ T|"-"-17)

for every positive definite matrix T ¢ M, ,(Z), where min T = min,., ,cz» T[]
and ¢ is a sufficiently small positive number. This is the case for n = 2.
We have, then as in [4]

apr(T) = 0((Imn T)—EI T‘(m—n—l)/z) .
Thus we have
(##) Apr(S; T; P, U) = Ao,pr<S, T; P, lJ) + O((min T)—Ei Tl(1n—n—1>/2)

for every positive definite integral matrix 7 under the assumption (*)
which is true for n = 2.

We denote by A;..(S, T; P,v) the right side of the formula for A,S,
T; P,v) in Theorem of Section 1 in which «,(S, T; P,v) is replaced by
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2—5m,n lim (pa)n('”'l)/z-mn#{Xe Mm,n(ZP/paZP) J

' S[X] = Tmod p°Z,,
g | X is primitive

for p fv. By virtue of Hilfssatz 13 in [7], the identity (#) holds for A;,.
instead of A,,. Hence the inversion formula in [4] implies A}, = A, .
By virtue of Proposition in Section 3 there is a positive constant & in-
dependent of T such that

A, (S, T; P,v) > g T|m- -0

if T>0 and A,,.(S, T; P,v) + 0, using an argument of the proof of Pro-
position 9 in [3] with Af,. = A,,.. Thus we have proved the following

THEOREM. Let S be a positive definite integral matrix of degree m
whose diagonals are even and n a natural number with m = 2n + 3. We

take Pe M,, .(Z) and a natural number v. Then there exists positive numbers
k, ¢ such that

Ap(S, T; P,v) = Ay (S, T P, v) + O((min T)™|T|™""27)
Ay (S, T; Pyy) > T\ » 92 if A (S, T; P,v) #0,

for every positive definite integral matrix T of degree n, provided n = 2.

Immediately we have

CoroLLARY. Let M’ C M be positive definite quadratic lattices over Z
of rank m = 2n + 38, S a finite set of primes containing all prime divisors
of 2[M: M'] and such that M, is unimodular for p e S. There is a constant
¢ such that for every positive definite quadratic lattice N of rank n and
every collection (f,),s of isometries f: Z,N — Z,M there is an isometry f:
N — M satisfying

f=f,mod Z,M’ for every pe S,
f(Z,N) is primitive in Z,M for every pe S,

if min,.,.y @(x) > ¢, provided n = 2.
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