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Liquid-infused surfaces can reduce friction drag in both laminar and turbulent flows.
However, the heat transfer properties of such multi-phase surfaces have still not been
investigated to a large extent. We use numerical simulations to study conjugate heat
transfer of liquid-filled grooves. It is shown that heat transfer can increase for both
laminar and turbulent liquid flows due to recirculation in the surface texture. Laminar
flow simulations show that for the increase to be substantial, the thermal conductivity of
the solid must be similar to the thermal conductivity of the fluids, and the recirculation
in the grooves must be sufficiently strong (Péclet number larger than 1). The ratio of the
surface cavity to the system height is an upper limit of the direct contribution from the
recirculation. While this ratio can be significant for laminar flows in microchannels, it is
limited for turbulent flows, where the system scale (e.g. channel height) usually is much
larger than the texture height. However, heat transfer enhancement of the order of 10 %
is observed (with a net drag reduction) in a turbulent channel flow at a friction Reynolds
number Reτ ≈ 180. It is shown that the turbulent convection in the bulk can be enhanced
indirectly from the recirculation in the grooves.

Key words: drag reduction, mixing enhancement, turbulence simulation

1. Introduction

The simultaneous increase of heat transfer and reduction of drag in laminar and turbulent
fluid flows has turned out to be a considerable challenge. Such technology could lower
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Figure 1. (a) Current practice to increase heat transfer through wall modification and (b) suggested method by
using LIS. The working (external) fluid and the infusing liquid are shown in blue and green, respectively. The
solid is depicted in brown.

the power input required for driving the flow in heat exchangers, microprocessors and
other thermal systems. A common technique to increase heat transfer in applications is
to use rough or modified walls (figure 1a). While roughness, grooves, blades, ridges and
corrugations increase the surface heat flux, they also increase the momentum transport,
resulting in increased drag (Rohsenow et al. 1998). Enhancement of heat transfer in
pipes, channels and ducts can also be achieved by miniaturisation since this increases the
surface-to-volume ratio. Effectively, more liquid is then in contact with the surface for a
given volume flow rate. However, reduced dimensions also lead to increased wall friction
so that the required pressure drop (and pumping power) increases.

Both heat transfer increase and drag reduction can be achieved with complex surfaces
having multiple degrees of freedom to tune the surface-flow interaction. One example is
a liquid-infused surface (LIS). The infusing liquid creates dynamic interfaces that induce
a slipping effect on the external flow while affecting wall-normal velocity fluctuations
(figure 1b). The careful design of texture topology, liquid viscosity, thermal conductivity
and surface tension enables the precise tuning of transport processes.

In previous studies, superhydrophobic surfaces (SHS) have been used to reduce friction
while maintaining the benefits of reduced system size (see the review by Gong et al. 2021).
Similar effects could be accomplished with a LIS. An analytical model of heat transfer in
pipes with SHS or LIS, taking the reduced friction into account, was recently developed
by Hatte & Pitchumani (2021). Indeed, reducing the pipe radius increased the advantage
of using SHS and LIS. Ciri & Leonardi (2021) designed LIS and SHS that increased
heat transfer and decreased drag in direct numerical simulations of a turbulent channel
flow. Out of the many investigated surface configurations, this occurred only for SHS with
longitudinal grooves, dynamic interfaces and a gas–liquid thermal conductivity ratio of
one. The solid structures were also assumed to have a constant temperature. A thermal
conductivity ratio of one and isothermal textures are hard to realise in practice, however.

If the thermal conductivity of the solid texture is similar to a contiguous liquid, the heat
flux in neither phase is trivial. These solid–liquid combinations are not rare in applications.
For example, water has a higher thermal conductivity than polymer polydimethylsiloxane.
LIS made from such materials can be expected to have a very different heat flux compared
with LIS with isothermal surface textures. For metal solids, liquid metals may be used
as infusing liquids. There has recently been an increased interest in using liquid gallium
alloys with low toxicity in stretchable electronics (Dickey 2017). The thermal conductivity
of gallium is comparable to that of steel. An overview of some properties of representative
solids and liquids is given in table 1.

Using liquid and solid properties similar to those of existing materials, we have
investigated whether convection in the texture of LIS with transverse grooves can increase
the surface heat flux, considering both laminar and turbulent flows. This mode of heat
transfer has either been neglected or has not been evaluated closer in earlier works.
The study was performed by numerically solving the equations for the velocity and
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Heat transfer increase by convection

Material κ (W (mK)−1) μ (mPas) ρ (kg m−3) cp (kJ (kgK)−1)

Water 0.60 (R) 1.0 (R) 1000 (R) 4.18 (R)
Polydimethylsiloxane 0.16 (M) — 970 (M) 1.5 (M)
Gallium (liquid) 29 (L) 1.97 (L) 6080 (L) 0.35 (L)
Steel 45 (R) — 7800 (R) 0.43 (C)
Hexane 0.120 (R) 0.33 (VB) 655 (VB) 2.23 (R)
Heptane 0.124 (R) 0.43 (VB) 684 (VB) 2.20 (R)
Dodecane 0.135 (K1) 1.4 (VB) 750 (VB) 2.19 (K2)

Table 1. Overview of thermal conductivity, κ , viscosity, μ, density, ρ, and isobaric specific heat capacity,
cp, for some fluids and solids. (R, Rohsenow et al. (1998); M, Mark (2009); L, Liu, Sheng & He (2019); C,
Cardarelli (2018); VB, Van Buren & Smits (2017); K1, Kashiwagi et al. (1982); K2, Khasanshin, Shchamialiou
& Poddubskij (2003)).
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Figure 2. (a) Heat transport mechanisms contributing to the heat flux. (b) Schematic illustration of an
interface unit cell for LIS. The colours of the fluids and the solid are the same as in figure 1.

temperature fields. We considered the heat transfer between two external boundaries
of different temperature. The heat transport mechanisms of this set-up are shown in
figure 2(a).

The remainder of the article has the following structure. Governing equations and
definitions of relevant quantities are presented in § 2. In § 3, it is shown that the
contribution from the convection in the texture to the total heat flux is necessary to consider
when the thermal conductivity of the solid structures is similar to the infusing liquid.
Setting the solid and liquid thermal conductivities to the same value, the relation between
the surface convection, liquid, flow and geometric properties is described in § 4. Results
from turbulent flow simulations are presented in § 5. Conclusions are given in § 6.

2. Governing equations

We consider the momentum, continuity and energy equations for an incompressible system

ρ
∂u
∂t

+ ρ (u · ∇) u = −∇P + ∇ · μ
(∇u + (∇u)T)

, (2.1)

∇ · u = 0, (2.2)

ρcp
∂T
∂t

+ ρcpu · ∇T = ∇ · κ∇T, (2.3)
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where ρ is the density, t is the time, u is the fluid velocity, P is the pressure, μ is the
fluid viscosity, cp is the specific heat capacity, T is the temperature and κ is the thermal
conductivity. The streamwise coordinate is x, the wall-normal y, with y = 0 at the surface,
and the spanwise z. Equations (2.1) and (2.2) are valid in the domains occupied by the
external fluid and the infusing (internal) liquid. In the region occupied by the solid, only
(2.3) is valid and u = 0.

The differences between the fluid properties can be expressed through the viscosity
ratio μi/μ∞, the density ratio ρi/ρ∞, the specific heat capacity ratio cp,i/cp,∞ and the
thermal conductivity ratio κi/κ∞, where the subscripts i and ∞ refer to the infusing and
external fluids, respectively. For example, Rosenberg et al. (2016) and Van Buren & Smits
(2017) used a heptane–water system (among others) with μi/μ∞ = 0.43, κi/κ∞ = 0.21
and cp,i/cp,∞ = 0.53 (see also table 1). For simplicity and clarity, we have assumed that
densities and specific heat capacities in fluids and solid, and thermal conductivities in the
fluids, are equal, i.e.

ρ = ρs = ρi = ρ∞, cp = cp,s = cp,i = cp,∞, and κi = κ∞, (2.4a--c)

where a subscript s denotes solid properties.
The velocity satisfies the no-slip and impermeability conditions at solid boundaries.

Across liquid–liquid interfaces, the velocity and the shear stress are continuous
(disregarding surface tension gradients, see Sundin & Bagheri 2022). We have neglected
interface deformation, which is equivalent to imposing an infinite surface tension.
Consequently, the wall-normal velocity component v is zero at interfaces. The temperature
and the (instantaneous and local) heat flux are continuous at solid boundaries and
interfaces. Also, the temperature is a passive scalar, i.e. the momentum equation is
independent of the energy equation.

The surface-averaged heat flux, q, can be decomposed into different contributions using
the Fukagata, Iwamoto and Kasagi (FIK) identity of the energy equation (Fukagata,
Iwamoto & Kasagi 2005). In this decomposition, we consider a channel of height h and
grooves of depth k with a solid slab of the same thickness beneath (figure 2b). The solid
slab allows for temperature variations below the grooves in the simulations. The derivation
is outlined in Appendix A. The second term of (2.3) gives rise to two convection terms,
and the third term gives rise to three conduction terms. In total, the expression for q is

q = − κ∞
h + 2k

∫ h

0

〈
∂T
∂y

〉
dy − κs

h + 2k

∫ 0

−2k

〈
∂T
∂y

χs

〉
dy

− κi

h + 2k

∫ 0

−2k

〈
∂T
∂y

(1 − χs)

〉
dy + ρcp

h + 2k

∫ h

−k

〈
v′T ′〉 dy + ρcp

h + 2k

∫ h

−k

〈
ṽT̃

〉
dy

= qcond,∞ + qcond,s + qcond,i + qconv,r + qconv,d, (2.5)

where χs is an indicator function equal to 1 in the solid and 0 elsewhere. The operator 〈〉
denotes the average in time and the streamwise and spanwise directions. We have separated
the convective flux 〈vT〉 into a dispersive and a random component,

〈
ṽT̃

〉
and

〈
v′T ′〉,

respectively (Appendix B). Dispersive fluctuations (ṽ and T̃) are time-averaged deviations
from the mean due to the spatially varying surface properties, and random fluctuations (v′
and T ′) are the remaining (turbulent) fluctuations.

The first three terms on the last line of (2.5) describe conduction in the external liquid,
the solid and the infusing liquid, respectively. The following two terms correspond to
convection from random fluctuations and dispersive fluctuations in the vicinity of the
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Heat transfer increase by convection

surface, respectively. Each of these terms has its counterpart before the equality sign in
the same order. They also correspond to the heat transport mechanisms represented in
figure 2(a). It is mainly the recirculation in the grooves that gives rise to

〈
ṽT̃

〉
, which

results in qconv,d. At every wall-normal location, q needs to be the same since there is no
heat source inside the fluids or the solid.

The steady laminar flow problem was solved in an interface unit cell, illustrated in
figure 2(b). These simulations were performed using the finite element solver FreeFem++
(Hecht 2012; Lācis et al. 2020). The height of the channel was h = 2k so that the total
domain height was 4k. At the upper boundary, we imposed a constant shear stress τ∞ and
no normal stress. In the streamwise direction, periodic boundary conditions were imposed.
We applied constant temperatures Tu and Tl at the upper and the lower boundaries,
respectively. More details about the simulation set-up can be found in Appendix C. Details
about the turbulent simulations are given in § 5. A Reynolds number and a Péclet number
based on the external flow quantities were defined as Re∞ = ρU∞h/μ∞ and Pe∞ =
ρcpU∞h/κ∞, respectively, where U∞ is the resulting (mean) streamwise velocity at the
top boundary. The corresponding Prandtl number is Pr∞ = Pe∞/Re∞ = cpμ∞/κ∞.

3. Heat flux for varying solid conductivity

In laminar flow, there are no random fluctuations that transport heat. It follows that in the
decomposition of the heat flux, qconv,r = 0. Equation (2.5) reduces to

q = qcond,∞ + qcond,s + qcond,i + qconv,d. (3.1)

We will use the smooth-wall heat flux as a reference for the LIS simulations. If the surface
of the laminar flow is smooth, two additional simplifications can be made. Since there is
no spatially varying texture, the dispersive convection is zero. Neither is there infusing
liquid conducting heat. The heat flux only depends on the conduction in the solid and the
external fluid and can be evaluated to (Appendix A.1)

q0 = Tl − Tu

2k/κs + h/κ∞
. (3.2)

Notice that q0 also depends on κs, meaning that the reference heat flux changes with κs.
In figure 3(a), q/q0 is shown for varying solid conductivity ratios, κs/κi. The applied

shear stress corresponds to Re∞ = 100 (neglecting the slight increase in U∞ due to the
finite slip velocity). We consider three values of the Prandtl number, Pr∞ = 1, 10 and 100,
and three viscosity ratios, μi/μ∞ = 0.1, 1 and 10. For comparison, if the external fluid is
water, Pr∞ = 7, and the range of viscosity ratios covers all liquids of table 1. The pitch
(groove centre-to-centre distance) was p = 2k, and the groove width w = k.

When κs/κi = 1, there is an increase in q/q0 from unity because of convection. For
smaller κs/κi – when the solid is a poor heat conductor compared with the infusing
liquid – the average thermal conductivity of the composite surface is higher than for
the solid alone, resulting in an even more pronounced increase in q/q0. However, when
κs/κi is increased above unity, there is eventually a decrease in the surface heat flux. At
approximately κs/κi = 3, the simulations result in q/q0 < 1, except for the highest Pr∞
and the smallest viscosity ratio. It is thus necessary that κs � κi to have an increase in the
heat flux.

The different terms of (3.1) are illustrated in figure 3(b) for Pr∞ = 10, μi/μ∞ = 1, and
κs/κi = 0.5, 1 and 2. In the case of the poor solid conductor (κs/κi = 0.5), q/q0 would be
greater than unity even without convection, because of the heat conduction in the infusing
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Figure 3. (a) The change in q/q0 because of varying κs for three different viscosity ratios and Pr∞ = 1, 10 and
100 at Re∞ = 100. Each marker represents a simulation result, and the lines connect markers corresponding to
the same μi/μ∞ and Pr∞. The ratio q/q0 increases with increasing Pr∞ for a fixed κs/κi and μi/μ∞, indicated
by the arrow. The curves for Pr∞ = 1 are almost on top of each other. The dashed line shows q/q0 = 1.
(b) The different contributions to q for κs/κi = 0.5, 1, and 2 at Re∞ = 100, μi/μ∞ = 1 and Pr∞ = 10.
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Figure 4. Filled contour plots of the temperature at Re∞ = 100, μi/μ∞ = 1 and Pr∞ = 10, for (a) κs/κi =
0.5, (b) κs/κi = 1 and (c) κs/κi = 2. The colour bar gives the corresponding temperatures, ranging from Tu
(0) to Tl (1). Streamlines (white dashed lines) indicate the velocity field, computed as contour lines of the
streamfunction (constant increment in the groove; showing a few in the external flow). The edges of the solid
are marked with solid lines. In and around the groove, there is a distortion of the temperature field due to
convection. The convection increases heat transfer in all three cases. However, in (a), the higher thermal
conductivity in the infusing liquid also increases q/q0. In (c), the solid has a higher thermal conductivity,
reducing the benefit of the groove. The heat fluxes in and out of the groove are illustrated with arrows in (b).
The attached numbers are the heat fluxes normalised by q.

liquid (qcond,i). For a good solid conductor (κs/κi = 2), the convection (qcond,d) cannot
compensate for the cutout of the solid that is the groove. However, for κs/κi = 1, it is
the convection that increases q/q0 above unity. Contour plots of the temperature fields
of these three cases are shown in figure 4, together with streamlines. The streamlines
indicate similarity between LIS and d-type roughness, with the external flow prevented
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from penetrating the texture (Jiménez 2004); this behaviour is enforced by the interface
and therefore also holds for larger values of w/k. The contour levels of the temperature
field have less spacing in the region of higher conductivity. They are also distorted in and
around the grooves due to convection. The convection increases the temperature on the left
side of the cavity and decreases it on the right side.

We computed the heat fluxes through the different groove walls and the interface for the
simulation in figure 4(b). These fluxes are also illustrated with arrows in the figure. Heat is
transferred into (out of) the groove through the bottom wall (interface) and the right (left)
wall. Through the interface, the heat flux was qI/q = 1.071, i.e. slightly more than the
average heat flux of the surface. The heat fluxes through the left, right and bottom walls
were qL/q = 0.160, qR/q = 0.209 and qB/q = 1.021, respectively (imbalance |qerr|/q =
1.6 × 10−3). The increase of heat flux through the bottom wall, qB > q, and sides,
qR, qL > 0 is due to the convection of the cavity vortex. This convection is quantified
by qconv,d and provides a net positive contribution to the total heat transfer of the surface
(figure 3b).

4. Properties of the dispersive convection

In the previous section, it was illustrated how the heat flux depends on κs/κi. We now focus
on the dependency on the fluid and flow properties expressed through Pr∞ and Re∞. Since
qconv,d is responsible for q/q0 increasing above unity when the thermal conductivities are
similar, the discussion is limited to κs/κi = 1. The heat then diffuses at the same rate in
the solid as in the liquid, and the sum of the conduction terms can be simplified (Appendix
A.2), leading to

q = qcond,∞ + qcond,s + qcond,i + qconv,d = κ∞
h + 2k

(Tl − Tu)︸ ︷︷ ︸
qcond,∞+qcond,s+qcond,i

+ ρcp

h + 2k

∫ h

−k

〈
ṽT̃

〉
dy

︸ ︷︷ ︸
qconv,d

.

(4.1)

The sum of the conduction terms is denoted by qcond and corresponds to q0 (3.2).
The relative contribution from convection to the total heat flux, qconv,d/q, is shown in

figure 5(a) as a function of Re∞. These results were obtained for μi/μ∞ = 1 and Pr∞ =
0.1, 1, 10 and 100, each curve corresponding to a specific Prandtl number. For a constant
Re∞, qconv,d/q increases with Pr∞, as is indicated in figure 3(a). If qconv,d/q instead is
expressed as a function of Pe∞ = Re∞Pr∞, the curves collapse, as shown in figure 5(b).
In this figure, we also include the results for μi/μ∞ = 0.1 and μi/μ∞ = 10, however.
For a specific Pe∞, there is a dependency of qconv,d/q on the viscosity ratio. Even if
Re∞ is constant, the magnitude of the flow inside the groove changes with viscosity ratio,
and thereby the dispersive convection. Therefore, we need to define Reynolds and Péclet
numbers that better characterise the flow at the surface.

4.1. Surface Reynolds and Péclet numbers
A representative velocity of the flow in the grooves is the mean velocity at the interface. If
it is averaged over the whole surface, it equals the slip velocity Us, which is 〈u〉 at y = 0,
where u is the streamwise velocity component. Using Us and k as velocity and length
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Figure 5. The relative contribution to the heat flux from convection as a function of (a) Re∞, (b) Pe∞ and
(c) Pei. In (a), results for μi/μ∞ = 1 are shown; (b,c) contain results for μi/μ∞ = 0.1, 1 and 10 (colours and
symbols as in figure 3a). Prandtl numbers are Pr∞ = 0.1, 1, 10 and 100. The ratio qconv,d/q increases with
Pr∞ for a specific Re∞ (lines connect markers of identical μi/μ∞ and Pr∞). For a certain viscosity ratio, the
curves collapse if expressed as a function of Pe∞. However, if defined as a function of Pei, they all collapse.
The black dash-dotted line in (c) is (4.3).

scales, respectively, we define Reynolds and Péclet numbers as

Rei = ρUsk
μi

and Pei = ρcpUsk
κi

, (4.2a,b)

together with a Prandtl number Pri = Pei/Rei = cpμi/κi. Curves for different viscosity
ratios collapse if qconv,d/q is expressed as a function of Pei, as shown in figure 5(c).

For Pei � 1, there is a noticeable increase in qconv,d/q. At Pei = 10, qconv,d/q is greater
than 1 %. The simulation results in figure 5(c) are well approximated by a logarithmic
function for 101 < Pei < 103. This set of Pei is the vital interval in practice, as it results in
significant increases in heat transfer while still being attainable. The logarithmic function
shown in the figure is

qconv,d

q
= k

h + 2k
0.11 ln(Pei − 7.6), (4.3)

found by fitting the data. This relationship is different from the power laws used
for the similar problem of a lid-driven cavity (Moallemi & Jang 1992). Here, the
logarithmic expression gives a better fit. For comparison, the root-mean-squared error
of the logarithmic expression was 0.0054, whereas, for a power-law fit of α(Peβ

i − 1), it
was 0.011, where α = 0.73k/(h + 2k) and β = 0.11 (with −1 added assuming qconv,d = 0
when Pei = 1).

The relationships between Re∞ and Rei obtained from the simulations are plotted
in figure 6(a). The slip velocity is related to the wall-normal derivative of U = 〈u〉
as Us = b dU/dy|y=0, where b is the (effective) slip length, and dU/dy is evaluated
at the interface in the external fluid. Since U∞ = (h + b) dU/dy|y=0, the Re∞-to-Rei
relation is a function of b (Appendix D). Slip lengths have also been derived
analytically in the Stokes limit (Re∞ → 0) by Schönecker, Baier & Hardt (2014), with
the corresponding Re∞-to-Rei relations also shown in figure 6(a). There is reasonable
agreement between the Stokes flow results and the simulations up to moderate Rei
(16 % difference for Rei = 19 with μi/μ∞ = 0.1), indicating that the flow field in the
cavities remains similar. Analytical slip lengths normalised by the pitch are plotted in
figure 6(b).
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Re∞
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Figure 6. (a) The Reynolds number of the flow in the grooves, Rei, expressed as a function of the external flow
Reynolds number, Re∞, for p/k = 2 and three different viscosity ratios (μi/μ∞ = 0.1, 1 and 10, with colours
and symbols as in figure 3a). The relation is approximately linear for low Reynolds numbers. The linearity is
made visible by the lines Rei = Re∞b/(h + b) · kμ∞/(hμi), with b predicted for Stokes flow (black). (b) The
derived Stokes limit slip lengths over the pitch, b/p, for p/k = 2, 4 and 8, and groove width w = p − k.

In figure 7, qconv,d/q is shown for other cavity widths and pitches. For p/k = 4 and the
same vertical wall thickness, there is a reasonable agreement with (4.3) (figure 7a). This
texture corresponds to a solid fraction φs = 1/4 (i.e. 1 − w/p). For p/k = 4 and φs =
1/2, it also holds (figure 7b). However, for φs = 3/4, the increase of qconv,d/q with Pei
is slower (figure 7c). For p/k = 8, the relation is valid for φs = 1/8 and φs = 1/2 but not
for φs = 3/4 (figure 7d–f ). Based on these simulations, it is clear that (4.3) holds at least
in the interval 2 ≤ p/k ≤ 8 for φs ≤ 1/2, 101 < Pei < 103, κs = κi = κ∞ and not too thin
vertical walls (p − w ≥ k).

Assuming that
〈
ṽT̃

〉
is approximately zero above the grooves (y ≥ 0) – this is confirmed

in figure 10(a) and discussed more later – we obtain,

qconv,d

q
= 1

h + 2k

∫ h

−k

ρcp

〈
ṽT̃

〉
q

dy ≈ 1
h + 2k

∫ 0

−k

ρcp

〈
ṽT̃

〉
q

dy <
k

h + 2k
. (4.4)

This inequality is based on the assumption ρcp

〈
ṽT̃

〉
< q, i.e. d 〈T〉 /dy < 0, which has been

seen to be violated locally for high Pr∞ but by a negligible amount (figure 13f ). The ratio
k/(h + 2k) is thus an approximate upper limit of qconv,d/q, and (4.3) cannot be expected
to be valid for Pei 
 103. For the laminar simulations (h = 2k), the limiting value is 25 %.
Moreover, from (2.5), one may see that qconv,d ∝ k/(h + 2k). For the investigated groove
widths (1 ≤ w/k ≤ 7), the vertical size of the vortices in the grooves is approximately k.
Therefore, the integral of

〈
ṽT̃

〉
scales with k. The definition of qconv,d then results in the

scaling with k/(h + 2k) (2.5), which was used in (4.3).

4.2. Surface Nusselt number
Since the dispersive convection mainly is contained in the grooves, it is possible to quantify
the heat transfer through the LIS by a surface Nusselt number. We consider only the
texture, equivalent to h = 0, and define average temperatures at the interface (the slip
temperature) and the bottom of the texture, Ts = 〈T〉 |y=0 and Tlt = 〈T〉 |y=−k, respectively.
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Figure 7. The relative contribution to the heat flux from convection for (a–c) p/k = 4 and (d–f ) p/k = 8. The
colours and symbols represent viscosity ratios as in figure 3(a), and the same Pr∞ as in figure 5 were used.
Equation (4.3) is also shown (dashed-dotted line). The solver did not converge for some of the higher Rei, so
these points have been removed.

The surface Nusselt number becomes (Appendix E)

Nui = kq
κi(Tlt − Ts)

= 1
1 − qconv,d/q

. (4.5)

The inequality in (4.4), applied to the texture only, limits Nui to finite positive values.
Heat exchangers can be represented by thermal resistance circuits (Rohsenow et al.

1998). The thermal resistances of the circuit components, proportional to the inverse of
their Nusselt numbers, are then evaluated separately. These resistances can then be added
to form the total thermal resistance of the system if they are in series. Hatte & Pitchumani
(2021) constructed such a model to describe convective heat transfer in pipes with LIS,
with the texture and the bulk as components. However, they implicitly neglected the
dispersive convection by imposing Nui = 1. Since Nui > 1 with convection included (see
4.5), the resulting heat flux of the complete system is higher than their model predicts.
In the upper limit of (4.4) applied to the texture, Nui → ∞. Accordingly, the thermal
resistance of the surface becomes zero. Equation (4.5), together with (4.3) to describe
qconv,d/q, could be used for a more precise evaluation of Nui for the parameters and surface
geometry considered in this study.

5. Flow with turbulence

We have carried out simulations of a turbulent channel flow with LIS using a finite
difference method. The bulk Reynolds number was set to Reb = ρUbH/μ∞ = 2800,
resulting in a friction Reynolds number of Reτ = ρuτ H/μ∞ ≈ 180, where H = h/2 is the
channel half-height, Ub is the bulk velocity and uτ is the friction velocity. A constant mass
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Tl

h = 2H

3.2H

6.4Hk
k

p

Tu

k

x
y

z

Figure 8. Sketch of the flow domain used in the turbulent simulations. The mean flow is in the positive
x-direction. The upper wall is smooth. Transverse grooves have been added on the lower wall, on top of a
slab of the same height, k. They correspond to a solid fraction φs = 1/4. The colours of the infusing liquid and
the solid are the same as in figure 1. The external fluid is not shown.

flow rate was achieved by applying a uniform volume force in the infusing and external
liquids. The simulation domain is illustrated in figure 8. It had dimensions (Lx, Ly, Lz) =
(6.4H, 2H + 2k, 3.2H), and the number of grid points was (Nx, Ny, Nz) = (640, 384, 640)

in the streamwise, wall-normal and spanwise directions. The grid was stretched in the
wall-normal direction but uniform in the streamwise and spanwise directions. The smallest
wall-normal grid spacing was 
y+ ≈ 0.2, where a superscript + indicates wall units.

We placed transverse grooves with p/k = 4, φs = 1/4 and k = 0.05H on the lower
wall (−0.05H ≤ y ≤ 0), on top of a slab of solid material with the same thickness
(−0.1H ≤ y ≤ −0.05H). The groove height corresponds to k+ ≈ 9. All wall units were
based on the friction velocity of the lower surface, computed from the balance between
the applied volume force in the external flow and the wall-shear stress of the smooth
upper wall. The wall-unit scaled groove dimensions correspond roughly to LIS used in
experiments by Fu et al. (2019). We imposed constant temperatures Tu and Tl at the upper
and lower boundaries, respectively, similar to the laminar configuration. The viscosity
ratio was set to μi/μ∞ = 0.4, corresponding roughly to heptane–water (table 1). The solid
thermal conductivity was κs = κi. We performed three simulations with Prandtl numbers
Pr∞ = 1, 2, and 4, respectively. These simulations were also conducted with smooth
walls, replacing the grooves with solid material. For more information about the code
and grid sensitivity studies, the reader is referred to Ciri & Leonardi (2021), where the
same code was used with a similar set-up. The results from the turbulent simulations are
summarised in table 2 and will be discussed in the following subsections. Some statistics
from the turbulent simulations are given in Appendix F.

5.1. Turbulent heat transfer mechanisms
All the terms in (2.5) contribute to the heat flux in a turbulent flow since the flow contains
random fluctuations. The change in the heat flux can be written as

q
q0 = qcond

q0 + qconv,r

q0 + qconv,d

q0 . (5.1)

Figure 9 shows the heat flux components for smooth and liquid-infused surfaces. We
observe that the contribution of the dispersive term is very small (qconv,d/q0 ∼ 1 %)
for all Prandtl numbers. Nevertheless, the total increase of the heat flux compared
with the smooth-wall flow, q/q0, was 3.3 %, 7.8 % and 14 % for Pr∞ = 1, 2 and 4,
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Pr∞ DR (%)
q − q0

q0 (%) Nu0 ε × 103 qconv,d

q
× 103 q

q0
τ 0

τ

1 2.8 3.3 5.8 1.7 3.8 1.06
2 2.8 7.8 7.5 2.3 7.3 1.11
4 2.8 13.6 9.3 2.4 10.5 1.17

Table 2. Summary of results from the turbulent simulations. The friction Reynolds number of the smooth
channel flow was Re0

τ = 178.7, and for the flow with LIS, Reτ = 176.1, based on the friction velocity of
the textured surface. The drag reduction (DR) was computed by (5.7) and the quantities τ 0, q0, and Nu0 are
wall-shear stress, heat flux and Nusselt number of the smooth-wall simulations, respectively. The heat transfer
increase has an uncertainty of ±2 % (Appendix F).

1 1 (LIS) 2 2 (LIS) 4 4 (LIS)
0

0.2

0.4

0.6

0.8

1.0

1.2

qcond/q0

qconv,r/q0

qconv,d/q0

Pr∞
Figure 9. Contributions to q/q0 for the different turbulent flow cases. On this scale, qconv,d is hardly visible,

corresponding to approximately 1 % or less of q (table 2).

respectively (table 2). As shown in figure 9, for all these cases, the increase in qconv,r/q0

dominates the change in the heat flux. However, the main reason behind the enhancement
of qconv,r/q0 is the small but finite value of qconv,d/q, as will be shown later in this section.

First, however, we note that if (4.4) is valid also for turbulent flows, then the upper limit
of qconv,d/q for the turbulent flow set-up is 2.4 %. For a corresponding symmetric channel,
the upper limit would be 4.5 %. The potential contribution from qconv,d/q is, therefore,

somewhat restricted for this set-up. Figure 10(a) shows ρcp

〈
ṽT̃

〉
/q =

〈
ṽT̃

〉+
from turbulent

and laminar simulations for the same Reynolds number Rei = 29. The agreement between
the two systems is reasonably good and we can thus use the laminar flow to interpret
the turbulent simulations. This is also corroborated by figure 10(b), where qconv,d/q is
compared with (4.3), corresponding to figure 7(a) for the laminar simulations. Indeed,
earlier studies indicate that dispersive quantities of rough-wall flow can be reproduced by
laminar flow if the offset of the mean velocity in the logarithmic region compared with
smooth-wall flow is small (
U+ � 2) (Abderrahaman-Elena, Fairhall & García-Mayoral

2019). Correspondence between the laminar and turbulent results of
〈
ṽT̃

〉+
is therefore

expected here.
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Figure 10. (a) Comparison of convective heat flux for LIS in laminar flow (— — —, black) and turbulent flow

(— — —,
〈
ṽT̃

〉+
; ——,

〈
v′T ′〉+; · · · · · ·, smooth-wall reference; blue, red and yellow for Pr∞ = 1, 2 and 4,

respectively). For laminar and turbulent flows,
〈
ṽT̃

〉+ ≈ 0 in the bulk flow (y > 0), and for the turbulent flow,〈
v′T ′〉+ ≈ 0 inside the grooves (y < 0). (b) Comparison of qconv,d/q from the turbulent simulations (colours as

in a) and (4.3) (dash-dotted line).

In the following, we rewrite (5.1) to gain a better insight into the role of the random
fluctuations in the heat transfer process. The conduction term corresponds to

qcond

q0 = q0
cond

q0 = κ∞(Tl − Tu)

(h + 2k)q0 = 1
Nu0 , (5.2)

where Nu0 is the Nusselt number of the smooth-wall flow. Figure 10(a) compares the
convective heat flux of a smooth and LIS, where we observe only minor changes in the
random component,

〈
v′T ′〉+. We introduce the difference in qconv,r/q between the flow

over the LIS and in the smooth channel

ε = qconv,r

q
− q0

conv,r

q0 . (5.3)

It follows that

qconv,r

q0 = q0
conv,r

q0
q
q0 + ε

q
q0 =

(
1 − 1

Nu0

)
q
q0 + ε

q
q0 , (5.4)

using q0
conv,r/q0 = 1 − q0

cond/q0 and (5.2) in the second step. Assuming ε = 0, the ratio
of the random convection to the total heat flux, qconv,r/q, does not change for the flow over
LIS compared with the smooth-wall flow. Accordingly, qconv,r/q0 is proportional to q/q0.

Now, using (5.2) and (5.4), (5.1) can be written as

q
q0 = 1 + Nu0

(
qconv,d

q0 + ε
q
q0

)
. (5.5)

Assuming ε = 0, we have virtually eliminated qconv,r/q0 and qcond/q0 from (5.1); instead
Nu0 acts as amplification factor for qconv,d/q0. For a laminar flow Nu0 = 1, i.e. there
is no amplification. On the other hand, if there are random fluctuations in the flow,
Nu0 = q0

conv,r/q0
cond + 1, demonstrating how Nu0 increases due to convection. Hence, Nu0

is a measure of the amplification of qconv,d/q0 by the random fluctuations. Indeed, this
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Rei

100 101 102 103
q/

q0  
− 

1
0

0.05

0.10

0.15

0.20

Figure 11. Comparison of (5.6), assuming ε = 0 (solid lines) and ε = 2.3 × 10−3 (dotted lines, corresponding
to Pr∞ = 2), with simulation results shown with circles for the three values of Pr∞. The colours are the same
as in figure 10(a).

amplification can be substantial. Values measured from the simulations with smooth walls
were Nu0 = 5.8, 7.5 and 9.3 for Pr∞ = 1, 2 and 4, respectively (table 2). This effect can
be expected to increase with increasing bulk Reynolds or Prandtl numbers; Kim & Lee
(2020) noticed that Nu0 increases linearly with Reτ for a channel with smooth isothermal
walls. As q/q0 increases due to the dispersive convection, so does qconv,r/q0 by (5.4).

5.2. Predictions of heat transfer increase
By rearranging (5.5), we get an analytical expression for the change in heat flux as

q
q0 =

[
1 − Nu0

(
qconv,d

q
+ ε

)]−1

=
[

1 − Nu0
(

qconv,d

q

)]−1

+ O(ε)

=
[

1 − q0k
κ∞(Tl − Tu)

0.11 ln(Pei − 7.6)

]−1

+ O(ε). (5.6)

Here, we have performed a Taylor series expansion around ε = 0. Equation (4.3) has been
used in the latter form of the expression (applicable if 101 < Pei < 103). The Nusselt
number Nu0 (and q0) depends on Pr∞ and Reb but can be determined without performing
simulations of LIS since it is a result of the smooth-wall flow. The other input parameter,
Rei, can be computed or estimated using b/p from figure 6(b). Therefore, if ε is neglected,
(5.6) predicts the heat flux of the LIS. Rastegari & Akhavan (2015) and Ciri & Leonardi
(2021) constructed similar relationships for drag reduction and heat transfer increase with
isothermal solids, respectively.

Equation (5.6) is shown in figure 11, both for ε = 0 and ε = 2.3 × 10−3. The latter
corresponds to the measured value for Pr∞ = 2. For Pr∞ = 1, ε was somewhat lower,
and for Pr∞ = 4 slightly higher (see table 2). The positive values of ε further enhance the
heat flux, which is seen from the first form of the expression in (5.6). This expression with
ε = 0 is thus a lower limit of q/q0. Since the sum of ε and qconv,d/q enters the equation,
their magnitudes can be compared: qconv,d/q is 2.2, 3.1 and 4.4 times larger for Pr∞ = 1,
2 and 4, respectively.

941 A9-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

27
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.279


Heat transfer increase by convection

y+

v+
rms

0

0.2

0.4

0.6

0.8

1.0

b+0
20 40 60 0 1 2 3

DR

–0.1

0

0.1

0.2(b)(a)

Figure 12. (a) The root-mean-squared wall-normal velocity for turbulent flow over LIS (——, v+
rms; — — —,

dispersive component v+
rms,d; — · —, random component v+

rms,r; · · · · · ·, smooth-wall reference). (b) The drag
reduction of the current LIS as a function of the slip length in nominal wall units (circle), compared with the
ideal relation by Rastegari & Akhavan (2015) (solid line).

5.3. Heat flux to drag ratio

The slight increase of
〈
v′T ′〉+ is reflected by the wall-normal velocity fluctuations. As

shown in figure 12(a), the root-mean-squared value v+
rms increases near the surface. Such

roughness effects severely reduce the drag benefits for transverse grooves (Ciri & Leonardi
2021). The LIS gave a slight drag reduction compared with the smooth wall

DR = τ 0 − τ

τ 0 = 0.028, (5.7)

where τ is the total drag of the lower surface, and τ 0 is the wall-shear stress from the
reference simulation with smooth walls. The current DR and the ideal drag reduction
relationship by Rastegari & Akhavan (2015) are shown in figure 12(b). This relationship
was derived for channels with symmetric walls but can also be applied to asymmetric
configurations if DR is computed by (5.7) (Fu et al. 2017; Ciri & Leonardi 2021).
Without degrading effects, it predicts that the drag reduction would be 8 %. Nevertheless,
we achieve DR > 0 together with a heat transfer increase for this geometry. Interface
deformations, which have been neglected here, tend to reduce DR and increase convection
further (Cartagena et al. 2018; Ciri & Leonardi 2021; Sundin, Zaleski & Bagheri 2021).

The heat transfer efficiency of the system can be measured by the heat flux to drag ratio
or, equally, the Reynolds analogy factor, 2St/Cf , where St is the Stanton number and Cf
is the friction coefficient. According to the Reynolds analogy, 2St/Cf = 1 for flow over
smooth walls with Pr∞ = 1 (Kestin & Richardson 1963). Changes in the heat flux to
drag ratio when introducing surface modifications at this Prandtl number thus indicate a
breakage of the Reynolds analogy. A growth or a reduction equal increased or decreased
heat transfer efficiency, respectively. However, the exact value of 2St/Cf for smooth-wall
flows depends on the normalisation used to form the non-dimensional numbers. The heat
flux to drag ratio normalised with the smooth-wall reference values, (q/q0)(τ 0/τ), is a
valid measure of the heat transfer efficiency independently of the Prandtl number. This
quantity is reported in table 2. Since both q/q0 > 1 and τ 0/τ > 1 for the current set-up,
(q/q0)(τ 0/τ) exceeds unity, having a maximum value of 1.17 for Pr∞ = 4. For LIS and
SHS with isothermal solids, it ranges between 0.9 and 1.2 (Ciri & Leonardi 2021). Rough
walls with either irregular (Forooghi, Stripf & Frohnapfel 2018) or structured textures
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(such as transverse bars or rods (Leonardi et al. 2015)) have been seen to reduce the
Reynolds analogy factor.

6. Conclusions

For LIS with transverse grooves, shear stress due to the external flow induces recirculation
in the cavities. This recirculation increases the heat transfer by dispersive convection,
contributing qconv,d to the total heat flux. A net increase in the heat flux compared with a
smooth surface, q/q0 > 1, can be achieved in laminar flows if the thermal conductivity
of the solid is similar to or smaller than the conductivity of infusing liquid, κs � κi.
If κs ≈ κi, qconv,d may be essential. Therefore, we have investigated the convection for
κs = κi in greater detail. The ratio qconv,d/q can be expressed as a function of the Péclet
number based on the slip velocity and the groove height, Pei. This function resembles a
logarithmic function in the interval 101 < Pei < 103, (4.3). The same approximation is
also applicable for turbulent external flow.

Dispersive convection occurs only inside and in the vicinity of the surface. Therefore,
apart from the dependency on Pei, qconv,d is proportional to the ratio of the groove height
to the total system height. This ratio is also an approximate upper limit of qconv,d/q
(4.4). For turbulent flows, the convection from random fluctuations in the bulk flow,
qconv,r, dominates. However, qconv,r/q changes only slightly from the smooth-wall flow.
Therefore, the dispersive convection can amplify the heat flux considerably even for
turbulent flows, as expressed by (5.6).

The convection in the LIS texture could be used in applications to achieve increased
heat transfer. Numerous liquids can be used for LIS, whereas constraints on solid surface
materials, such as weight, could limit their thermal conductivity. Low weight, for example,
has been a driving force in the increased usage of micro heat exchangers (Dixit & Ghosh
2015). In addition to the increased surface heat flux, the slip induced by the LIS leads
to reduced friction which lowers the required power input (Hatte & Pitchumani 2021).
These two properties make LIS augmented convective heat transfer a promising method
for achieving more efficient heat exchangers.
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Appendix A. FIK identities

We begin with the energy equation, (2.3), and assume periodicity in the streamwise
and spanwise directions. Taking the average in time and the streamwise and spanwise
directions, denoted by the operator 〈〉,

ρcp
d
dy

〈vT〉 − d
dy

〈
κ

∂T
∂y

〉
= 0. (A1)
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Heat transfer increase by convection

Integration from −2k, corresponding to the bottom of the domain, to y, expresses a balance
between convective fluxes and conduction

ρcp 〈vT〉 − ρcp 〈vT〉|−2k −
〈
κ

∂T
∂y

〉
+

〈
κ

∂T
∂y

〉∣∣∣∣−2k
= 0. (A2)

We integrate a second time from −2k to h

ρcp

∫ h

−2k
〈vT〉 dy − ρcp 〈vT〉|−2k (h + 2k)

−
∫ h

−2k

〈
κ

∂T
∂y

〉
dy + κ

〈
∂T
∂y

〉∣∣∣∣−2k
(h + 2k) = 0. (A3)

Identifying the heat flux at the bottom of the domain

q = −κ

〈
∂T
∂y

〉∣∣∣∣−2k
+ ρcp 〈vT〉|−2k

= − 1
h + 2k

∫ h

−2k

〈
κ

∂T
∂y

〉
dy + ρcp

h + 2k

∫ h

−2k
〈vT〉 dy. (A4)

The integral of the conduction term can be split into an external fluid and a surface term
by considering integration limits from y = 0 to h and y = −2k to 0, respectively. We
decompose the convective flux (see Appendix B)

〈vT〉 =
〈
ṽT̃

〉
+ 〈

v′T ′〉 , (A5)

where
〈
ṽT̃

〉
is the dispersive component and

〈
v′T ′〉 is the random, external flow component.

This results in

q = − 1
h + 2k

∫ h

0

〈
κ

∂T
∂y

〉
dy − 1

h + 2k

∫ 0

−2k

〈
κ

∂T
∂y

〉
dy + ρcp

h + 2k

∫ h

−k

〈
v′T ′〉 dy

+ ρcp

h + 2k

∫ h

−k

〈
ṽT̃

〉
dy = qcond,∞ + qcond,s + qcond,i + qconv,r + qconv,d, (A6)

where conductive and convective parts have been identified. The conduction in the solid
and the infusing liquid are separated after the equal sign. They can be written as

qcond,s = − 1
h + 2k

∫ 0

−2k

〈
κs

∂T
∂y

χs

〉
dy, (A7)

qcond,i = − 1
h + 2k

∫ 0

−2k

〈
κi

∂T
∂y

(1 − χs)

〉
dy, (A8)

where the indicator function χs = 1 inside the solid and 0 in the liquid. The thermal
conductivity κ has been identified with its value in each domain. It might therefore be
moved out of the average operators and the integrals. Equation (A6) then results in (2.5).
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A.1. Laminar flow over a smooth wall
For a laminar flow over a smooth wall, (A1) reduces to

− d
dy

〈
κ

∂T
∂y

〉
= 0, (A9)

which means −〈κ∂T/∂y〉 is constant everywhere, and equal to q. Integrating (A9) over
the solid and the external fluid

q = κs

2k
(Tl − Ts) and q = κ∞

h
(Ts − Tu), (A10a,b)

respectively, where Tl = 〈T〉 |y=−2k, Tu = 〈T〉 |y=h and Ts = 〈T〉 |y=0. These two
expressions give a solution for Ts,

Ts =
(κ∞

h
Tu + κs

2k
Tl

)/ (κ∞
h

+ κs

2k

)
. (A11)

Putting this expression back into (A10)

q = Tl − Tu

2k/κs + h/κ∞
. (A12)

A.2. Homogeneous thermal conductivity
Simplifications of (A6) can be made by assuming κ = κi = κ∞ = κs. Then

− 1
h + 2k

∫ h

0

〈
κ

∂T
∂y

〉
dy − 1

h + 2k

∫ 0

−2k

〈
κ

∂T
∂y

〉
dy

= κ

h + 2k
(Ts − Tu) + κ

h + 2k
(Tl − Ts) = κ

h + 2k
(Tl − Tu). (A13)

Hence

q = κ

h + 2k
(Tl − Tu) + ρcp

h + 2k

∫ h

−k

〈
v′T ′〉 dy + ρcp

h + 2k

∫ h

−k

〈
ṽT̃

〉
dy. (A14)

The first term is equal to (A12), as it corresponds to only the conduction.

Appendix B. Flow decomposition

For the quantity u

U = 〈u〉 = 1
LxLz
t

∫ Lx

0

∫ Lz

0

∫ t′+
t

t′
u(x, y, z, t) dt dz dx, (B1)

starting averaging at some time t′ and over a time difference 
t. The extent of the domain
in the streamwise and spanwise directions is represented by Lx and Lz, respectively. We
may also introduce an average in time with a zero plane average, ,̃ such that

ũ = 1

t

∫ t′+
t

t′
u(x, y, z, t) dt − 〈u〉 , (B2)

giving the dispersive fluctuations. Since the transverse grooves are aligned in the
spanwise direction, spatial averaging in this direction may be applied when computing
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Heat transfer increase by convection

these components. The periodicity of the structures can also be exploited. Using a triple
decomposition (neglecting nonlinear terms, see Abderrahaman-Elena et al. 2019)

u = U + ũ + u′, (B3)

where u′ are the random fluctuations attributed to the background turbulence. The

root-mean-squared value is urms =
√〈

(u − U)2
〉
. The dispersive root-mean-squared value

is urms,d =
√〈

ũ2
〉
. Also,

u2
rms =

〈
(ũ + u′)2

〉
= u2

rms,d + u2
rms,r + 2

〈
ũu′〉 , (B4)

where urms,r =
√〈

u′2〉. The last term is zero since there is no correlation between ũ and u′.
Such cross-correlations are always zero because ũ is independent of t, whereas the average
of u′ in t is zero. Similarly, for wall-normal velocity and temperature

〈vT〉 =
〈
(ṽ + v′)(T + T̃ + T ′)

〉
=

〈
ṽT̃

〉
+ 〈

v′T ′〉 . (B5)

Appendix C. Simulations with FreeFem++

The finite element solver FreeFem++ (Hecht 2012) was used to carry out the laminar
simulations of the unit cell in two dimensions. We used a built-in tool to generate a triangle
mesh with similar spacing in the streamwise and wall-normal directions, conforming to
the solid boundaries and the interface. The velocities and the temperature were described
by quadratic (P2) and the pressure by linear (P1) finite elements. The momentum and
continuity equations were solved simultaneously in an iterative manner until convergence
was reached. Afterwards, the equation for the temperature was solved.

We performed a grid convergence study for κi = κ∞ = κs, p/k = 4, w/k = 3 (φs =
1/4) and μi/μ∞ = 0.4, corresponding to the values used in the turbulent simulations.
Further, Re∞ = 270, Rei = 24 and both Pr∞ = 1 and 100 were tested. The simulations
were run with grids generated with Ny = 200, 400 and 800 triangles along the wall-normal
boundary. The differences in U∞ and q between the grids were less than 0.1 % for Pr∞ =
1 and 100. These insignificant differences show that the simulations, to a large extent, are
independent of the grid. Plots of relevant quantities are shown in figure 13. Velocities are
normalised with the friction velocity, uτ , temperature with Tl − Tu and 〈vT〉 with q/(ρcp).
The heat flux, q, was assessed at the top boundary. For Pr∞ = 100, there was a noticeable
peak in the total heat flux at the interface, decreasing with increased resolution. It indicates
the need for a fine grid to resolve the gradient in 〈vT〉 (figure 13f ). However, because
of the consistency in the heat flux elsewhere, all three resolutions were still considered
acceptable. For the rest of the simulations, we used Ny = 400.

Appendix D. Analytical slip length in the Stokes limit

For constant shear stress, the velocity at y = h is U∞ = h dU/dy|y=0 + Us = (h +
b) dU/dy|y=0. Hence

Rei

Re∞
= b

h + b
kμ∞
hμi

. (D1)

An expression for the slip length in the Stokes limit of both longitudinal and transverse
LIS was derived by Schönecker et al. (2014). For transverse grooves, the slip length
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Figure 13. Grid convergence study for laminar flow with FreeFem++, with κi = κ∞ = κs, p/k = 4, μi/μ∞ =
0.4, Rei = 24 and Pr∞ = 1 and 100. Three grids were used, with Ny = 200, 400 and 800 cells in the
wall-normal direction. The horizontal scale is normalised with groove height, k, and corresponds to the
complete domain, with the interface at y = 0. In (b), u+

rms and v+
rms denote the streamwise and wall-normal

root-mean-squared velocities, respectively.

normalised by the pitch is

b
p

=
ln

(
cos

(πa
2

))

2π + μi

2aDt(A, a)μ∞
ln

⎛
⎜⎝1 + sin

(πa
2

)
1 − sin

(πa
2

)
⎞
⎟⎠

, (D2)

where a = w/p is the liquid fraction (i.e. 1 − φs), and Dt(A, a) is the maximum value of
the local slip length normalised by w and μ∞/μi, with A = k/w here being the groove
aspect ratio. It can be expressed as

Dt(A, a) = f (a)β erf
(

g(a)
√

π

8f (a)β
A
)

, (D3)
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Figure 14. Statistics from the turbulent flow simulations (——-, LIS; · · · · · ·, smooth-wall reference; blue, red
and yellow for Pr∞ = 1, 2 and 4, respectively). Wall units are based on the friction velocity of the lower wall.
In (c), w+

rms denotes the spanwise root-mean-squared velocity.

where β = 0.505/(2π), erf(x) is the error function,

f (a) = −

ln

⎛
⎜⎝1 + sin

(πa
2

)
1 − sin

(πa
2

)
⎞
⎟⎠

2a ln 2

⎛
⎜⎝1 +

2 ln
(

cos
(πa

2

))
2a arctanh(a) + ln(1 − a2)

⎞
⎟⎠

, and g(a) = 4
π

− 4 − π

π
a.

(D4a,b)
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Appendix E. Derivation of the surface Nusselt number

It is possible to derive a surface Nusselt number by considering only the surface instead
of the complete domain. The average temperatures at the interface and the bottom of the
texture are Ts = 〈T〉 |y=0 and Tlt = 〈T〉 |y=−k, respectively. We assume that κs = κi and

q = qcond + qconv,d = κi

k
(Tlt − Ts) + qconv,d. (E1)

The expression (4.5) for the surface Nusselt number can be derived from the definition as
follows:

Nui = kq
κi(Tlt − Ts)

= k
κi(Tlt − Ts)

qcond

(
1 + qconv,d

q − qconv,d

)

= 1 + qconv,d

q − qconv,d
= q

q − qconv,d
= 1

1 − qconv,d/q
. (E2)

Appendix F. Simulations of turbulent flow

Statistics from the turbulent simulations are shown in figure 14. The mean temperature
profiles are shown as T+ = (Tl − 〈T〉)ρcpuτ /q.

The different contributions to the surface heat flux, q, for the turbulent flow simulations
are shown in figure 9. For these simulations, q was assessed as the sum of the contributions.
Deviations in the total heat flux across the channel were generally minor (approximately
2 %). However, at the grooves, the errors were slightly larger. The maximum deviation

occurred for Pr∞ = 4 (Δ = 0.075, cf.
〈
ṽT̃

〉+
in figure 10(a) with a maximum 0.77). If〈

ṽT̃
〉+

is assumed to have a similar error in the grooves (i.e. qconv,d/q ± Δ · k/(2k + h)),

the heat transfer increase is 0.12 ≤ q/q0 − 1 ≤ 0.16 by (5.6). Compared with the value
reported in table 2, the bounds correspond to a difference of approximately 2 percentage
points, which does not affect any conclusions.
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