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LETTER TO THE EDITOR

Dear Editor,
On the covariances of outdegrees in random plane recursive trees

In 2005 Janson [3], extending the earlier work of Mahmoud et al. [4], established the joint
asymptotic normality of the outdegrees of a random plane recursive tree (we refer to [3] for
references, discussion, and statements, and to [2] for a much wider context). In particular, he
gave the following formula for the entries of the limiting covariance matrix [3, Theorem 1.3]:

σ̃ij = 2
i∑

k=0

j∑
l=0

(−1)k+l

k + l + 4

(
i

k

)(
j

l

)(
2(k + l + 4)!

(k + 3)!(l + 3)! − 1 − (k + 1)(l + 1)

(k + 3)(l + 3)

)
. (1)

Since this formula is not very convenient to work with (in particular the behavior of σ̃ij as i

and/or j grow to ∞ is not immediately clear), we found it worthwhile to point out that it may
be simplified considerably. Throughout, (x)m = x(x − 1) . . . (x − (m− 1)) denotes the falling
factorial.

Proposition 1. For all integers i ≥ 0, j ≥ 0, we have

σ̃ij = 16

(i + 3)3(j + 3)3
− 24

(i + j + 4)4
if i �= j,

σ̃jj = 4

(j + 3)3
+ 16

(j + 3)2
3

− 24

(2j + 4)4
.

For the proof we will need two identities involving binomial coefficients that we present in the
following two lemmas.

Lemma 1. For all integers k ≥ 0, a ≥ 0, and j ≥ k,

j∑
l=0

(−1)l
(

j

l

)(
k + l + a

l + a

)
=

{
0 if j > k,

(−1)j if j = k.

Proof. This is a special case of equation (5.24) in [1] as we have found thanks to the
encouragement by one of the referees to search for a source in the literature. It corresponds to
m = 0 and s = n+ a in the notation used in [1]. However, to keep this letter self-contained we
supply a short proof. We proceed by induction over k for all a and j ≥ k. If k = 0 the equality
holds for all a ≥ 0 since its left-hand side is (1 − 1)j if j > 0 and 1 if j = 0. Assume that it
holds for nonnegative integers up to k and all values of a and j ≥ k. Let a ≥ 0 be any integer.
For j ≥ k + 1,

j∑
l=0

(−1)l
(

j

l

)(
k + 1 + l + a

l + a

)
= k + 1 + a

k + 1

j∑
l=0

(−1)l
(

j

l

)(
k + l + a

l + a

)

+
j∑

l=0

(−1)l
(

j !
l!(j − l)!

)(
l(k + l + a)!

(k + 1)! (l + a)!
)

.
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The first sum is 0 by the inductive hypothesis. We cancel the ls in the second sum and write it
as

j∑
l=1

(−1)l
(

j !
(l − 1)! (j − l)!

)(
(k + l − 1 + a + 1)!

(k + 1)k! (l − 1 + a + 1)!
)

= − j

k + 1

j−1∑
l=0

(−1)l
(

j − 1

l

)(
k + l + a + 1

l + a + 1

)
.

By the inductive hypothesis (applied to k, a + 1, and j − 1) this sum is 0 if j − 1 > k and is
(−1)j−1 if j − 1 = k. This proves that the original expression is 0 if j > k + 1 and is (−1)j

if j = k + 1 thus completing the induction.

Lemma 2. For all integers j ≥ 0, i ≥ 0, and a ≥ 1, we have

j∑
l=0

(−1)l

(l + a)
(
l+a+i

i

)(
j

l

)
= 1

a
(
i+j+a

a

) = (a − 1)!
(i + j + a)a

.

Proof. We use induction over j ≥ 0 for all a ≥ 1 and i ≥ 0. (Alternatively i can stay fixed
throughout). When j = 0 both sides are 1/(a

(
a+i
i

)
). Assume that the statement holds for all

integers up to j and all a ≥ 1. We will prove that it holds for j + 1 and all integers a ≥ 1. We
have

j+1∑
l=0

(−1)l

(l + a)
(
l+a+i

i

)(
j + 1

l

)
=

j+1∑
l=0

(−1)l

(l + a)
(
l+a+i

i

){(
j

l

)
+

(
j

l − 1

)}

=
j∑

l=0

(−1)l

(l + a)
(
l+a+i

i

)(
j

l

)
+

j+1∑
l=1

(−1)l

(l + a)
(
l+a+i

i

)(
j

l − 1

)

= 1

a
(
i+j+a

a

) +
j+1∑
l=1

(−1)l−1+1

(l − 1 + a + 1)
(
l−1+a+1+i

i

)(
j

l − 1

)

= 1

a
(
i+j+a

a

) −
j∑

l=0

(−1)l

(l + a + 1)
(
l+a+1+i

i

)(
j

l

)

= 1

a
(
i+j+a

a

) − 1

(a + 1)
(
i+j+a+1

a+1

)
= (a − 1)! (i + j)!

(i + j + a)!
{

1 − a

i + j + a + 1

}

= (a − 1)! (i + j + 1)!
(i + j + a + 1)!

= 1

a
(
i+j+1+a

a

) ,

where we have used the inductive hypothesis, first with j and a and then with j and a +1. This
proves Lemma 2.
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Proof of Proposition 1. Assume, without loss of generality, that 0 ≤ i ≤ j . We split the
right–hand side of (1) as

4
i∑

k=0

j∑
l=0

(−1)k+l

k + l + 4

(
i

k

)(
j

l

)
(k + l + 4)!

(k + 3)! (l + 3)! (2)

−2
i∑

k=0

j∑
l=0

(−1)k+l

k + l + 4

(
i

k

)(
j

l

)(
1 + (k + 1)(l + 1)

(k + 3)(l + 3)

)
. (3)

We claim that (2) is 0 unless i = j in which case it is 4/(j + 3)3. To see this note that

(k + l + 4)!
(k + l + 4)(k + 3)!(l + 3)! = 1

(k + 3)3

(
k + l + 3

l + 3

)
,

so that

i∑
k=0

j∑
l=0

(−1)k+l

k + l + 4

(
i

k

)(
j

l

)
(k + l + 4)!

(k + 3)!(l + 3)! =
i∑

k=0

(−1)k

(k + 3)3

(
i

k

) j∑
l=0

(−1)l
(

j

l

)(
k + l + 3

l + 3

)
.

Since k ≤ i and we assumed that i ≤ j , by Lemma 1, the inner sum is 0 unless i = j and if
that is the case only the term k = i = j in the outer sum is nonzero and it is

(−1)j

(j + 3)3

(
j

j

) j∑
l=0

(−1)l
(

j

l

)(
j + l + 3

l + 3

)
= (−1)2j

(j + 3)3
= 1

(j + 3)3

by Lemma 1. To handle (3), we write

1 + (k + 1)(l + 1)

(k + 3)(l + 3)
= 2

(k + 1)(l + 1) + (k + l + 4)

(k + 3)(l + 3)
,

so that (3) is

−4
i∑

k=0

(−1)k
k + 1

k + 3

(
i

k

) j∑
l=0

(−1)l
l + 1

(l + 3)(k + l + 4)

(
j

l

)
(4)

−4
i∑

k=0

(−1)k
1

k + 3

(
i

k

) j∑
l=0

(−1)l
1

l + 3

(
j

l

)
. (5)

By Lemma 2 (used with a = 3 and i = 0), (5) can be written as

−4

(
2

(i + 3)3

)(
2

(j + 3)3

)
= − 16

(i + 3)3(j + 3)3
.

To handle (4), we first note that

j∑
l=0

(−1)l
l + 1

(l + 3)(k + l + 4)

(
j

l

)
= k + 3

(k + 1)(k + 4)
(
k+j+4

j

) − 2

3(k + 1)
(
j+3
j

) .

This follows from partial fraction decomposition

l + 1

(l + 3)(k + l + 4)
=

(
k + 3

k + 1

)(
1

k + l + 4

)
− 2

(k + 1)(l + 3)
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and
j∑

l=0

(−1)l

k + l + 4

(
j

l

)
= 1

(k + 4)
(
k+j+4

j

) ,

j∑
l=0

(−1)l

l + 3

(
j

l

)
= 1

3
(
j+3
j

) ,

which is Lemma 2 used twice with a = k + 4 and i = 0 for the first equality and with a = 3
and i = 0 for the second equality. Therefore, (4) can be written as

−4
i∑

k=0

(−1)k
1

(k + 4)
(
k+j+4

j

)(
i

k

)
+ 16

(j + 3)3

i∑
k=0

(−1)k
1

k + 3

(
i

k

)
.

Applying Lemma 2 (with a = 4 and general i) to the first term and with a = 3 and i = 0 to
the second term, we find that (4) is

− 24

(i + j + 4)4
+ 32

(i + 3)3(j + 3)3
.

Hence, the combined contribution of (4) and (5) is

− 16

(i + 3)3(j + 3)3
+ 32

(i + 3)3(j + 3)3
− 24

(i + j + 4)4
= 16

(i + 3)3(j + 3)3
− 24

(i + j + 4)4
,

which completes the proof.
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