Correspondence

DEAR EDITOR,

I was pleasantly surprised to stumble across yet another example of the same discovery made independently in different parts of the globe: The divisibility test for 19 given in the November 1998 issue of the Mathematical Gazette by Humphreys and Macharia was also offered, as part of a more general result, by a high school student in India, Apoorva Khare, in 'Divisibility Tests' by A. Khare, Furman University Electronic Journal of Undergraduate Mathematics, Volume 3, 1997, pp 1-5. That is not to take anything away from the H-M article, which I found explained the special case more usefully.

$$
\begin{aligned}
& \text { Yours sincerely, } \\
& \text { Univo SURENDRAN } \\
& \text { Universty of Zimbabwe, Harare, Zimbabwe }
\end{aligned}
$$

DEAR EDITOR,

In a recent note entitled 'The convergence of a Lucas series' [Math. Gaz. 83 (July 1999) pp. 273-274], T. Koshy undertook to prove that, for integral $k \geqslant 2$, the ratio $(2 k-1) /\left(k^{2}-k-1\right)$ is integral if, and only if, $k=2$ or $k=3$. Koshy's approach was unnecessarily involved. Here is a more direct proof of this result.

For $k \geqslant 2,(2 k-1) /\left(k^{2}-k-1\right)$ is positive. Furthermore, this ratio can only be integral if $\left(k^{2}-k-1\right) \leqslant(2 k-1)$, i.e. if $k(k-3) \leqslant 0$. The only solutions for integral $k \geqslant 2$ are then obviously $k=2,3$.

Yours sincerely,

> N. GAUTHIER
> Department of Physics, Royal Military College of Canada, Kingston, Ontario, Canada

DEAR EDITOR,
With regard to the article [1] by K. Robin McLean, an interesting variation on 'Diffy' is to play 'Quiffy', in which one finds the larger quotient of each number with its successor in the cycle, ending with a cycle of ones e.g.

4	7	2	1
$7 / 4$	$7 / 2$	2	4
2	$7 / 4$	2	$16 / 7$
$8 / 7$	$8 / 7$	$8 / 7$	$8 / 7$
1	1	1	1

The reason that the process works is simple, since, if we take logarithms of each number, we are then playing 'Diffy' (unsigned differences) and reaching a cycle of zeros $(\ln 1=0)$.

An interesting sidelight is a very simple proof that, if the cycle of four positive numbers is not equivalent to a purely increasing sequence, the process terminates after at most six steps. (Cycles are equivalent when cycled, reversed, multiplied by a constant, or raised to a power.)

