ON THE POWERS OF SOME TRANSCENDENTAL NUMBERS

Artūras Dubickas

Abstract

We construct a transcendental number α whose powers $\alpha^{n!}, n=1,2,3, \ldots$, modulo 1 are everywhere dense in the interval $[0,1]$. Similarly, for any sequence of positive numbers $\delta=\left(\delta_{n}\right)_{n=1}^{\infty}$, we find a transcendental number $\alpha=\alpha(\delta)$ such that the inequality $\left\{\alpha^{n}\right\}<\delta_{n}$ holds for infinitely many $n \in \mathbb{N}$, no matter how fast the sequence δ converges to zero. Finally, for any sequence of real numbers $\left(r_{n}\right)_{n=1}^{\infty}$ and any sequence of positive numbers $\left(\delta_{n}\right)_{n=1}^{\infty}$, we construct an increasing sequence of positive integers $\left(q_{n}\right)_{n=1}^{\infty}$ and a number $\alpha>1$ such that $\left\|\alpha^{q_{n}}-r_{n}\right\|<\delta_{n}$ for each $n \geqslant 1$.

1. Introduction

Throughout this paper, we shall denote by $\{x\},[x]$ and $\|x\|$ the fractional part of a real number x, the integral part of x, and the distance from x to the nearest integer, respectively. Clearly, $x=[x]+\{x\}$ and $\|x\|=\min (\{x\}, 1-\{x\})$. By \mathbb{N} and \mathbb{Q} we denote the set of positive integers and the set of rational numbers, respectively.

Let $\alpha>1$ be a real number. Koksma [7] proved that for almost all $\alpha>1$ the fractional parts $\left\{\alpha^{n}\right\}_{n=1}^{\infty}$ are uniformly distributed in the interval [0,1]. However, for most specific α, the distribution of the sequence $\left\{\alpha^{n}\right\}_{n=1}^{\infty}$ is an open question. The "exceptional" α in this respect (in the sense that for them the distribution of the sequence $\left\{\alpha^{n}\right\}_{n=1}^{\infty}$ in [0,1$]$ is quite well-known) are Pisot and Salem numbers. See, for instance, Salem's book [14] and some recent papers on this kind of problems [3, 5, 6, 9, 17]. In general, the problem of the distribution of the fractional parts $\left\{\alpha^{n}\right\}_{n=1}^{\infty}$ goes back to Weyl [16]. Later, some unsolved problems about the distribution of the powers of the number $\alpha=3 / 2$ were raised by Vijayaraghavan [15] and Mahler [11]. The current status of these problems is described in a recent review of Adhikari and Rath [1].

Since we shall be concerned with Pisot numbers later on, let us recall that a real algebraic integer $\alpha>1$ is called a Pisot number if its conjugates over \mathbb{Q}, except for α itself, all lie in the open unit disc $|z|<1$. For each Pisot number α, we have $\left\|\alpha^{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$ (see also [5, 6, 9] for some related problems). In contrast, for a Salem number α, by a result of Pisot and Salem [13], the sequence $\left\{\alpha^{n}\right\}_{n=1}^{\infty}$ is everywhere dense in $[0,1]$,

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/07 \$A2.00+0.00.
but not uniformly distributed in $[0,1]$. Hence, for every α which is an m th root of a Salem number with some $m \in \mathbb{N}$, the sequence $\left\{\alpha^{n}\right\}_{n=1}^{\infty}$ is also everywhere dense in $[0,1]$.

However, if $\alpha>1$ is an algebraic number which is neither a Pisot number nor a root of a Salem number, then the distribution of the sequence $\left\{\alpha^{n}\right\}_{n=1}^{\infty}$ is not known. Moreover, if α is a transcendental number, say, $\alpha=e, \pi, \log 3$ or similar, then it is not even known whether the sequence $\left\{\alpha^{n}\right\}_{n=1}^{\infty}$ has just one or more than one limit point. One of the results of Pisot [12] implies, for example, that there are arbitrarily large numbers α for which $\left\{\alpha^{n}\right\} \in[1 / 2-1 / \alpha, 1 / 2+1 / \alpha]$ for every $n \geqslant n_{0}$. It is clear that such an α cannot be a Pisot number or a Salem number. So, generally speaking, the sequence $\left\{\alpha^{n}\right\}_{n=1}^{\infty}$ need not even be dense in $[0,1]$ for some α that are not Pisot numbers. It is quite tempting to conjecture that if $\alpha>1$ is an algebraic number, but not a Pisot number, then the sequence $\left\{\alpha^{n}\right\}_{n=1}^{\infty}$ is dense in $[0,1]$. However, such a problem is far beyond reach even for $\alpha=\sqrt{2}$. Curiously, but except for an unpublished manuscript of Lerma [8] who gives a (quite complicated) construction of some $\alpha>1$ whose powers are uniformly distributed in [0,1] it seems like that there is no method known which would allow the explicit construction of a transcendental number α whose powers modulo 1 are everywhere dense in $[0,1]$, although, by the above mentioned result of Koksma, almost all transcendental numbers have this property. We thus begin with the following construction of α by a recurrent sequence similar to [2]. For such α, the sequence $\left\{\alpha^{n}\right\}_{n=1}^{\infty}$ is everywhere dense, because its subsequence $\left\{\alpha^{n!}\right\}_{n=1}^{\infty}$ is everywhere dense.

ThEOREM 1. Let $\left(r_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers in $[0,1)$ which is everywhere dense in $[0,1]$ such that $r_{n}=0$ for infinitely many indices n. Suppose that $x_{1}:=1$ and $x_{n}:=1+\left[\left(x_{n-1}+r_{n-1}\right)^{n}-r_{n}\right]$ for $n \geqslant 2$. Then the limit $\alpha:=\lim _{n \rightarrow \infty}\left(x_{n}+r_{n}\right)^{1 / n!}>1$ exists, it is a transcendental number, and the sequence $\left\{\alpha^{n!}\right\}_{n=1}^{\infty}$ is everywhere dense in [0,1].

We can take, for instance, r_{n} to be the nth term of the sequence of blocks of Farey fractions that are separated by one zero

$$
1 / 2,0,1 / 3,2 / 3,0,1 / 4,3 / 4,0,1 / 5,2 / 5,3 / 5,4 / 5,0,1 / 6,5 / 6,0, \ldots
$$

The problem of the distribution of the sequence $\left\{\alpha^{n}\right\}_{n=1}^{\infty}$ in $[0,1]$ is related to a purely diophantine problem of how close the elements of this sequence are to 0 and 1 . Recently, Corvaja and Zannier [4] generalised an old result of Mahler [10] and proved that if $\alpha>1$ is an algebraic number such that, for some positive $\delta<1$, the inequality $\left\|\alpha^{n}\right\|<(1-\delta)^{n}$ has infinitely many solutions in positive integers n then α^{m} is a Pisot number for some $m \in \mathbb{N}$. Earlier, Mahler proved this result for rational numbers α using a version of Roth's theorem. In principle, using some properties of Pisot numbers, one can derive our next theorem from [4]. However, since the condition on δ_{n} is much stronger than the one considered in [4], we shall give a simple direct proof without using the results of [4].

Theorem 2. Let α be a real number and let $\left(\delta_{n}\right)_{n=1}^{\infty}$ be a sequence of positive numbers satisfying $\lim _{n \rightarrow \infty} \delta_{n}^{1 / n}=0$. If the inequality $\left\|\alpha^{n}\right\|<\delta_{n}$ has infinitely many solutions in $n \in \mathbb{N}$ then either α is a transcendental number or α^{m} is an integer for some $m \in \mathbb{N}$.

In addition, it is shown in [4] that there exists a transcendental number $\alpha>1$ such that $\left\|\alpha^{n}\right\|<2^{-n}$ for infinitely many $n \in \mathbb{N}$. In this direction, for any sequence $\boldsymbol{\delta}=\left(\delta_{n}\right)_{n=1}^{\infty}$ of positive numbers, we construct a transcendental number $\alpha=\alpha(\boldsymbol{\delta})$ such that the inequality $\left\|\alpha^{n}\right\|<\delta_{n}$ holds for infinitely many $n \in \mathbb{N}$, no matter how fast the the sequence δ converges to 0 .

ThEDREM 3. Let $\delta=\left(\delta_{n}\right)_{n=1}^{\infty}$ be a sequence of positive numbers. Set $x_{1}:=1$ and $x_{n}:=x_{n-1}^{u_{n}}+1$ for $n \geqslant 2$, where $u_{1}=1, u_{2}, u_{3}, \ldots$ are some positive integers depending on δ (see the proof how). Then the limit $\alpha:=\lim _{n \rightarrow \infty} x_{n}^{1 /\left(u_{1} u_{2} \ldots u_{n}\right)}>1$ exists, it is a transcendental number, and the inequality $\left\{\alpha^{n}\right\}<\delta_{n}$ holds for infinitely many $n \in \mathbb{N}$.

In fact, not only zero but also any given sequence can be "copied" by some powers of α modulo 1 with any prescribed accuracy. In our final theorem, we do not bother about the arithmetical nature of the limit α. (One can easily ensure that the number α in Theorem 4 below is transcendental, for example, by adding infinitely many "extra terms" $r_{n}=0$ and by increasing the "gaps" between consecutive q_{n} 's if necessary.) Also, we replace $1+\lceil x]$ by the ceiling function $\lceil x\rceil$ and construct the approximants to α directly rather than via integer parts of their powers as in Theorems 1 and 3. More precisely, we show that, for any sequence of real numbers $\left(r_{n}\right)_{n=1}^{\infty}$, there is a number $\alpha>1$ whose powers $\alpha^{q_{n}}$, where q_{n} are some positive integers, tend to the numbers r_{n} (with respect to the metric $\|\cdot\|)$ with any prescribed rate.

THEOREM 4. Let $\delta=\left(\delta_{n}\right)_{n=1}^{\infty}$ be a sequence of positive numbers, and let $\left(r_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. Suppose that $y_{0} \geqslant 2$ and $y_{n}:=\left(\left\lceil y_{n-1}^{q_{n}}\right\rceil+r_{n}\right)^{1 / q_{n}}$ for $n \geqslant 1$, where $q_{1}<q_{2}<q_{3}<\ldots$ are any positive integers satisfying $q_{n+1} \geqslant q_{n}+\log _{2}\left(1 / \delta_{n}\right)+3$ for $n \geqslant 1$. Then the limit $\alpha:=\lim _{n \rightarrow \infty} y_{n} \geqslant 2$ exists, and, for this α, the inequality $\left\|\alpha^{q_{n}}-r_{n}\right\|<\delta_{n}$ holds for each $n \in \mathbb{N}$.

In particular, Theorem 4 implies that, for any sequence of real numbers $\left(r_{n}\right)_{n=1}^{\infty}$ and any sequence of positive integers $q_{1}<q_{2}<q_{3}<\ldots$ satisfying $\lim _{n \rightarrow \infty}\left(q_{n+1}-q_{n}\right)=\infty$, there is an $\alpha>2$ such that $\lim _{n \rightarrow \infty}\left\|\alpha^{q_{n}}-r_{n}\right\|=0$. Also, setting $\delta_{n}=\varepsilon$ for $n \in \mathbb{N}$, taking $g_{n}=m n$ for $n \in \mathbb{N}$ with some fixed $m \geqslant \log _{2}(1 / \varepsilon)+3$, and writing α for α^{m}, we deduce the following corollary:

Corollary 5. Let $\left(r_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. Then, for any $\varepsilon>0$, there is an $\alpha>1$ such that $\left\|\alpha^{n}-\tau_{n}\right\|<\varepsilon$ for each $n \in \mathbf{N}$.

The construction itself and all of the proofs in this paper are similar to those in [2]. In the next section, we first give a self-contained proof of Theorem 2 and then derive from it an auxiliary lemma. The proofs of Theorems 1 and 3 given in Section 3 are based on the lemma. In Section 4 we shall prove Theorem 4.

2. On the approximation of the powers of a number

Proof of Theorem 2: If $|\alpha|<1$ then $\left\|\alpha^{n}\right\|=|\alpha|^{n}$ for each $n \geqslant n_{1}(\alpha)$, so $|\alpha|=\left\|\alpha^{n}\right\|^{1 / n}<\delta_{n}^{1 / n}$ has infinitely many solutions in $n \in \mathbb{N}$ only if $\alpha=0$. For $\alpha= \pm 1$, the claim is also trivial. So, without loss of generality, we can assume that $|\alpha|>1$.

Let I be the infinite set of indices n for which $\left\|\alpha^{n}\right\|<\delta_{n}$. Suppose that α is an algebraic number, say, of degree d with conjugates $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{d}$ over \mathbb{Q}. Let also $a_{d} \in \mathbb{N}$ be the leading coefficient of the minimal polynomial of α over \mathbb{Q}. Put $x_{n}:=\left[\alpha^{n}+1 / 2\right]$. Consider the product $P_{n}:=a_{d}^{n} \prod_{j=1}^{d}\left(\alpha_{j}^{n}-x_{n}\right)$. It is a rational integer.

If $P_{n}=0$, then $\alpha_{j}^{n}=x_{n}$ for some index j. By considering any automorphism of the normal extension $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{d}\right) / \mathbb{Q}$ which maps $\alpha_{j} \mapsto \alpha$ and using the fact that x_{n} is an integer, we obtain that $\alpha^{n}=x_{n}$. This implies that α^{m} is an integer for some $m \in \mathbb{N}$. If $P_{n} \neq 0$, then $\left|P_{n}\right| \geqslant 1$. For each $n \in I$, we have $\left|\alpha^{n}-x_{n}\right|<\delta_{n}$. Hence

$$
a_{d}^{n} \delta_{n} \prod_{j=2}^{d}\left|\alpha_{j}^{n}-x_{n}\right|>\left|P_{n}\right| \geqslant 1
$$

Putting $c:=\max _{1 \leqslant j \leqslant d}\left|\alpha_{j}\right|$ and using $\left|x_{n}\right| \leqslant|\alpha|^{n}+1 / 2<c^{n}+1$, we obtain that

$$
1<a_{d}^{n} \delta_{n}\left(\left|x_{n}\right|+c^{n}\right)^{d-1} \leqslant a_{d}^{n} \delta_{n}\left(2 c^{n}+1\right)^{d-1} \leqslant \delta_{n} b^{n}
$$

where b is a positive constant depending on α only (and not on n). Hence $1 / b<\delta_{n}^{1 / n}$ for every $n \in I$. This is a contradiction with $\lim _{n \rightarrow \infty} \delta_{n}^{1 / n}=0$, which implies that α is a transcendental number.

LEMMA 6. Let $\left(r_{n}\right)_{n=1}^{\infty}$ be an arbitrary sequence of real numbers in $[0,1)$ satisfying $r_{n}=0$ for infinitely many indices n. Suppose that $x_{1}:=1$ and

$$
x_{n}:=1+\left[\left(x_{n-1}+r_{n-1}\right)^{n v_{n}}-r_{n}\right]
$$

for $n \geqslant 2$, where $v_{1}=1, v_{2}, v_{3}, \ldots$ are positive integers. Then

$$
\alpha:=\lim _{n \rightarrow \infty}\left(x_{n}+r_{n}\right)^{1 /\left(n!v_{1} v_{2} \ldots v_{n}\right)}
$$

is a transcendental number greater than 1 and

$$
x_{n}+r_{n}<\alpha^{n!v_{1} \ldots v_{n}}<x_{n}+r_{n}+\left(x_{n}+r_{n}\right)^{-n v_{n}+1}
$$

for each $n \geqslant 2$.
Proof: Observe that the sequence $\left(x_{n}+r_{n}\right)^{1 /\left(n!v_{1} \ldots v_{n}\right)}$ is increasing. Indeed, by the definition of x_{n},

$$
x_{n}+r_{n}=1+\left[\left(x_{n-1}+r_{n-1}\right)^{n v_{n}}-r_{n}\right]+r_{n}>\left(x_{n-1}+r_{n-1}\right)^{n v_{n}} .
$$

Next, we shall show that the sequence $\left(x_{n}+r_{n}+\left(x_{n}+r_{n}\right)^{-n v_{n+1}}\right)^{1 /\left(n!v_{1} \ldots v_{n}\right)}$ is decreasing. To prove this, we need to show that

$$
x_{n}+r_{n}+\left(x_{n}+r_{n}\right)^{-n v_{n+1}}<\left(x_{n-1}+r_{n-1}+\left(x_{n-1}+r_{n-1}\right)^{-(n-1) v_{n}}\right)^{n v_{n}} .
$$

Indeed, using $x_{n}+r_{n} \leqslant 1+\left(x_{n-1}+r_{n-1}\right)^{n u_{n}}$ and $v_{n} \geqslant 1$, we deduce that, for each $n \geqslant 3$,

$$
\begin{aligned}
\left(x_{n-1}+r_{n-1}+\left(x_{n-1}+\right.\right. & \left.\left.r_{n-1}\right)^{-(n-1) v_{n}}\right)^{n v_{n}} \\
& \geqslant\left(x_{n-1}+r_{n-1}\right)^{n v_{n}}+n v_{n}\left(x_{n-1}+r_{n-1}\right)^{n v_{n}-1-(n-1) v_{n}} \\
& \geqslant\left(x_{n-1}+r_{n-1}\right)^{n v_{n}}+n v_{n} \geqslant\left(x_{n-1}+r_{n-1}\right)^{n v_{n}}+3 \\
& \geqslant x_{n}+r_{n}+2>x_{n}+r_{n}+\left(x_{n}+r_{n}\right)^{-n v_{n+1}} .
\end{aligned}
$$

It follows that the sequences $x_{n}^{1 /\left(n!v_{1} \ldots v_{n}\right)}, n=1,2, \ldots$, (which is increasing) and $\left(x_{n}+r_{n}+\left(x_{n}+r_{n}\right)^{-n v_{n+1}}\right)^{1 /\left(n!v_{1} \ldots v_{n}\right)}, n=2,3, \ldots$, (which is decreasing) tend to certain limits, say, α and γ, respectively, as n tends to infinity. Obviously, $\alpha \leqslant \gamma$, so

$$
x_{n}+r_{n}<\alpha^{n!v_{1} \ldots v_{n}} \leqslant \gamma^{n!v_{1} \ldots v_{n}}<x_{n}+r_{n}+\left(x_{n}+r_{n}\right)^{-n v_{n+1}}
$$

for each $n \geqslant 2$. Note that, since the right hand side is at most $x_{n}+r_{n}+1$, we have $\alpha=\gamma$ (although we shall not need it). It is clear that $\alpha>1$.

Next, we shall prove that the number α is transcendental. Let I be the infinite set of indices n for which $r_{n}=0$. Denote $V_{n}:=n!v_{1} \ldots v_{n}$. We have $x_{n}<\alpha^{V_{n}}<x_{n}+x_{n}^{-n v_{n+1}}$ $\leqslant x_{n}+x_{n}^{-n} \leqslant x_{n}+1$. Fix $\beta \in(1, \alpha)$. Then $\alpha^{V_{n}}-1>\beta^{V_{n}}$ for each sufficiently large n. Hence $\left\|\alpha^{V_{n}}\right\|<x_{n}^{-n}<\left(\alpha^{V_{n}}-1\right)^{-n}<\beta^{-n V_{n}}$ for each sufficiently large $n \in I$. By Theorem 2, either α is a transcendental number or $\alpha^{m} \in \mathbb{N}$ for some $m \in \mathbb{N}$. However, if α^{m} is an integer, then $\alpha^{V_{n}}$ must be an integer too for every $n \geqslant m$, because $V_{n}=n!v_{1} \ldots v_{n}$ is divisible by m. This is, however, not the case, because $\alpha^{V_{n}} \in\left(x_{n}, x_{n}+1\right)$ for $n \geqslant 2$. Consequently, α is a transcendental number.

3. Proofs of Theorems 1 and 3

Proof of Theorem 1: Let us apply the lemma for $v_{1}=v_{2}=v_{3}=\cdots=1$. The lemma implies that $\alpha:=\lim _{n \rightarrow \infty} x_{n}^{1 / n!}$ is a transcendental number greater than 1 and $x_{n}+r_{n}<\alpha^{n!}<x_{n}+r_{n}+x_{n}^{-n}$ for $n \geqslant 2$.

Fix $y \in(0,1)$. In order to prove that y is a limit point of the sequence $\left\{\alpha^{n!}\right\}_{n=1}^{\infty}$ it is sufficient to show that, for any positive number ε satisfying $\varepsilon<1-y$, there is an $n \in \mathbf{N}$ such that $\left\{\alpha^{n!}\right\} \in(y, y+\varepsilon)$. Indeed, the interval $(y, y+\varepsilon / 2)$ contains infinitely many r_{n} 's. Let I be the set of corresponding n 's. We claim that $\left\{\alpha^{n!}\right\} \in(y, y+\varepsilon)$ for all sufficiently large $n \in I$. For this, it is sufficient to show that

$$
x_{n}+y<\alpha^{n!}<x_{n}+y+\varepsilon
$$

Indeed, adding two inequalities $y<r_{n}$ and $x_{n}+r_{n}<\alpha^{n!}$, we immediately get the first inequality $x_{n}+y<\alpha^{n!}$. The second inequality, namely, $\alpha^{n!}<x_{n}+y+\varepsilon$ would follow from the inequalities $r_{n}<y+\varepsilon / 2$ (which holds by the definition of I) and $\alpha^{n!}<x_{n}+r_{n}+\varepsilon / 2$. From $\alpha^{n!}<x_{n}+r_{n}+x_{n}^{-n}$, we see that the required inequality holds if $x_{n}^{n}>2 / \varepsilon$. This is indeed the the case, because $x_{n}>\alpha^{n!}-r_{n}-1$, so $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Finally, since the sequence $\left\{\alpha^{n!}\right\}_{n=1}^{\infty}$ is everywhere dense in (0,1), it is everywhere dense in $[0,1]$.

Proof of Theorem 3: This time, we shall apply the lemma with $r_{1}=r_{2}=r_{3}=$ $\cdots=0$ and with $u_{n}=n v_{n}$. Here, $v_{n}, n=1,2, \ldots$, are some positive integers to be chosen later. Then the lemma implies that $\alpha:=\lim _{n \rightarrow \infty} \alpha^{1 /\left(n!v_{1} \ldots v_{n}\right)}$ is a transcendental number and

$$
x_{n}<\alpha^{n!v_{1} \ldots v_{n}}<x_{n}+x_{n}^{-n v_{n+1}} .
$$

Fix any $\beta \in(1, \alpha)$. For each n large enough, say $n \geqslant n_{1}$, we have $x_{n}>\alpha^{n!v_{1} \ldots v_{n}}-1$ $>\beta^{n!v_{1} \ldots v_{n}}$. Hence $\log x_{n}>n!v_{1} \ldots v_{n} \log \beta$. The inequality $\left\{\alpha^{N}\right\}<\delta_{N}$ holds for every number $N=n!v_{1} \ldots v_{n}$ provided that $x_{n}^{-n v_{n+1}}<\delta_{N}$, that is, $n v_{n+1} \log x_{n}>\log \left(1 / \delta_{N}\right)$. So we can simply put $v_{1}=\cdots=v_{n_{1}}=1$ and, for each $n \geqslant n_{1}$, take any positive integer v_{n+1} greater than $\log \left(1 / \delta_{n!v_{1} \ldots v_{n}}\right) /\left(n!v_{1} \ldots v_{n} n \log \beta\right)$, which is always possible.

In particular, let us consider the sequence $x_{1}:=1$ and $x_{n+1}:=x_{n}^{2}+1$ for each $n \geqslant 1$. As above, the sequence $x_{n}^{1 / 2^{n}}, n=1,2, \ldots$, is increasing, whereas the sequence $\left(x_{n}+1 /\left(2 x_{n}\right)\right)^{1 / 2^{n}}, n=1,2, \ldots$, is decreasing. They both thus tend to the same limit ξ. Since the inequality

$$
\left\{\xi^{2^{n}}\right\}<1 /\left(2 x_{n}\right)<1 /\left(2\left(\xi^{2^{n}}-1\right)\right)<(1 / \xi)^{2^{n}}
$$

holds for all sufficiently large n, the theorem of Corvaja and Zannier [4] implies that either the number ξ is transcendental or there is an $m \in \mathbb{N}$ such that ξ^{m} is a Pisot number. The second possibility seems very unlikely. We thus conclude this section with the following transcendence type problem: prove that the number ξ is transcendental.

4. Proof of Theorem 4

Without loss of generality we may assume that $r_{n} \in[0,1)$ for each $n \geqslant 1$. Also, we can assume that $\delta_{n} \leqslant 1 / 2$, so $q_{n+1}-q_{n} \geqslant 4$. Since

$$
y_{n}=\left(\left\lceil y_{n-1}^{q_{n}}\right\rceil+r_{n}\right)^{1 / q_{n}} \geqslant\left(y_{n-1}^{q_{n}}+r_{n}\right)^{1 / q_{n}} \geqslant y_{n-1}
$$

the sequence $\left(y_{n}\right)_{n=1}^{\infty}$ is non-decreasing. Also, $y_{n}^{q_{n}}-r_{n}$ is an integer, so that $\left\{y_{n}^{q_{n}}\right\}=r_{n}$ for every $n \in \mathbb{N}$.

From $\left\lceil y_{n-1}^{q_{n}}\right\rceil<y_{n-1}^{q_{n}}+1$ and $r_{n}<1$, we have

$$
y_{n} / y_{n-1}<\left(1+2 y_{n-1}^{-q_{n}}\right)^{1 / q_{n}}<1+2 /\left(q_{n} y_{n-1}^{q_{n}}\right)
$$

Hence $y_{n}-y_{n-1}<2 /\left(q_{n} y_{n-1}^{q_{n}-1}\right)$. Adding n such inequalities (for $y_{n}-y_{n-1}$, for $y_{n-1}-y_{n-2}$, \ldots, for $y_{1}-y_{0}$) and using $y_{j} \geqslant y_{0}$ for $j=1,2, \ldots, n-1$, we obtain that $y_{n}-y_{0}$ is bounded from above by $2 /\left(q_{1} y_{0}^{q_{1}-2}\left(y_{0}-1\right)\right)$, so the limit $\alpha:=\lim _{n \rightarrow \infty} y_{n}$ exists. Obviously, it is greater than or equal to $y_{0} \geqslant 2$.

Next, we shall estimate the quotient $\left(y_{k+1} / y_{k}\right)^{q_{n}}$ for $k \geqslant n$. Since $q_{n} / q_{k+1}<1$ and $y_{k} \geqslant 2$, we have

$$
\left(y_{k+1} / y_{k}\right)^{q_{n}}<\left(1+2 y_{k}^{-q_{k+1}}\right)^{q_{n} / q_{k+1}}<1+2 q_{n} /\left(q_{k+1} y_{k}^{q_{k+1}}\right)<1+2 / y_{k}^{q_{k+1}} \leqslant 1+y_{k}^{-q_{k+1}+1}
$$

It follows that, for every fixed $n \in \mathbb{N}$,

$$
\left(\alpha / y_{n}\right)^{q_{n}}=\prod_{k=n}^{\infty}\left(y_{k+1} / y_{k}\right)^{q_{n}}<\prod_{k=n}^{\infty}\left(1+y_{k}^{-q_{k+1}+1}\right)
$$

In order to estimate the product $\prod_{k=n}^{\infty}\left(1+\tau_{k}\right)$, where $\tau_{k}:=y_{k}^{-q_{k+1}+1}$, we shall first bound it as $\exp \left(\sum_{k=n}^{\infty} \tau_{k}\right)$ and then use the inequality $\exp (\tau)<1+2 \tau$, because the sum $\tau=\sum_{k=n}^{\infty} \tau_{k}$ turns out to be bounded by 1 . Indeed, using the inequality $y_{k} \geqslant y_{n} \geqslant 2$, we obtain that

$$
\tau=\sum_{k=n}^{\infty} y_{k}^{-q_{k+1}+1} \leqslant \frac{1}{y_{n}^{q_{n+1}-2}\left(y_{n}-1\right)} \leqslant y_{n}^{-q_{n+1}+2}
$$

(which is at most 1), hence $\left(\alpha / y_{n}\right)^{q_{n}}<1+2 / y_{n}^{q_{n+1}-2} \leqslant 1+1 / y_{n}^{q_{n+1}-3}$. Therefore $0 \leqslant$ $\alpha^{q_{n}}-y_{n}^{q_{n}}<1 / y_{n}^{q_{n+1}-q_{n}-3} \leqslant 1 / 2^{q_{n+1}-q_{n}-3}$. Using $\left\{y_{n}^{q_{n}}\right\}=r_{n}$, we conclude that $\left\|\alpha^{q_{n}}-r_{n}\right\|<$ $2^{-q_{n+1}+q_{n}+3}$ for each $n \in \mathbb{N}$. The right hand side of this inequality does not exceed δ_{n} provided that $q_{n+1} \geqslant q_{n}+\log _{2}\left(1 / \delta_{n}\right)+3$. This completes the proof of Theorem 4.

If the sequence $\left(q_{n}\right)_{n=1}^{\infty}$ is not growing very fast, then the arithmetical nature of the limit obtained by this kind of iterations seems to be quite mysterious even in the simplest case $r_{1}=r_{2}=r_{3}=\cdots=0$ and $q_{n}=n$. For instance, let us start with $y_{1} \in(1, \sqrt{2}]$, and consider the sequence $\left(y_{n}\right)_{n=1}^{\infty}$ obtained by the following iterations

$$
y_{n}:=\left\lceil y_{n-1}^{n}\right\rceil^{1 / n}
$$

for $n \geqslant 2$. Then $y_{2}=2^{1 / 2}, y_{3}=3^{1 / 3}, y_{4}=5^{1 / 4}, y_{5}=8^{1 / 5}, y_{6}=13^{1 / 6}, \ldots$. By the same argument as above, the limit $\zeta:=\lim _{n \rightarrow \infty} y_{n}$ exists: prove that ζ is a transcendental number.

References

[1] S.D. Adhikari and P. Rath, 'A problem of the fractional parts of the powers of $3 / 2$ and related questions', in Proceedings of a Number Theory Conference held in Chandigarh, 2005 (to appear).
[2] G. Alkauskas and A. Dubickas, 'Prime and composite numbers as integer parts of powers', Acta Math. Hungar. 105 (2004), 249-256.
[3] Y. Bugeaud and A. Dubickas, 'Fractional parts of powers and Sturmian words', C. R. Math. Acad. Sci. Paris 341 (2005), 69-74.
[4] P. Corvaja and U. Zannier, 'On the rational approximations to the powers of an algebraic number: Solution of two problems of Mahler and Mendès France', Acta Math. 193 (2004), 175-191.
[5] A. Dubickas, 'A note on powers of Pisot numbers', Publ. Math. Debrecen 56 (2000), 141-144.
[6] A. Dubickas, 'On the limit points of the fractional parts of powers of Pisot numbers', Arch. Math. 42 (2006), 151-158.
[7] J.F. Koksma, 'Ein mengentheoretischer Satz über Gleichverteilung modulo eins', Compositio Math. 2 (1935), 250-258.
[8] M.A. Lerma, 'Construction of a number greater than one whose powers are uniformy distributed modulo one', (http://www.math.northwestern.edu/~mlerma/papers/ constr_ud_mod1.pdf) (1996).
[日] F. Luca, 'On a question of G. Kuba', Arch. Math. (Basel) 74 (2000), 269-275.
[10] K. Mahler, 'On the fractional parts of the powers of a rational number, II', Mathematika 4 (1957), 122-124.
[11] K. Mahler, 'An unsolved problem on the powers of 3/2', J. Austral. Math. Soc. 8 (1968), 313-321.
[12] Ch. Pisot, 'La répartition modulo 1 et les nombres algébriques', Ann. Sc. Norm. Sup. Pisa 7 (1938), 205-248.
[13] Ch. Pisot and R. Salem, 'Distribution modulo 1 of the powers of real numbers larger than 1', Compositio Math. 16 (1964), 164-168.
[14] R. Salem, Algebraic numbers and Fourier analysis (D. C. Heath and Co., Boston, MA, 1963).
[15] T. Vijayaraghavan, 'On the fractional parts of the powers of a number. I', J. London Math. Soc. 15 (1940), 159-160.
[16] H. Weyl, 'Über die Gleichverteilung von Zablen modulo Eins', Math. Ann. 77 (1916), 313-352.
[17] T. Zaimi, 'On integer and fractional parts powers of Salem numbers', Arch. Math. (Basel) 87 (2006), 124-128.

Department of Mathematics and Informatics
Vilnius University
Naugarduko 24
Vilnius LT-03225
Lithuania
e-mail: arturas.dubickas@mif.vu.lt

[^0]: Received 12th April, 2007
 This research was supported in part by the Lithuanian State Studies and Science Foundation.

