A NOTE ON BIBD'S

Dedicated to the memory of Hanna Neumann

JENNIFER WALLIS

(Received 21 February 1972; revised 20 March 1972)
Communicated by G. Szekeres

A balanced incomplete block design or BIBD is defined as an arrangement of v objects in b blocks, each block containing k objects all different, so that there are r blocks containing a given object and λ blocks containing any two given objects.

In this note we shall extend a method of Sprott [2,3] to obtain several new families of BIBD's. The method is based on the first Module Theorem of Bose [1] for pure differences.

We shall frequently be concerned with collections in which repeated elements are counted multiply, rather than with sets. If T_{1} and T_{2} are two such collections then $T_{1} \& T_{2}$ will denote the result of adjoining the elements of T_{1} to T_{i}, with total multiplicities retained. We use the brackets, $\}$, to denote sets and square brackets, [], to denote collections of elements which may have repetitions. See [5] for results using these concepts.

1. Preliminaries

Let $v=m h+1=p^{\alpha}$, where p is a prime. Let x be a primitive element of $G F(v)$ and wr te G for the group generated by x. Define H_{0} a subgroup of G and $H_{i}, i \neq 0$, its cosets by

$$
H_{i}=\left\{x^{n j+i}: 0 \leqq j \leqq m-1\right\} \quad i=0,1, \cdots, h-1,
$$

Now consider the collection of differences between elements of H_{i}

$$
\begin{aligned}
& {\left[x^{h j+i}-x^{h+i}: l \neq j, 1 \leqq j, l \leqq m-1\right] } \\
= & {\left[x^{h l+i}\left(x^{h(j-n}-1: l \neq j, 1 \leqq j, l \leqq m-1\right]\right.} \\
= & a_{0} H_{0} \& a_{1} H_{1} \& \cdots \& a_{l-1} H_{h-1} \\
= & \&_{s=0}^{h-1} a_{s} H_{\cdot} .
\end{aligned}
$$

This follows because $H_{i}=\left\{x^{h l+i}: 1 \leqq l \leqq m-1\right\}$ is a coset and whenever it is multiplied by some element x^{r} of the group we have H_{i+r}. Now there are $m(m-1)$ differences between elements of H_{i} so

$$
\sum_{s=0}^{h-1} a_{s}=m-1
$$

where the a_{s} are non-negative integers.
The differences from $H_{i} \cup H_{i}$ where $i \neq j$ are (differences from H_{i}) \& (differences from $\left.H_{j}\right) \&\left(\right.$ elements of $\left.H_{i}-H_{j}\right) \&-\left(\right.$ elements of $H_{i}-H_{j}$)

$$
\begin{aligned}
& =\left(\begin{array}{l}
h-1 \\
\&=0
\end{array} a_{s} H_{s}\right) \&\left(\begin{array}{c}
h-1 \\
\&=0
\end{array} b_{s} H_{s}\right) \&\left(\begin{array}{c}
h-1 \\
\&=0
\end{array} c_{s} H_{s}\right) \&-\left(\begin{array}{cc}
h-1 \\
\& & c_{s} H_{s}
\end{array}\right) \\
& =\underset{s=0}{h-1} \sum_{s} d_{s} H_{s}
\end{aligned}
$$

where

$$
\sum_{s=0}^{h-1} a_{s}=\sum_{s=0}^{h-1} b_{s}=m-1, \sum_{s=0}^{h-1} c_{s}=m, \text { and } \sum_{s=0}^{h-1} d_{s}=2(2 m-1)
$$

Note that if we had started by considering the differences between elements of H_{i+1} we would have

$$
\stackrel{h-1}{\&} a_{s=0} H_{s+1}
$$

and for $H_{i+1} \cup H_{j+1}$

$$
\stackrel{h-1}{\&} d_{s=0} H_{s-1} .
$$

So we have, by considering, the totality of differences from the sets $H_{i}, H_{i+1}, \cdots H_{i+h-1}$,

$$
\underset{i=0}{h-1}\left(\sum_{s=0}^{h-1} a_{s}\right) H_{i}=(m-1) G
$$

and for the totality of differences from the sets

$$
H_{i} \cup H_{j}, H_{i+1} \cup H_{j+1}, \cdots, H_{i+h-1} \cup H_{j+h-1}
$$

we have

$$
\underset{i=0}{h-1}\left(\sum_{s=0}^{h-1} d_{s}\right) H_{i}=2(2 m-1) G
$$

Similarly, by considering the totality of differences from the sets $H_{i_{1}} \cup H_{i_{2}} \cup \cdots \cup H_{i}$, where $i_{1}=0,1, \cdots, h-1, i_{j}=i_{1}+s_{j}$ for positive integers $s_{j}, 0=s_{1}<s_{2}<\cdots<s_{t}<h$, we will have

$$
t(m t-1) G
$$

2. Resul.s

It follows from the preceding observation that the blocks formed by the elements of the sets

$$
\begin{aligned}
B_{i_{1}}=B_{i_{1}}\left(s_{2}, \cdots, s_{t}\right)= & H_{i_{1}} \cup H_{i}, \cup \cdots \cup H_{i} \\
= & \left\{x^{i_{1}}, x^{h+i_{1}}, \cdots, x^{(m-1) h+i_{1}}, x^{i}, x^{i^{+i_{2}}}, \cdots,\right. \\
& \left.x^{(m-1) h+i_{2}}, \cdots, x^{i}, x^{h+i_{i}}, \cdots, x^{(m-1) h+i^{\prime}}\right\},
\end{aligned}
$$

$i_{1}=0,1, \cdots, h-1$ can be taken as "initial blocks" in Bose's first Module Theorem [1]. That is, the collection of all blocks $B_{i,, \theta}, \theta \in G F(v)$, obtained from $B_{i,}$ by adding an arbitrary element θ of $G F(v)$ to each member of $B_{i,}$, form a BIBD with parameters

$$
v=m h+1=p^{\alpha}, b=h v, r=t m h, k=t m, \lambda=t(m t-1)
$$

So we obtain
Theorem 1. (Series Z_{1}). If $v=m h+1=p^{\alpha}$ where p is a prime, and t is a positive integer $\leqq h$, then a design with parametors

$$
v=m h+1, b=h v, r=t m h, k=t m, \lambda=t(m t-1)
$$

can be constructed via the initial blocks

$$
B_{i_{1}}\left(s_{2}, \cdots, s_{t}\right)=H_{i_{1}} \cup H_{i_{2}} \cup \cdots \cup H_{.,}, i_{1}=0,1, \cdots, h-1
$$

where $i_{j}=i_{1}+s_{j}$ for fixed positive integers s_{j},

$$
0=s_{1}<s_{2}<\cdots<s_{t}<h
$$

If instead of considering the previous sets we consider the differences from

$$
0 \cup H_{i_{1}} \cup H_{i_{2}} \cup \cdots \cup H_{1}, i_{1}=0,1, \cdots, h-1, t \leqq h
$$

then the totality of diferences from these sets is

$$
t(m t+1) G
$$

and hence we have
Theorem 2. (Series Z_{2}). If $v=m h+1=p^{\alpha}$ where p is a prime, and t is a positive integer $\leqq h$, then the design with parameters

$$
v=m h+1, b=h v, r=(t m+1) h, k=t m+1, \lambda=(t m+1) t
$$

can be constructed via the initial blocks

$$
B_{i_{1}}\left(s_{1}, \cdots, s_{t}\right)=0 \cup H_{i_{1}} \cup H_{i_{2}} \cup \cdots \cup H_{i_{.},}, i_{1}=0,1, \cdots, h-1
$$

where $i_{j}=i+s_{j}$ for fixed positive integers $s_{i}, 0=s_{1}<s_{2}<\cdots<s_{1}<h$.

Theorem 3. (Series Z_{3}). If $v=(2 \mu+1) 2 h+1=p^{\alpha}$, where p is a prime, and t is a positive integer $\leqq h$, then the design with parameters $v=(2 \mu+1) 2 h+1, b=v h, r=(2 \mu+1) h t, k=(2 \mu+1) t, \lambda=\frac{1}{2} t[t(2 \mu+1)-1]$ can be constructed via the initial blocks

$$
B_{i_{1}}\left(s_{2}, \cdots, s_{t}\right)=H_{i_{1}} \cup H_{i_{2}} \cup \cdots \cup H_{i,}, i_{1}=0,1, \cdots, h-1
$$

$i_{j}=i_{1}+s_{j}$ for fixed positive integers $s_{j}, 0=s_{1}<s_{2}<\cdots<s_{t}<h$.
Theorem 4. (Series Z_{4}). If $v=(2 \mu+1) 2 h+1=p^{\alpha}$, where p is a prime, and t is a positive integer $\leqq h$, then the design with parameters $v=(2 \mu+1) 2 h+1, b=v h, r=h[(2 \mu+1) t+1], k=(2 \mu+1) t+1, \lambda=t[(2 \mu+1) t+1]$ can be constructed via the initial blocks

$$
B_{i_{1}}\left(s_{2}, \cdots, s_{t}\right)=0 \cup H_{i_{1}} \cup H_{i_{2}} \cup \cdots \cup H_{i_{t}}, i_{1}=0,1, \cdots, h-1
$$

where $i_{j}=i_{1}+s_{j}$ for fixed positive integers $s_{j}, 0=s_{1}<s_{2}<\cdots<s_{t}<h$.
Proof of Theorem 3 and 4. In our previous discussion we have replaced m by $2 \mu+1$ and h by $2 h$. Now $-1 \in H_{h}$ so the totality of differences from H_{1} becomes

$$
a_{0} H_{0} \& a_{1} H_{1} \& \cdots \& a_{h-1} H_{h-1} \& a_{0} H_{h} \& a_{1} H_{h+1} \& \cdots \& a_{h-1} H_{2 h-1}
$$

because if $x^{g h+i_{s}}-x^{r h+i_{n}} \in H_{l}$ then $x^{r h+i_{n}}-x^{g h+s_{s}} \in H_{l+h}$.
We may then proceed as before while noting the dependence of the coefficients of H_{i} and H_{i+h} in the collection of sums of differences.

By observing that our series are extensions of those of Sprott we can also show

Theorem 5. (Series Z_{5}). If $v=(4 \mu+1) 4 h+1=p^{\alpha}$, where p is a prime and if the collection of differences from the initial block

$$
B_{i_{1}}\left(s_{2}, s_{3}, \cdots, s_{t}\right)=H_{2 i_{1}} \cup H_{2 i_{2}} \cup \cdots \cup H_{2 i_{t}}, i_{1}=0,1, \cdots, h-1
$$

are written as

$$
\stackrel{4 h-1}{\&} a_{s=0}\left\{x^{++4 h j}: 0 \leqq j \leqq 4 \mu\right\}
$$

where we may pair the coefficients a_{s} such that $a_{2 i}=a_{2 t_{i}+1}$ for all $i=0,1, \cdots, 2 h(4 \mu+1)-1$, then the design with parameters $v=4 h(4 \mu+1)+1, b=h v, r=h t(4 \mu+1), k=(4 \mu+1) t, \lambda=\frac{1}{4} t[(4 \mu+1) t-1]$
can be constructed via these initial blocks where $\frac{1}{4} t[(4 \mu+1) t-1]$ is a positive integer, $i_{j}=i_{1}+s_{j}$ for fixed positive integers $s_{j}, 0=s_{1}<s_{2}<\cdots<s_{t}<h$.

Acknowledgement

The author wishes to thank Professor G. Szekeres for his suggestions which have substantially improved the readability of this note.

References

[1] R. C. Bose, 'On the construction of balanced incomplete block designs', Ann. Eugenics, 9 (1939), 353-399.
[2] D. A. Sprott, 'A note on balanced incomplete block designs', Can. J. Math., 6(1965), 341-346.
[3] D. A. Sprott, 'Some series of balanced incomplete block designs', Sankhya, Ser. A, 17 (1956), 185-192.
[4] E. Nemeth, 'A new family of BIBD'S', Ann. Math. Stat., 42 (1971), 1118-1120.
[5] Jennifer Wallis, 'On supplementary difference sets', Aeq. Math. 8 (1972), 242-257.

Institute of Advanced Studies
Australian National University
Canberra, A.C.T.

