J. Austral. Math. Soc. (Series A) 46 (1989), 236-250

THE ASYMMETRIC PRODUCT OF THREE INHOMOGENEOUS LINEAR FORMS

V. K. GROVER

(Received 24 February 1987; revised 13 November 1987)

Communicated by J. H. Loxton

Abstract

Let Λ be a lattice in \mathbb{R}_3 of determinant 1. Define the homogeneous minimum of Λ as $m_h(\Lambda) = \inf |u_1 u_2 u_3|$ extended over all points (u_1, u_2, u_3) of Λ other than the origin. It is shown that for any given (c_1, c_2, c_3) in \mathbb{R}_3 there exists a point (u_1, u_2, u_3) of Λ for which

$$-\rho \leq (u_1+c_1)(u_2+c_2)(u_3+c_3) \leq \sigma, \qquad \rho, \sigma > 0,$$

provided that $\rho\sigma > 1/64$ if $m_h(\Lambda) = 0$, and $\rho\sigma \ge 1/16.81$ if $m_h(\Lambda) > 0$.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 10 E 15.

1. Introduction

For $1 \le i \le n$, let $L_i = a_{i1}x_1 + \cdots + a_{in}x_n$ be *n* linear forms in the variables x_1, \ldots, x_n with real coefficients a_{ij} satisfying $|\det(a_{ij})| = 1$. A classical conjecture of Minkowski asserts that, given *n* real numbers c_1, \ldots, c_n , the inequality

(1)
$$\prod_{i=1}^{n} |L_i + c_i| \le \frac{1}{2^n}$$

has a solution in integral values of the variables. This has been proved for $n \leq 5$; see Bambah and Woods [1]. For the case n = 2, Davenport [5] generalised this is to the asymmetric case and proved that, given real numbers c_1, c_2 , the inequality

(2)
$$-\sigma \leq (L_1+c_1)(L_2+c_2) \leq \rho, \qquad \rho, \sigma > 0,$$

© 1989 Australian Mathematical Society 0263-6115/89 \$A2.00 + 0.00

236

has a solution in integral values of the variables provided that $\rho \sigma \geq 1/16$.

For the case n = 3, we obtain here a sufficient condition on ρ, σ for the asymmetric inequality corresponding to (2) to have a solution in integral values of the variables.

Let $A_j = (a_{1j}, \ldots, a_{nj})$, for $1 \le j \le n$, and denote by Λ the lattice with basis A_1, \ldots, A_n such that $d(\Lambda) = 1$. Let $m_h(\Lambda)$ denote the infimum of $|x_1 \cdots x_n|$ extended over all points (x_1, \ldots, x_n) of Λ other than the original 0. We have

THEOREM 1. Let Λ be a lattice of determinant 1. For any point $C = (c_1, c_2, c_3) \in \mathbf{R}_3$, there exists a point $A = (a_1, a_2, a_3)$ of Λ such that

(3)
$$-\rho < (a_1 + c_1)(a_2 + c_2)(a_3 + c_3) < \sigma, \qquad \rho, \sigma > 0,$$

provided that

(a) $\rho\sigma > 1/64$ if $m_h(\Lambda) = 0$, and

(b) $\rho \sigma \ge 1/16.81$ if $m_h(\Lambda) > 0$.

The method of proof is the projective one due to Birch and Swinnerton-Dyer [2]. The author [6] used the same method earlier to obtain the condition $\rho\sigma \geq (4\sqrt{5}-5)/64 = 1/16.224...$ to be a sufficient condition. Woods [9], using this method, proved that if in (3), $(a_3 + c_3)$ is replaced by $|a_3 + c_3|$ then the result holds for $\rho\sigma \geq 1/64$. Our method of proof is parallel to that of Woods [9].

2. Proof for case (a)

LEMMA 1. If Λ is a lattice in \mathbb{R}_2 of determinant $d(\Lambda)$ and $\lambda > 0$, then given any point $c = (c_1, c_2) \in \mathbb{R}_2$, there exists a point $A = (a_1, a_2)$ of Λ such that

$$\frac{-d(\Lambda)}{4\lambda} < (a_1 + c_1)(a_2 + c_2) \le \frac{d(\Lambda)\lambda}{4}$$

This result is due to Davenport [5].

We say that a lattice Λ in \mathbb{R}_n is a covering lattice for a region S, if the translates of S by the points of Λ cover the whole space \mathbb{R}_n . It is clear that Λ is a covering lattice for S if and only if given any $C \in \mathbb{R}_n$, there exists $A \in \Lambda$ such that $A + C \in S$. We have

LEMMA 2. Let S be an open set in \mathbf{R}_n , Λ a lattice and let ω_r be a sequence of automorphs of S such that $\{\omega_r\Lambda\}$ is a sequence of lattice converging to a lattice Γ . If Γ is a covering lattice for S, then so is Λ .

V. K. Grover

PROOF. Since $\omega_r \Lambda = \Lambda^{(r)} \to \Gamma$, there exists a basis $A_1^{(r)}, \ldots, A_n^{(r)}$ of $\Lambda^{(r)}$ and a basis A_1, \ldots, A_n of Γ such that $A_i^{(r)} \to A_i$, $1 \le i \le n$.

Let $C \in \mathbf{R}_n$ be arbitrary, let $C^{(r)} = \omega_r C$, and choose $\hat{C}(r)$ in the fundamental parallelopiped $\{\sum_{i=1}^n \alpha_i A_i^{(r)}; 0 \le \alpha_i < 1, i = 1, ..., n\}$ of $\Lambda^{(r)}$ such that $C^{(r)} \equiv \hat{C}(r) \pmod{\Lambda^{(r)}}$, whence $\hat{C}^{(r)}$ is a bounded sequence. On replacing ω_r by a subsequence we can suppose that $\hat{C}^{(r)} \to \hat{C}$.

Since Γ is a covering lattice for S, there exists $B \in \Gamma$ such that $B + \hat{C} \in S$. Let $B^{(r)} \in \Lambda^{(r)}$ be such that $B^{(r)} \to B$. Then $B^{(r)} + \hat{C}^{(r)} \to B + \hat{C}$ and hence for larger $r, B^{(r)} + \hat{C}^{(r)} \in S$, and hence there exists $A \in \Lambda$ such that $A + C \in S$. This proves Lemma 2.

If Ω denotes the group of automorphs of the form $x_1 \cdots x_n$, generated by the permutations of x_i and the transformations of the type $x_i \rightarrow \lambda_i x_i$, $\lambda_i \in \mathbb{R}$ and $\prod \lambda_i = 1$, then we have following result due to Birch and Swinnerton-Dyer [2].

LEMMA 3. Let Λ be a lattice in \mathbb{R}_n with $m_h(\Lambda) = 0$. Then there exists a sequence ω_r in Ω such that $\{\omega_r\Lambda\}$ tends to a lattice Γ having a basis $A_1 \cdots A_n$ such that for some k, $1 \leq k < n, A_1, \ldots, A_k$ lie in a k-dimensional coordinate plane.

Theorem 1(a) is a consequence of

THEOREM 1A. Let Λ be a lattice in \mathbb{R}_3 of determinant 1 with $m_h(\Lambda) = 0$. For any given $\lambda > 0$, $\varepsilon > 0$ and $C = (c_1, c_2, c_3)$ in \mathbb{R}_3 , there exists a point $A = (a_1, a_2, a_3)$ of Λ such that

(4)
$$-\frac{(1+\varepsilon)}{8\lambda} < (a_1+c_1)(a_2+c_2)(a_3+c_3) < \frac{(1+\varepsilon)\lambda}{8}$$

PROOF. By Lemma 3, we can find a sequence $\omega_r \in \Omega$ such that $\omega_r \Lambda \to \Gamma = \{(L_1, L_2, L_3), \text{ for integral values of variables}\}$, where either

either	(1)	$L_1 = a_{11}x_1$	$+a_{12}x_2+a_{13}x_3$
		$L_2 =$	$a_{22}x_2 + a_{23}x_3$
		$L_3 =$	$a_{32}x_2 + a_{33}x_3$
or	(2)	$L_1 = a_{11}x_1$	$+a_{12}x_2 + a_{13}x_3$
		$L_2 = a_{21}x_1$	$+a_{22}x_2+a_{23}x_3$
		$L_3 =$	$a_{33}x_3$.

On replacing ω_r by $\omega \cdot \omega_r$ for suitable $\omega \in \Omega$, we can suppose that in case (1) $a_{11} = 1$ and in case (2) $a_{33} = 1$.

In view of Lemma 2, it is sufficient to prove the result for the lattice Γ .

Case 1. Since $a_{11} = 1$, the set $\mathscr{L} = (L_1, L_2)$ for integral values of variables is a lattice of determinant 1. By Lemma 1, with $\lambda = 1$, there exist integers u_2, u_3

such that for $(x_2, x_3) = (u_2, u_3)$

(5)
$$|(L_2 + c_2)(L_3 + c_3)| \le \frac{1}{4}$$

If in (5), $(L_2 + c_2)(L_3 + c_3) = 0$, then (4) holds for any choice of $u_1 \in \mathbb{Z}$.

Suppose that $(L_2 + c_2)(L_3 + c_3) \neq 0$. Let $\hat{c}_1 = a_{12}u_2 + a_{13}u_3 + c_1$. First suppose that $(L_2 + c_2)(L_3 + c_3) > 0$. In this case, for any given $\lambda > 0$, there exists $u_1 \in \mathbb{Z}$ such that

(6)
$$-\frac{1}{2\lambda} \leq u_1 + \hat{c}_1 \leq \frac{\lambda}{2}.$$

Since $0 < (L_2 + c_2)(L_3 + c_3) \le \frac{1}{4}$ and $L_1 + c_1 = u_1 + \hat{c}_1$, we have for $(u_1, u_2, u_3) \in \mathbb{Z}^3$ that

$$-\frac{1}{8\lambda} \le (L_1 + c_1)(L_2 + c_2)(L_3 + c_3) \le \frac{\lambda}{8},$$

and hence (4) holds for the lattice Γ and the point C. The case

$$(L_2 + c_2)(L_3 + c_3) < 0$$

follows on replacing λ by $1/\lambda$ in (6) and repeating the same argument as in the case of $(L_2 + c_2)(L_3 + c_3) > 0$.

Case 2. Since $a_{33} = 1$, there exists $u_3 \in \mathbb{Z}$ such that $|L_3 + c_3| \leq 1/2$. As in Case 1, if $L_3 + c_3 = 0$, we are through. We can suppose that $L_3 + c_3 \neq 0$.

Let $\hat{L}_1 = a_{11}x_1 + a_{12}x_2$, $\hat{c}_1 = a_{13}u_3 + c_1$, and $\hat{L}_2 = a_{21}x_1 + a_{22}x_2$, $\hat{c}_2 = a_{23}u_3 + c_2$, so that the set of points (\hat{L}_1, \hat{L}_2) for integral values of variables is a lattice of determinant 1.

Firstly suppose that $L_3 + c_3 > 0$. By Lemma 1, for $\lambda > 0$, we can find integral values u_1, u_2 of variables such that

(7)
$$-\frac{1}{4\lambda} < (L_1 + c_1)(L_2 c_2) \le \frac{\lambda}{4}.$$

Since $0 < L_3 + c_3 \leq \frac{1}{2}$, we get

$$-\frac{1}{8\lambda} < (L_1 + c_1)(L_2 + c_2)(L_3 + c_3) \le \frac{\lambda}{8}.$$

When $L_3 + c_3 < 0$, the result follows on replacing λ by $\frac{1}{\lambda}$ in (7). This completes the proof of Theorem 1A and therefore of (a).

3. Proof for case (b)

This is equivalent to proving

THEOREM 1B. Lt Λ be a lattice of determinant 4.1, with $m_h(\Lambda) > 0$. Then for any given real numbers $\rho, \sigma > 0$, with $\rho\sigma = 1$, and any given point $C \in \mathbf{R}_3$, the grid $\Lambda + C$ has a point in the region

 $(8) S: -\rho < xyz < \sigma.$

In order to obtain some restrictions on ρ and σ , we need

LEMMA 4. Let L_1, L_2, L_3 be three real linear forms in three variables x, y, zof determinant $\Delta \neq 0$. Then given any real numbers c_1, c_2, c_3 there exist integers x, y, z such that

$$|(L_1 + c_1)(L_2 + c_2)(L_3 + c_3)| \le \frac{|\Delta|}{8}.$$

This result is due to Remark [8].

For the one sided inequality Chalk [3] proved

LEMMA 5. If L_1, \ldots, L_n are n real linear forms in n variables of determinant $\Delta \neq 0$, then for any real numbers c_1, \ldots, c_n , we can find integral values of variables such that

$$0 < \prod_{i=1}^{n} (L_1 + c_i) \le |\Delta|, \qquad L_i + c_i > 0, \qquad i = 1, \dots, n.$$

COROLLARY. It is sufficient to prove Theorem 1B for the case $8/4.1 \le \rho \le 4.1$.

PROOF On replacing Λ by Λ' , where $\Lambda' = \{(-x, y, z) | (x, y, z) \in \Lambda\}$, if necessary, we can suppose that $\rho \geq \sigma$. Now for $\rho < 8/4.1$, we have $\rho \geq \sigma > 4.1/8$, and the result follows by Lemma 4.

For $\rho > 4.1$, the result is a consequence of Lemma 5. Hence the Corollary follows.

It is enough to prove Theorem 1B, when $m_h(\Lambda)$ is attained, for otherwise as in Birch and Swinnerton-Dyer [2, Theorem 2], following Mahler [7, Theorem 20], there exists a sequence $\omega_r \in \Omega$ such that $\omega_r \Lambda \to \Gamma$, $m_h(\Lambda) = m_h(\Gamma)$ and the homogeneous minimum is attained for Γ . In view of Lemma 2, it is sufficient to prove Theorem 1B for the lattice Γ . Since Theorem 1B is invariant under Ω , we can further assume that $m_h(\Lambda)$ is attained at the point $P = (a, a, a) \in \Lambda$, a > 0. By a well known theorem of Davenport [4], it follows that $a^3 \leq 4.1/7$. LEMMA 6. Let Λ be a lattice in \mathbf{R}_3 of determinant 4.1, with $P = (a, a, a) \in \Lambda$, a > 0, such that $a^3 = m_h(\Lambda)$. Let \mathcal{L} be the projection of Λ on the x, y plane, parallel to the vector (a, a, a). For any given real numbers $\rho > 0$, $\sigma > 0$, with $\rho\sigma = 1$, and any point $x \in \mathbf{R}_2$, the two dimensional grid, $\mathcal{L} + X$ has a point in the region \mathbf{K} in the plane, given as the set of points (x, y) such that

(9)
$$-\frac{(4.1)\sigma}{4a} \le xy \le \frac{(4.1)\rho}{4a}$$

[6]

and either $|x + y| \le 12.3/8a^2$ or $|x - y| \le 12.3/8a^2$.

PROOF. Woods [9, Theorem 1B] proved that for a lattice of determinant 8, the corresponding grid $\mathcal{L} + X$, for any given $X \in \mathbf{R}_2$, has a point in the region consisting of points (x, y) such that

(10)
$$-\frac{2\sigma}{a} - \le xy \le \frac{2\rho}{a}$$

and either $|x + y| \le 3/a^2$ or $|x - y| \le 3/a^2$.

Now, if Λ is a lattice of determinant 4.1, then for $d^3 = 8/4.1$, $d\Lambda$ is a lattice of determinant 8, with the point $Q = (ad, ad, ad) \in d\Lambda$, where $m_h(d\Lambda)$ is attained. Its projection on the x, y-plane parallel to the vector (ad, ad, ad) is $d\mathcal{L}$, so that for any $X \in \mathbf{R}_2$, $d\mathcal{L} + dX$ has a point in the region defined by (10) and hence $\mathcal{L} + X$ has a point in the region K. This completes the proof of Lemma 6.

For any given ρ , $\sigma > 0$, $\rho\sigma = 1$. Let K_1 be the set of points (x, y) such that for any given $t_0 \in \mathbb{R}$ there exists $t \equiv t_0 \pmod{a}$ satisfying

(11)
$$-\rho < (x+t)(y+t)(t-b) < \sigma$$
, where $b = 4a/4.1$.

LEMMA 7. Let K be defined by (9) and let K_1 be as above. If for some ρ, σ , with $\rho\sigma = 1$, $K_1 \supset K$, then Theorem 1B is true for that choice of ρ and σ .

PROOF. Let $C \in \mathbf{R}_3$ be any given point. Projection of the grid $\Lambda + C$ parallel to the vector (a, a, a) on the plane Z = -b is a translate of the lattice \mathscr{L} and hence in view of Lemma 6, has a point $(x^*, y^*, -b)$ in $\mathbf{K} + (0, 0, -b)$, so that $\Lambda + C$ has a point of the type $(x^* + t_0, y^* + t_0, t_0 - b)$, for $(x^*, y^*) \in \mathbf{K}$, for some $t_0 \in R$. Since $\mathbf{K} \subset \mathbf{K}_1$, there exists $t \equiv t_0 \pmod{a}$ satisfying (11). Also since $(a, a, a) \in \Lambda$, the point $(x^* + t, y^* + t, t - b) \in (\Lambda + C) \cap S$, which completes the proof of Lemma 7.

The corollary to Lemma 4 and Lemma 5, and Lemma 7 imply that Theorem 1B is consequence of

THEOREM 2. Let a > 0 be a real number satisfying $a^3 \le 4.1/7$. Let $\rho, \sigma > 0$, with $\rho\sigma = 1,8/4.1 \le \rho \le 4.1$ be two given numbers. Then for any point (x, y) of

V. K. Grover

the region K, defined by (9), and any real number t_0 , there exists $t \equiv t_0 \pmod{a}$ such that

(12)
$$-\rho < (x+t)(y+t)(t-b) < \sigma$$
, where $b = \frac{4a}{4.1}$.

4. Proof of Theorem 2

From the symmetry in x, y we may assume that $|x| \leq |y|$. Further for $(x, y) \in \mathbf{K}$, we have

(13)
$$|xy| \le \frac{\rho}{b}, \quad |y| \le \min\left(\frac{12.3}{8a^2} + |x|, \frac{\rho}{b|x|}\right).$$

Also

(14)
$$|x+y| \le \sqrt{\left(\frac{12.3}{8a^2}\right)^2 + \frac{4.1}{a}\rho}$$

and

(15)
$$-\rho \leq -xyb \leq \sigma.$$

Let f(t) = (t+x)(t+y)(t-b). For $X = (x, y) \in \mathbb{R}_2$, denote by S_X the set of all real numbers t satisfying (12). We have

LEMMA 8. For all $X \in \mathbf{K}$, $[b, a] \subseteq S_X$.

PROOF. For $b \leq t \leq a$, we have

$$\begin{aligned} |f(t)| &= |xy + t(x+y) + t^2 ||t-b| \\ &\leq (|xy| + a|x+y| + a^2)(a-b) \\ &\leq \frac{\rho}{40} + \frac{1}{41} \left(\left(\frac{12.3}{8}\right)^2 + (4.1)\rho a^3 \right)^{1/2} + \frac{1}{41}a^3 \quad (by \ (13) \ and \ (14)) \end{aligned}$$

if

$$\frac{\rho^2}{40} + \frac{\rho}{41} \left(\left(\frac{12.3}{8}\right)^2 + (4.1)\rho a^3 \right)^{1/2} + \frac{1}{41}a^3 < 1 \quad (\text{since } \rho\sigma = 1).$$

Since $a^3 \leq 4.1/7$ and $\rho \leq 4.1$ the above holds and hence $[b,a] \subseteq S_X$ for all $X \in \mathbf{K}$.

REMARK 1. In view of Lemma 8, it is enough to prove that for $X \in \mathbf{K}$, we have either

$$(16) (0,b] \subseteq S_X,$$

or

[8]

(17)
$$S_X$$
 contains a half open interval I of length a,

(18) there exist real numbers $t_1 < t_2 < t_3 < t_4$

such that
$$t_4 - t_1 \ge 2a, t_3 - t_2 < a$$
 and S_X contains $[t_1, t_2) \cup (t_3, t_4]$.

REMARK 2. If $g(t) = (t - \alpha)(t - \beta)(t - \gamma)$ is a polynomial with α, β, γ real and satisfying $\alpha \leq \beta \leq \gamma$ then it is easy to see that

(i) g(t) is monotonically increasing for $t \leq \alpha$ and $t \geq \gamma$,

(ii) g(t) is monotonically decreasing function for $(\alpha + \beta)/2 \le t \le (\beta + \gamma)/2$.

From now onward (x, y) will stand for a point in K. We distinguish the following cases.

Case I: (x, y) in the first quadrant.

Subcase I (i): x > b. Since $y \ge x \ge b$, f(t) is negative and has no root in the interval (-x, b), so f(t) is monotone in either the interval [-x, 0) or the interval (0, b]. Since by (15), $f(0) = -xyb \ge -\rho$, either (0, b] or [-x, 0) is contained in S_X . Now if $x \ge a$, we are through. Otherwise for $-a \le t \le -x \le -b$, we have

$$\begin{split} |f(t)| &= |(x+t)(y+t)(t-b)| \\ &< \left(\frac{1}{41}a\right)(2a)|y| \\ &\leq \frac{2}{41}\frac{a^2}{b^2}\rho \quad \left(\text{since } |y| \leq \frac{\rho}{b|x|} \leq \frac{\rho}{b^2}\right) \\ &< \sigma, \end{split}$$

since $\rho \leq 4.1$. So in this case either [-a, 0) or (0, b] is contained in S_X , the result follows in view of Remark 1.

Subcase I (ii): x < b and $\rho \ge 2.11$. For $0 \le t \le b$, we have $f(t) \le 0$ and

$$\begin{aligned} |f(t)| &= (b-t)(t+y)(t+x) \\ &\leq (b-t)\left(t+x+\frac{12.3}{8a^2}\right)(t+x) \quad (\text{by (13)}) \\ &\leq (b^2-t^2)(b+t)+\frac{12.3}{8}\left(\frac{b}{a}\right)^2 = g(t), \end{aligned}$$

say. Since g(t) has maximum value at t = b/3 we have

$$|f(t)| \le g\left(\frac{b}{3}\right) < 2.108 \dots < \rho \quad \left(\text{since } b = \frac{4a}{4.1}, a^3 \le \frac{4.1}{7}\right)$$

so $(0, b] \subset S_X$, and the results follows by (16).

Subcase I (iii): $x \le b$, $a^3 \le 11/25, 8/4.1 \le \rho \le 2.11$. Again as in Case I (ii), we have, for $0 \le t \le b$, that

$$|f(t)| \le g(b/3) < 1.9477 \dots < 8/4.1 \le \rho \quad \left(\text{since } a^3 \le \frac{11}{25}\right).$$

So $(0, b] \subseteq S_X$ and the result follows by (16).

Subcase I (iv): $0 \le x \le (9.1)b$, $a^3 > 11/25$, $\rho \le 2.11$. We have, for $0 < t \le b$, that f(t) is negative and

$$\begin{split} |f(t)| &= (b-t)(x+t)(y+t) \\ &\leq (b-t)\left(\frac{91}{100}b+t\right)\left(\frac{91}{100}b+\frac{12.3}{8a^2}+t\right) \quad (by \ (13)) \\ &= (b-t)\left(\frac{91}{100}b+t\right)^2 + (b-t)\left(\frac{91}{100}b+t\right)\frac{12.3}{8a^2} \\ &\leq (b-t)\left(\frac{91}{100}b+t\right)^2 + \left(\frac{191}{200}\right)^2\left(\frac{12.3}{8}\right)\left(\frac{b^2}{a^2}\right) \quad (A. \ G. \ mean) \\ &= h(t), \end{split}$$

say. Since h(t) has a maximum at t = (109/300)b, we have

$$|f(t)| \le h\left(\frac{109}{300}\right) < 1.9 < \rho,$$

so $(0, b] \subseteq S_X$ and the result follows by (16).

Subcase I (v): $(91/100)b \le x \le b, y \le (114/100)b, a^3 > 11/25$ and $\rho \le 2.11$. In this case, for $0 \le t \le b$, we have

$$\begin{split} |f(t)| &= -f(t) = (x+t)(y+t)(b-t) \\ &\leq \left(\frac{x+b}{2}\right)^2 \left(\frac{114}{100}b+b\right) \quad (\text{A. G. mean}) \\ &\leq \left(\frac{214}{100}\right)b^3 < \rho, \end{split}$$

so that $(0, b] \subseteq S_X$. The result follows by (16).

Subcase I (vi): $(91/100)b \le x \le b, y \ge (114/100)b, a^3 \ge 11/25$ and $\rho \le 2.11$. By Remark 2, f(t) is monotonically decreasing for $-a \le t \le -x$. Since f(t) is positive for these values of t, to prove that $[-a, -x] \subset S_X$ it is enough to prove that $-a \in S_X$. We have

$$\begin{aligned} 0 < f(-a) &= (-x+a)(b+a)(y-a) \\ &\leq \left(\frac{41}{40}b - \frac{91}{100}b\right) \left(b + \frac{41}{40}b\right) \left(\frac{100^{\rho}}{91b^2} - \frac{41}{40}b\right) \quad \left(\text{since } |y| \le \frac{\rho}{|x|b}\right) \\ &< \sigma, \end{aligned}$$

The asymmetric product of three inhomogeneous linear forms

if

[10]

$$\left(\frac{23}{200}\right)\left(\frac{81}{40}\right)\left[\frac{100}{91}\rho^2 - \left(\frac{40}{41}\right)^2a^3\rho\right] < 1 \quad (\text{since } \rho\sigma = 1).$$

Since the L. H. S., as a function of ρ , is monotonically increasing, and for $\rho = 2.11$ and $a^3 \ge 11/25$, the above holds, we have $-a \in S_X$ and hence $[-a, -x] \subseteq S_X$. Now arguing as in Subcase I (i), we have either [-a, 0) or (0, b] is contained in S_X . This completes the proof for Case I.

Case II: (x, y) in the second quadrant.

Subcase II (i): |x| > b. Since $y \ge |x| \ge b$, in view of Remark 2, f(t) is positive and monotonically decreasing in the interval (0, b]. Since, by (15), $f(0) \le \sigma$, we have $(0, b] \subseteq S_X$. The result follows from (16).

Subcase II (ii): $|x| \leq b$. As in Subcase II (i) above, $(0, -x] \subseteq S_X$. For $-x \leq t \leq b$, we have

$$\begin{split} 0 &\leq -f(t) = (b-t)(x+t)(x+t) \\ &\leq \frac{1}{4}(b+x)^2(y+t) \\ &\leq \frac{1}{4}(b+x)^2 \left(\frac{12.3}{8a^2} + |x| + b\right) \\ &= \frac{1}{4}(1-\mu)^2 \left(\frac{12.3}{8} \left(\frac{b}{a}\right)^2 + \mu b^3 + b^3\right) \quad (\text{where } |x| = b\mu) \\ &= g(\mu), \end{split}$$

say. Since $g(\mu)$ is a decreasing function of μ for $0 \le \mu \le 1$, we have $|f(t)| \le g(0) < \rho$, so $(0, b] \subseteq S_X$. This completes Case II.

Case III: (x, y) in the third quadrant.

Subcase III (i): $|x| \ge b$. Since $|y| \ge |x| \ge b$, b is the smallest root of f(t) and by Remark 2, f(t) is negative and monotonically increasing for $0 \le t \le b$. Since by (15), $f(t) \ge -\rho$, we have $(0,b] \subseteq S_X$. This proves the result for Subcase III (i).

Subcase III (ii): $|x| \le b$, $|y| \le 4\sigma/b^2$. As in Subcase III (i), we have $(0, -x] \subseteq S_X$. For $-x \le t \le b$, f(t) is positive and

$$\begin{split} f(t)| &\leq (t+x)(b-t)(\max(|y|,|t|)) \\ &\leq \frac{b^2}{4}\max(|y|,b) < \sigma, \end{split}$$

since $b^3 < \frac{4}{7} < 4\sigma$. So $(0, b] \subseteq S_X$.

1

V. K. Grover

[11]

Subcase III (iii): $|x| \leq b$, $|y| \geq 4\sigma/b^2$, $\rho < 2.733$, so $\sigma > .36598$. As before $(0, -x] \subseteq S_X$. Since $4\sigma/b^2 > b$, we have |y| > b and thus f(t) is positive for $-x \leq t \leq b$ and we have

$$0 < f(t) = (x+t)(b-t)(-y-t)$$

$$\leq (t-|x|)(b-t)\left(\frac{12.3}{8a^2} + |x| - t\right) \quad (by (13))$$

$$= g(\mu, t),$$

say, where $\mu = |x| \ge 0$. Since $g(\mu, t)$ as a function of μ is a decreasing function of μ , for all $t \in (0, b]$, we have

$$f(t) \le g(0,t) = t(b-t) \left(\frac{12.3}{8a^2} - t\right)$$

$$\le \frac{b^2}{4} \left(\frac{12.3}{8a^2}\right) < .3659 < \sigma \quad (A. G. mean).$$

Thus $(0, b] \subseteq S_X$ and the result follows from (16).

Subcase III (iv): $|x| \le b$, $|y| \ge 4\sigma/b^2$, $a^3 \le .4317$, $\rho \ge 2.733$. As in Subcase III (iii), for $-x \le t \le b$, we have

$$|f(t)| \le g(0,t) \le t(b-t)\left(\frac{12.3}{8a^2}\right) = h(t),$$

say. Since h(t) is monotonically decreasing for $t \ge b/2$, then for $t \ge (8/10)b$, we have

$$h(t) \le h\left(\frac{8}{10}b\right) < \frac{1}{4.1} < \sigma_{1}$$

Now for $|x| \ge 8b/10$, we have $t \ge 8b/10$, so $[-x,b] \subset S_X$ and $(0,-x] \subseteq S_X$. As in the earlier case we have (0,b], and in particular $[\frac{8}{10}b,b] \subseteq S_X$, for all X in this case.

Since $a^3 \leq .4317$, $|y| \geq 4\sigma/b^2 > (73/40)b$, so f(t) is negative for $b \leq t \leq (73/40)b$ and

$$\begin{aligned} -f(t) &= (x+t)(t-b)(-y-t) \\ &\leq (t-|x|)(t-b)\left(\frac{12.3}{8a^2}+|x|-t\right) = g_1(\mu,t), \end{aligned}$$

say, where $\mu = |x| \ge 0$. Since $t < (73/40)b < 12.3/16a^2$, for $a^3 \le .4317$, we have $g_1(\mu, t)$ is a decreasing function of μ , and hence

$$-f(t) \le g_1(0,t) = t(t-b) \left(\frac{12.3}{8a^2} - t\right)$$

$$\le \left(\frac{73}{40}b\right) \left(\frac{33}{40}b\right) \left(\frac{12.3}{8a^2}\right) = 2.2033 < \rho,$$

so $((8/10)b, (73/40)b] \subseteq S_X$. Since this interval is of length a, we are done in view of (17).

Subcase III (v): $|x| \le b$, $|y| \ge 4\sigma/b^2$, $\rho \ge 2.733$ and $a^3 \ge .4317$. Since $4\sigma/b^2 > (71/40)b$, we have $|y| \ge (71/40)b$.

Again as in Subcase III (iv), $[\frac{8}{10}b, b] \subseteq S_X$. Then for $(71/40)b \le |y| \le (73/40)b$ and for $(71/40)b \le t \le (73/40)b$, we have

$$|f(t)| = |t+x||t-b||t+y| \le \left(\frac{73}{40}b\right)\left(\frac{33}{40}b\right)\left(\frac{2}{40}b\right) < \sigma.$$

Also for $b \le t \le \min(|y|, (73/40)b)$, f(t) is negative and

$$\begin{aligned} -f(t) &= (x+t)(t-b)(-y-t) \\ &\leq (t-|x|) \left(\frac{12.3}{8a^2} + |x| - t\right) (t-b) \quad \text{(by (13))} \\ &\leq \left(\frac{12.3}{16a^2}\right)^2 (t-b) \quad \text{(A. G. mean)} \\ &\leq \left(\frac{12.3}{16}\right)^2 \frac{b}{a^4} < \rho \quad \text{(since } a^3 \geq .4317, \text{ and } \rho \geq 2.733) \end{aligned}$$

and so $[8b/10, (73/40)b] \subseteq S_X$. The result follows as in Subcase III (iv). This completes the proof for Case III.

Case IV: (x, y) in the fourth quadrant.

Subcase IV (i): $|x| \ge b$. By Remark 2, f(t) is monotone in the interval (0, b], so we have $(0, b] \subseteq S_X$.

Subcase IV (ii): $(25/40)b \le x \le b$. In this case, since -x is the smallest root of f(t), f(t) is negative and a monotonically increasing function of t for $-a \le t \le -x$, and

$$|f(-a)| = (a - x)(a + b)(-y + a)$$

$$\leq (a - x)(a + b)\left(\frac{12.3}{8a^2} + x + a\right) \quad (by (13))$$

$$= h(x),$$

say. Since h(x) is monotonically decreasing, for $x \ge (25/40)b$, we have $|f(-a)| \le h(25b/40) < 1.92 \dots < \rho$, so $[-a, x] \subseteq S_X$.

If $|y| \ge b$, then f(t) has a single extreme point between -x and b, so either [-x, 0) or $(0, b] \subseteq S_X$ and hence [-a, 0) or $(0, b] \subseteq S_X$.

Otherwise, we have either [-a, 0) or $(0, -y] \subseteq S_X$ as before, and for $-y \leq t \leq b$,

$$|f(t)| = -f(t) = (t+x)(b-t)(y+t) \le \left(\frac{b+x}{2}\right)^2 b \le b^3 < \rho.$$

So either [-a, 0) or $(0, b] \subseteq S_X$ and result follows by Remark 1.

Subcase IV (iii): $0 \le x \le (25/40)b$, $|y| \le (59/40)b$, $\rho \ge 2.9$. In this case, we have

$$\begin{aligned} |f(-a)| &= -f(-a) = (a-x)(a+b)(-y+a) \\ &\leq (a-x)(a+b)\left(\frac{5}{2}a\right) \\ &\leq a(a+b)\left(\frac{5}{2}a\right) < 2.892 \dots < \rho. \end{aligned}$$

Arguing as in Case IV (ii), we have either [-a, 0) or $(0, b] \subseteq S_X$.

Subcase IV (iv): $0 \le x \le (25/40)b$, $|y| \le b$, $\rho \le 2.9$, so $\sigma > .344$. For $b/10 \le t \le -y$, f(t) is positive and

$$\begin{split} f(t) &= (t+x)(b-t)(-y-t) \\ &\leq \left(\frac{-y+x}{2}\right)^2 (b-t) \quad (\text{A. G. mean}) \\ &\leq \left(\frac{b+x}{2}\right)^2 (b-t) \quad (\text{since } |y| \leq b) \\ &\leq \left(\frac{65}{80}\right)^2 \left(\frac{9}{10}\right) b^3 < \sigma, \end{split}$$

so $[b/10, -y] \subseteq S_X$ or $[-y, b] \subseteq S_X$ as in Case IV (iii). Also for $b \le t \le (9/8)b$, we have

$$0 \le f(t) = (t+s)(t-b)(t-|y|) \le (t+x)(t-b)(t-x) \quad (\text{since } |y| \ge x) \le t^2(t-b) \quad (A. G. mean) \le \left(\frac{9}{8}\right)^2 \frac{1}{8} < .16 < \sigma,$$

so $[b/10, (9/8)b] \subseteq S_X$. Since (9/8)b - b/10 = a, the result follows by (17).

Subcase IV (v): $0 \le x \le (25/40)b$, $b \le |y| \le (59/40)b$, $\rho \le 2.9$. For $|y| - (9/10)b \le t \le b$, we have

$$0 \le f(t) = (t+x)(b-t)(|y|-t)$$

$$\le \left(\frac{b+x}{2}\right)^2 (|y|-t) \quad (A. G. mean)$$

$$\le \left(\frac{65}{80}\right)^2 \left(\frac{9}{10}\right) b^3 < \sigma,$$

The asymmetric product of three inhomogeneous linear forms

so $[-y - (9/10)b, b] \subseteq S_X$. For $b \le t \le -y$, we have

$$0 \le -f(t) = (x+t)(t-b)(-y-t)$$

$$\le \left(\frac{25}{40}b + \frac{59}{40}b\right) \left(\frac{19}{40}b\right)^2 < \rho,$$

so $[b, -y] \subseteq S_X$. Also for $-y \le t \le -y + b/8$, we have

$$0 \leq f(t) = (t+x)(t-b)(t+y)$$
$$\leq \left(\frac{64}{40}b + \frac{25}{40}b\right) \left(\frac{24}{40}b\right) \left(\frac{1}{8}b\right) < \sigma,$$

so $[-y, -y + b/8] \subseteq S_X$ and hence $[-y - (9/10)b, -y + b/8] \subseteq S_X$. This is an interval of length a and the result follows by (17).

Subcase IV (vi): $0 \le x \le (25/40)b$, $|y| \ge (59/40)b$. We have

$$0 \leq -f\left(-\frac{25}{40}b\right) = \left(\frac{25}{40}b - x\right)\left(b + \frac{25}{40}b\right)\left(-y + \frac{25}{40}b\right)$$

$$\leq \left(\frac{25}{40}b - x\right)\left(\frac{12.3}{8a^2} + x + \frac{25}{40}b\right)\left(\frac{65}{40}b\right)$$

$$= g(x),$$

say. Since g(x) is monotonically decreasing, for $x \ge 0$, we have

$$-f\left(\left(-\frac{25}{40}b\right)\leq g(0)<1.8316\cdots z\rho,$$

so $-(25/40)b \in S_X$ and hence $[-(25/40)b, -x] \subseteq S_X$. For $b \le t \le (57/40)b$, we have

$$\begin{aligned} 0 &\leq -f(t) = (t+x)(t-b)(-y-t) \\ &\leq (t+x)(t-b)\left(\frac{12.3}{8a^2} + x - t\right) \quad (\text{by (13)}) \\ &\leq (2a)\left(\frac{17}{40}b\right)\left(\frac{12.3}{8a^2}\right) \quad (\text{since } x < b \leq t) \\ &< \rho, \end{aligned}$$

so $[b, (57/40)b] \subseteq S_X$.

Between -x and b, f(t) has a single extreme point, so f(t) is monotone in either the interval [-x, 0) or the interval (0, b]. In view of (15), either the interval [-x, 0) or the interval (0, b] is contained in S_X . If $(0, b] \subseteq S_X$, the result follows by (16). Otherwise we have $[-(25/40)b, 0) \cup [b, (57/40)b] \subseteq S_X$ and the result follows by (18). This completes the proof for Case IV and hence completes the proof of Theorem 2.

[15]

The author is grateful to Professor R. P. Bambah for many valuable suggestions in the preparation of this paper.

References

- [1] R. P. Bambah and A. C. Woods, 'Minkowski's conjecture of n = 5, A theorem of Skubenko', J. Number Theory 12 (1980), 27-48.
- [2] B. J. Birch and H. P. F. Swinnerton-Dyer, 'On the inhomogeneous minimum of the product of n-linear forms', Mathematika 3 (1956), 25-39.
- [3] J. H. H. Chalk, 'On the positive values of linear forms', Quart. J. Math. Oxford Ser. 18 (1947), 215-227.
- [4] H. Davenport, 'Note on the product of three homogeneous linear forms', J. London Math. Soc. 14 (1941), 98-101.
- [5] H. Davenport, 'Non-homogeneous ternary quadratic forms', Acta Math. 80 (1948), 65-95.
- [6] V. K. Grover, 'Asymmetric inequalities for non-homogeneous forms', Ph. D. thesis, 1979.
- [7] K. Mahler, 'On lattice points in n-dimensional star bodies I, Existence theorems', Proc. Roy. Soc. London Ser A 187 (1946), 151-187.
- [8] R. Remak, 'Verallgemeinerung eines Minkowskischen Satzes I, II', Math. Z. 17 (1923), 1-34, 18 (1923), 173-200.
- [9] A. C. Woods, 'The asymmetric product of three inhomogeneous linear forms', J. Austral. Math. Soc. Ser. A 31 (1981), 439-455.

Centre for Advanced Study in Mathematics Panjab University Chandigarh-160 014 India