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Abstract

Let A be a lattice in R3 of determinant 1. Define the homogeneous minimum of A as m/,(A) =
inf |uiU2U3| extended over all points (ui,1*2,113) of A other than the origin. It is shown that
for any given (ci, 02,03) in R3 there exists a point (ui,1*2,113) of A for which

+ C2)(u3 + C3) <<T, p,a > 0,

provided that pa > 1/64 if mh(A) = 0, and pa > 1/16.81 if mfc(A) > 0.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 10 E 15.

1. Introduction

For 1 < i < n, let Li = anxi + • • • + ainxn be n linear forms in the variables
i i , . . . , zn with real coefficients â - satisfying | det(a^)| = 1. A classical conjec-
ture of Minkowski asserts that, given n real numbers c\,..., cn, the inequality

has a solution in integral values of the variables. This has been proved for n < 5;
see Bambah and Woods [1]. For the case n = 2, Davenport [5] generalised this is
to the asymmetric case and proved that, given real numbers c\, C?, the inequality

(2) -a < (Li+ci)(L2 + c 2 )<P, P,CT>Q,
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[2] The asymmetric product of three inhomogeneous linear forms 237

has a solution in integral values of the variables provided tha t pa > 1/16.

For the case n = 3, we obtain here a sufficient condition on p, a for the

asymmetric inequality corresponding to (2) to have a solution in integral values

of the variables.

Let Aj = (aij,..., anj), for 1 < j < n, and denote by A the lattice with basis

Ai,...,An such tha t d(A) = 1. Let m/,(A) denote the infimum of | a ; i - - - x n |

extended over all points (xi,...,xn) of A other than the original 0. We have

THEOREM 1. Let A be a lattice of determinant 1. For any point C —

(ci, 02,03) S R3, there exists a point A = (01,02,03) of A such that

(3) -p< (fli +Ci)(02+C2)(a3+C3) <<7, P,0>O,

provided that
(a) pa > 1/64 if mh(A) = 0, and
(b) pa > 1/16.81 ifmh{A)>0.

The method of proof is the projective one due to Birch and Swinnerton-
Dyer [2]. The author [6] used the same method earlier to obtain the condition
pa > (4\/5 — 5)/64 = 1/16.224... to be a sufficient condition. Woods [9], using
this method, proved that if in (3), (03 + C3) is replaced by |a3 + C3I then the
result holds for pa > 1/64. Our method of proof is parallel to that of Woods
[9].

2. Proof for case (a)

LEMMA 1. If A is a lattice in R2 of determinant d(A) and A > 0, then given
any point c = {01,02) € R2, there exists a point A = (01,02) of A such that

ci)(o2 + c2) <
d(A)A

This result is due to Davenport [5].
We say that a lattice A in Rn is a covering lattice for a region S, if the

translates of S by the points of A cover the whole space Rn. It is clear that A is
a covering lattice for 5 if and only if given any C € Rn, there exists A G A such
that A + C € S. We have

LEMMA 2. Let S be an open set in Rn, A o lattice and let ojr be a sequence of
automorphs of S such that {uir A} is a sequence of lattice converging to a lattice
F. 7/F is a covering lattice for S, then so is A.
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238 V. K. Grover [3]

PROOF. Since wrA = A<r> -> T, there exists a basis A^,...,A^ of A(r ) and
a basis A\,..., An of T such that Af —» Aj, 1 < i < n.

Let C € Rn be arbitrary, let C^ — oJrC, and choose C(r) in the fundamental
parallelopiped { E " = i ctiAJr);O < at < l , i = 1 , . . . , n} of A^ such that C ^ =
C(r) (mod A(r)), whence C^ is a bounded sequence. On replacing ur by a
subsequence we can suppose that C^ —> C.

Since T is a covering lattice for 5 , there exists B e T such that B + C G S.
Let 5<f) € A(r) be such that B^ -> B. Then £ ( r ) + C(r> - » B + C a n d hence
for larger r, B^ + C ( r ) € 5 , and hence there exists A e A such that A + C € S.
This proves Lemma 2.

If fi denotes the group of automorphs of the form X\-- xn, generated by the
permutations of Xj and the transformations of the type Xi —* AjZj, Aj e R and

i = 1, then we have following result due to Birch and Swinnerton-Dyer [2].

LEMMA 3. Let A be a lattice in Rn with m/,(A) = 0. Then there exists a
sequence ujr in fi such that {wrA} tends to a lattice T having a basis A\ • • • An

such that for some k, 1 < k < n, A\,... ,Ak He in a k-dimensional coordinate
plane.

Theorem l(a) is a consequence of

THEOREM 1A. Let A be a lattice in R3 of determinant 1 with m/,(A) = 0.
For any given X > 0, e > 0 and C = (ci,02,03) in R3, there exists a point
A = (01,02,03) of A such that

(4) -^-g^<(ai

PROOF. By Lemma 3, we can find a sequence wr € fi such that wrA -+ T =
{(Li ,L 2 ,Ls) , for integral values of variables}, where either

either (1) L\ = anX\ +012X2 + 013X3
Li = ^22^2 + 023^3

L3 = 0.32X2 + O33X3

or (2) Li = anxi+012X2+013X3

L2 = 021X1 + 022X2 + 023X3

L3 — 0,33X3.

On replacing uy by w • wT for suitable u e 0 , we can suppose that in case (1)
a n = 1 and in case (2) 033 = 1.

In view of Lemma 2, it is sufficient to prove the result for the lattice T.
Case 1. Since a n = 1, the set 5C — (Li, L-i) for integral values of variables is

a lattice of determinant 1. By Lemma 1, with A = 1, there exist integers U2)"3
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[4] The asymmetric product of three inhomogeneous linear forms 239

such that for {x2,x3) = {ui,u3)

(5) \{Li \

If in (5), (L2 + C2HL3 + c3) = 0, then (4) holds for any choice of ui 6Z.

Suppose that {Li + ci){L3 + C3) ^ 0. Let ci = auu^ + 013113 + ci- First
suppose that {Li + ci){L3 + c3) > 0. In this case, for any given A > 0, there
exists ui € Z such that

(6)

Since 0 < {Li+ci){L3 + c3) < \ andLi+ci = U1+C1, we have for (ui,u2,u3) G
Z3 that

< (^ + )(L + )(^ + C3) < g ,

and hence (4) holds for the lattice V and the point C. The case

{Li + Ci){L3 + c3) < 0

follows on replacing A by I/A in (6) and repeating the same argument as in the
case of {Li + c2){L3 + c3) > 0.

Case 2. Since 033 = 1, there exists 113 S Z such that IL3 + c3\ < 1/2. As in
Case 1, if L3 + C3 = 0, we are through. We can suppose that L3 + c3 ^ 0.

Let L\ = anXi + a,\iXi,c\ = 0131̂ 3 + ci, and Li = a,i\X\ + anxi,di —
fl23"3 + c2, so that the set of points (Zi, L2) for integral values of variables is a
lattice of determinant 1.

Firstly suppose that L3 + c3 > 0. By Lemma 1, for A > 0, we can find integral
values «i, ui of variables such that

(7) - ^

Since 0 < L3 + c3 < | , we get

ci){L3 + c3) < -.

When L3 + c3 < 0, the result follows on replacing A by j in (7). This completes
the proof of Theorem 1A and therefore of (a).
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3. Proof for case (b)

This is equivalent to proving

THEOREM IB . Lth.be a lattice of determinant 4.1, with mh(A) > 0. Then
for any given real numbers p, a > 0, with pa = 1, and any given point C € R3,
the grid A. + C has a point in the region

(8) S: - p< xyz < a.

In order to obtain some restrictions on p and a, we need

LEMMA 4 . Let L\,Li,L$ be three real linear forms in three variables x,y,z

of determinant A ^ 0. Then given any real numbers c i , C2, C3 there exist integers

x, y, z such that

This result is due to Remark [8].
For the one sided inequality Chalk [3] proved

LEMMA 5. IfLi,...,Ln are n real linear forms in n variables of determinant
A / 0, then for any real numbers c\,...,cn, we can find integral values of
variables such that

t=i

COROLLARY. It is sufficient to prove Theorem IB for the case 8/4.1 < p <
4.1.

PROOF On replacing A by A', where A' = {(—x, y, z)\(x, y, z) € A}, if neces-
sary, we can suppose that p > a. Now for p < 8/4.1, we have p > a > 4.1/8,
and the result follows by Lemma 4.

For p > 4.1, the result is a consequence of Lemma 5. Hence the Corollary
follows.

It is enough to prove Theorem IB, when mh(A) is attained, for otherwise as
in Birch and Swinnerton-Dyer [2, Theorem 2], following Mahler [7, Theorem 20],
there exists a sequence ur e Q such that wrA —> F, mh(A) = m/,(r) and the
homogeneous minimum is attained for F. In view of Lemma 2, it is sufficient to
prove Theorem IB for the lattice F. Since Theorem IB is invariant under fi, we
can further assume that m/j(A) is attained at the point P = (a, a, a) € A, a > 0.
By a well known theorem of Davenport [4], it follows that o3 < 4.1/7.
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LEMMA 6 . Let A be a lattice in R3 of determinant 4 .1 , with P = (a, a, a) G A,
a > 0, such that a3 = m/,(A). Let Sf be the projection of A. on the x,y plane,
parallel to the vector (a,a, a). For any given real numbers p > 0, a > 0, with
pa = 1, and any point x G R2, the two dimensional grid, S? + X has a point in
the region K in the plane, given as the set of points (x, y) such that

and either \x + y\< 12.3/8a2 or \x - y \ < 12 .3 /8o 2 .

PROOF. Woods [9, Theorem IB] proved that for a lattice of determinant 8,
the corresponding grid .2" + X, for any given X G R2, has a point in the region
consisting of points (x, y) such that

do, -?-*•»*?
and either \x + y\< 3/a2 or \x - y\ < 3/a2.

Now, if A is a lattice of determinant 4.1, then for d3 = 8/4.1, dA is a lattice of
determinant 8, with the point Q = (ad, ad, ad) G dA, where m/,(dA) is attained.
Its projection on the x, y-plane parallel to the vector (ad, ad, ad) is dSP, so that
for any X G R2, dS? + dX has a point in the region defined by (10) and hence
S? + X has a point in the region K. This completes the proof of Lemma 6.

For any given p, a > 0, pa = 1. Let Kj be the set of points (x, y) such that
for any given ( 0 6 R there exists t = to (mod a) satisfying

(11) -p< (x + t)(y + t)(t- b) <a, where 6 = 4o/4.1.

LEMMA 7. Let K be defined by (9) and let Ki be as above. If for some p,a,
with pa = 1, Ki D K, then Theorem IB is true for that choice of p and a.

PROOF. Let C E R3 be any given point. Projection of the grid A + C parallel
to the vector (a, a, a) on the plane Z = -b is a translate of the lattice 2C and
hence in view of Lemma 6, has a point (x*,y*,—b) in K + (0,0,-6), so that
A + C has a point of the type (x* + to, y* + to, to — b), for (x*, y*) € K, for some
to G R- Since K c K i , there exists t = to (mod a) satisfying (11). Also since
(a, 0, a) G A, the point (x* +1, y* +1 , t - b) G (A + C) n S, which completes the
proof of Lemma 7.

The corollary to Lemma 4 and Lemma 5, and Lemma 7 imply that Theorem
IB is consequence of

THEOREM 2. Leta>0 be a real number satisfying a3 < 4.1/7. Let p,a > 0,
with pa = 1,8/4.1 < p < 4.1 be two given numbers. Then for any point (x, y) of
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242 V. K. Grover [7]

the region K, defined by (9), and any real number to, there exists t = to (mod a)
such that

(12) -p<{x + t)(y + t)(t-b)<a, where b=-^-.

4. Proof of Theorem 2

From the symmetry in x,y we may assume that |x| < \y\. Further for (x,y) €
K, we have

(13) \xy\<t,

Also

and

(15) -p < -xyb < a.

Let f(t) = (t + x)(t + y)(t - b). For X = (x, y) e R2, denote by Sx the set of
all real numbers t satisfying (12). We have

LEMMA 8. For all X e K, [b,a] C Sx.

PROOF. For 6 < t < a, we have

\f(t)\ = \xy + t(x + y) + t2\\t-b\

< {\xy\ + a\x + y\ + a2)(o - b)

+ i r a 3 (by

if

+ i ( ( ^ ) + ( 4 1 > f l 3 ) + a3 < l (since "ff=1}-
Since a3 < 4.1/7 and p < 4.1 the above holds and hence [b, a] C Sx for all
XeK.

REMARK 1. In view of Lemma 8, it is enough to prove that for X e K, we
have either

(16) (Q,b]CSx,
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[8] The asymmetric product of three inhomogeneous linear forms 243

or

(17) Sx contains a half open interval / of length a,
or

(18) there exist real numbers ti < t 2 < *3 < <4

such that U - t\ > 2a, t3 - i2 < a and Sx

contains [ti, t2) U (t3, t4}.

REMARK 2. If g(t) = (t - a)(t - j3){t - 7) is a polynomial with a,/?,7 real
and satisfying a < /3 < 7 then it is easy to see that

(i) g(t) is monotonically increasing for t < a and t > 7,
(ii) g(t) is monotonically decreasing function for (a + /3)/2 < < < ( / ? + 7)/2.
From now onward (x,y) will stand for a point in K. We distinguish the

following cases.

Case I: (x, y) in the first quadrant.

Subcase I (i): x > b. Since y > x > b, f(t) is negative and has no root in the
interval (—x,b), so f(t) is monotone in either the interval [—x,0) or the interval
(0,6]. Since by (15), /(0) = — xyb > —p, either (0,6] or [—x,0) is contained in
Sx- Now if x > a, we are through. Otherwise for — a < t < — x < —6, we have

l a ) (2a)|j/|

since p < 4.1. So in this case either [—a, 0) or (0,6] is contained in Sx, the result
follows in view of Remark 1.

Subcase I (ii): x < b and p > 2.11. For 0 < t < b, we have f(t) < 0 and

+ x) (by (13))

say. Since g(t) has maximum value at t — 6/3 we have

1/(01 *e(l)< 2 - 1 0 8 - • • < 9 (s ince b= ^ , a 3 < ^

so (0,6] C 5x , and the results follows by (16).
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Subcase I (iii): x < 6, a3 < 11 /25 ,8 /4 .1 < p < 2.11. Again as in Case I (ii),

we have, for 0 < t < b, t ha t

| / ( t ) | < 9(6/3) < 1.9477- • • < 8/4.1 < p (since o 3 < ^ ) .

So (0,6] C Sx and the result follows by (16).

Subcase I (iv): 0 < x < (9.1)6, a 3 > 11/25, p < 2.11. We have, for 0 < t < b,

tha t f(t) is negative and

1/(01 = (*-<)(*+ 0(» + 0

= h(t),

say. Since /i(t) has a maximum at t = (109/300)6, we have

so (0,6] C Sx and the result follows by (16).
Subcase I (v): (91/100)6 < x < b,y < (114/100)6,a3 > 11/25 and p < 2.11.

In this case, for 0 < t < 6, we have

1/(01= - / (0 = (* + 0(v + 0(6-0

f ^ J b3 < P,
so that (0,6] C Sx- The result follows by (16).

Subcase I (vi): (91/100)6 < x < b,y > (114/100)6,a3 > 11/25 and p < 2.11.
By Remark 2, f(t) is monotonically decreasing for — a < t < -x. Since f(t) is
positive for these values of t, to prove that [—a, —i] C Sx it is enough to prove
that — a € Sx- We have

0 < / ( - a ) = ( - 1 + a)(b + a)(y - a)

'nxy 4i. /41, 91 ,W. 41
* W - l006j [b + 40
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if

23 \ / 8 l \ [lOO 2 / 40 \ 2
 3 1 t . . „,

200 J (iO j ["91P ~ ( i l j aP\ < * (SmCe " = 1}-
Since the L. H. S., as a function of p, is monotonically increasing, and for p = 2.11
and a3 > 11/25, the above holds, we have — a € Sx and hence [—0, —x] C Sx-
Now arguing as in Subcase I (i), we have either [—o,0) or (0,6] is contained in
Sx- This completes the proof for Case I.

Case II: (x, y) in the second quadrant.

Subcase II (i): |x| > 6. Since y > \x\ > 6, in view of Remark 2, f(t) is positive
and monotonically decreasing in the interval (0,6]. Since, by (15), /(0) < a, we
have (0,6] C SX- The result follows from (16).

Subcase II (ii): |x| < 6. As in Subcase II (i) above, (0, — x] C Sx- For
—x < t < 6, we have

0 < -f(t) = {b - t){x + t)(x + t)

say. Since g(fi) is a decreasing function of fi for 0 < fi < 1, we have | / ( i ) | <

ff(0) < p, so (0,6] C SX- This completes Case II.

Case III: (x, y) m the third quadrant.

Subcase III (i): |x| > 6. Since |y| > |x| > 6, 6 is the smallest root of f(t) and

by Remark 2, f(t) is negative and monotonically increasing for 0 < t < 6. Since

by (15), f(t) > —p, we have (0,6] C Sx- This proves the result for Subcase

III (i).

Subcase III (ii): |x| < 6, \y\ < 4cr/b2. As in Subcase III (i), we have (0, - x ] C

Sx- For — x < t < b, f(t) is positive and

|/(0l < {t + x){b-t

< — max(|y|,6) < a,

since 63 < f < 4a. So (0,6] C SX-

https://doi.org/10.1017/S1446788700030706 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030706


246 V. K. Grover [11]

Subcase III (iii): |x| < 6, \y\ > Aa/b2, p < 2.733, so a > .36598. As before
(0, —x] C Sx- Since 4CT/62 > b, we have \y\ > b and thus f(t) is positive for
-x <t < b and we have

t)(b-t)(-y-t)

^ (by (13))

say, where fi — \x\ > 0. Since g(ft, t) as a function of // is a decreasing function
of fi, for all t e (0,6], we have

b2 /12 3 \
- T ( 8~2~ ) < 3 6 5 9 < a (A- G- m e a n ) -

Thus (0,6] C 5 X and the result follows from (16).

Subcase III (iv): |x| < b, \y\ > 4a/b2, a3 < .4317, p > 2.733.
As in Subcase III (iii), for — x < t < b, we have

say. Since h(t) is monotonically decreasing for t > 6/2, then for t > (8/10)6, we
have

Now for |x| > 86/10, we have t > 86/10, so [-x,6] C Sx and (0, -x] C SX-
As in the earlier case we have (0,6], and in particular [jg6,6] C Sx, for all X in
this case.

Since a3 < .4317, \y\ > 4a/b2 > (73/40)6, so f(t) is negative for 6 < t <
(73/40)6 and

(x + t)(t-b)(-y-t)

say, where fi = \x\> 0. Since t < (73/40)6 < 12.3/16a2, for a3 < .4317, we have
gi (fi, t) is a decreasing function of fi, and hence

* (SO (10 ( £ ) -
https://doi.org/10.1017/S1446788700030706 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030706


[12] The asymmetric product of three inhomogeneous linear forms 247

so ((8/10)6,(73/40)6] C Sx- Since this interval is of length a, we are done in

view of (17).

Subcase III (v): |x| < 6, \y\ > 4a/b2, p > 2.733 and a 3 > .4317. Since

4<r/62 > (71/40)6, we have \y\ > (71/40)6.

Again as in Subcase III (iv), [^6,6] C SX- Then for (71/40)6 < \y\ < (73/40)6

and for (71/40)6 < t < (73/40)6, we have

- b\\t + y\< (gft) ( | 6 ) ( | 6 ) < a.

Also for 6 < t < min(|y|, (73/40)6), f(t) is negative and

t)(t-b)(-y-t)

) < - & ) (by (13))

{t~b) ( A G m e a n )

^ I ̂  ) A < P ( s i n c e fl3 ̂  -4317> and /> > 2.733)\ 16 / a4

and so [86/10,(73/40)6] C Sx. The result follows as in Subcase III (iv). This
completes the proof for Case III.

Case IV: (x, y) in the fourth quadrant.

Subcase IV (i): |x| > 6. By Remark 2, f(t) is monotone in the interval (0,6],
so we have (0,6] C Sx-

Subcase IV (ii): (25/40)6 < x < 6. In this case, since - x is the smallest
root of f(t), f(t) is negative and a monotonically increasing function of t for
—a<t< —x, and

( ^ ) (by (13))

= h(x),

say. Since h(x) is monotonically decreasing, for x > (25/40)6, we have |/(—a)\ <
ft(256/40) < 1.92 • • • < p, so [-o,x] C Sx.

If \y\ > b, then f(t) has a single extreme point between —x and 6, so either
[-x,0) or (0,6] C Sx and hence [-a,0) or (0,6] C Sx-

Otherwise, we have either [—a, 0) or (0, — y] C Sx as before, and for
-y < t < b,

= -f(t) = (t + x)(b-t)(y + t)
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So either [—o,0) or (0,6] C Sx and result follows by Remark 1.

Subcase IV (iii): 0 < x < (25/40)6, \y\ < (59/40)6, p > 2.9. In this case, we
have

l/(-o)l = " / ( -« ) = (a " *)(o + f>)(-y + a)

< a{a + 6) ( | a J < 2.892• • • < p.

Arguing as in Case IV (ii), we have either [—a,0) or (0,6] C Sx-

Subcase IV (iv): 0 < x < (25/40)6, |y| <b,p< 2.9, so a > .344.
For 6/10 < t < —y, f(t) is positive and

x)(b-t)(-y-t)

(b-t) (A. G. mean)
2

2
/ n -+• T i

<

6 5 \ 2 / 9w U
so [6/10, -y] C Sx or [-y,b] C Sx as in Case IV (iii). Also for 6 < t < (9/8)6,
we have

0 < /(*) = (* + a)(* - 6)(* - |y|)
< (t + x)(t - b)(t - x) (since \y\ > x)

<t7(t-b) (A. G. mean)

so [6/10, (9/8)6] C S x . Since (9/8)6 - 6/10 = o, the result follows by (17).

Subcase IV (v): 0 < x < (25/40)6, b < \y\ < (59/40)6, p < 2.9.
For |y| - (9/10)6 < t < b, we have

= (t + x)(b-t)(\y\-t)
2

(|j/| ~ t) (A- G- mean)
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so \-V ~ (9/10)6, 6] C SX- For b < t < -y, we have

0< -f(t) = (x + t)(t-b)(-y-t)

25t 59A /19A2

W + b){
so [b, -y] C Sx- Also for -y < t < -y + 6/8, we have

= (t + x)(t-b)(t + y)

so [-y, - y + 6/8] C Sx and hence [-y - (9/10)6, - y + 6/8] C S x . This is an
interval of length a and the result follows by (17).

Subcase IV (vi): 0 < x < (25/40)6, \y\ > (59/40)6.
We have

»̂  -'(-!*) - (1-0 (*-!•) (-+i

= g(x),

say. Since g(x) is monotonically decreasing, for x > 0, we have

so -(25/40)6 € 5x and hence [-(25/40)6, -x] C Sx. For b < t < (57/40)6, we
have

0< -f(t) = (t + x)(t-b)(-y-t)

(by (13))

- ( 2 a ) (i56) ( ^ ) (since

so [6, (57/40)6] C S X .
Between — x and 6, f(t) has a single extreme point, so f(t) is monotone in

either the interval [—x, 0) or the interval (0,6]. In view of (15), either the interval
[-x,0) or the interval (0,6] is contained in Sx- If (0,6] C Sx, the result follows
by (16). Otherwise we have [-(25/40)6,0) U [6, (57/40)6] C Sx and the result
follows by (18). This completes the proof for Case IV and hence completes the
proof of Theorem 2.
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