THE ASYMMETRIC PRODUCT OF THREE INHOMOGENEOUS LINEAR FORMS

V. K. GROVER

(Received 24 February 1987; revised 13 November 1987)

Communicated by J. H. Loxton

Abstract

Let Λ be a lattice in \mathbf{R}_{3} of determinant 1. Define the homogeneous minimum of $\boldsymbol{\Lambda}$ as $m_{h}(\Lambda)=$ $\inf \left|u_{1} u_{2} u_{3}\right|$ extended over all points (u_{1}, u_{2}, u_{3}) of Λ other than the origin. It is shown that for any given (c_{1}, c_{2}, c_{3}) in R_{3} there exists a point (u_{1}, u_{2}, u_{3}) of Λ for which

$$
-\rho \leq\left(u_{1}+c_{1}\right)\left(u_{2}+c_{2}\right)\left(u_{3}+c_{3}\right) \leq \sigma, \quad \rho, \sigma>0,
$$

provided that $\rho \sigma>1 / 64$ if $m_{h}(\Lambda)=0$, and $\rho \sigma \geq 1 / 16.81$ if $m_{h}(\Lambda)>0$.
1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 10 E 15.

1. Introduction

For $1 \leq i \leq n$, let $L_{i}=a_{i 1} x_{1}+\cdots+a_{i n} x_{n}$ be n linear forms in the variables x_{1}, \ldots, x_{n} with real coefficients $a_{i j}$ satisfying $\left|\operatorname{det}\left(a_{i j}\right)\right|=1$. A classical conjecture of Minkowski asserts that, given n real numbers c_{1}, \ldots, c_{n}, the inequality

$$
\begin{equation*}
\prod_{i=1}^{n}\left|L_{i}+c_{i}\right| \leq \frac{1}{2^{n}} \tag{1}
\end{equation*}
$$

has a solution in integral values of the variables. This has been proved for $n \leq 5$; see Bambah and Woods [1]. For the case $n=2$, Davenport [5] generalised this is to the asymmetric case and proved that, given real numbers c_{1}, c_{2}, the inequality

$$
\begin{equation*}
-\sigma \leq\left(L_{1}+c_{1}\right)\left(L_{2}+c_{2}\right) \leq \rho, \quad \rho, \sigma>0 \tag{2}
\end{equation*}
$$

(c) 1989 Australian Mathematical Society 0263-6115/89\$A2.00 +0.00
has a solution in integral values of the variables provided that $\rho \sigma \geq 1 / 16$.
For the case $n=3$, we obtain here a sufficient condition on ρ, σ for the asymmetric inequality corresponding to (2) to have a solution in integral values of the variables.

Let $A_{j}=\left(a_{1 j}, \ldots, a_{n j}\right)$, for $1 \leq j \leq n$, and denote by Λ the lattice with basis A_{1}, \ldots, A_{n} such that $d(\Lambda)=1$. Let $m_{h}(\Lambda)$ denote the infimum of $\left|x_{1} \cdots x_{n}\right|$ extended over all points $\left(x_{1}, \ldots, x_{n}\right)$ of Λ other than the original 0 . We have

THEOREM 1. Let Λ be a lattice of determinant 1. For any point $C=$ $\left(c_{1}, c_{2}, c_{3}\right) \in \mathbf{R}_{3}$, there exists a point $A=\left(a_{1}, a_{2}, a_{3}\right)$ of Λ such that

$$
\begin{equation*}
-\rho<\left(a_{1}+c_{1}\right)\left(a_{2}+c_{2}\right)\left(a_{3}+c_{3}\right)<\sigma, \quad \rho, \sigma>0 \tag{3}
\end{equation*}
$$

provided that
(a) $\rho \sigma>1 / 64$ if $m_{h}(\Lambda)=0$, and
(b) $\rho \sigma \geq 1 / 16.81$ if $m_{h}(\Lambda)>0$.

The method of proof is the projective one due to Birch and SwinnertonDyer [2]. The author [6] used the same method earlier to obtain the condition $\rho \sigma \geq(4 \sqrt{5}-5) / 64=1 / 16.224 \ldots$ to be a sufficient condition. Woods [9], using this method, proved that if in (3), $\left(a_{3}+c_{3}\right)$ is replaced by $\left|a_{3}+c_{3}\right|$ then the result holds for $\rho \sigma \geq 1 / 64$. Our method of proof is parallel to that of Woods [9].

2. Proof for case (a)

Lemma 1. If Λ is a lattice in \mathbf{R}_{2} of determinant $d(\Lambda)$ and $\lambda>0$, then given any point $c=\left(c_{1}, c_{2}\right) \in \mathbf{R}_{2}$, there exists a point $A=\left(a_{1}, a_{2}\right)$ of Λ such that

$$
\frac{-d(\Lambda)}{4 \lambda}<\left(a_{1}+c_{1}\right)\left(a_{2}+c_{2}\right) \leq \frac{d(\Lambda) \lambda}{4}
$$

This result is due to Davenport [5].
We say that a lattice Λ in \mathbf{R}_{n} is a covering lattice for a region S, if the translates of S by the points of Λ cover the whole space \mathbf{R}_{n}. It is clear that Λ is a covering lattice for S if and only if given any $C \in \mathbf{R}_{n}$, there exists $A \in \Lambda$ such that $A+C \in S$. We have

Lemma 2. Let S be an open set in $\mathbf{R}_{\boldsymbol{n}}, \Lambda$ a lattice and let ω_{r} be a sequence of automorphs of S such that $\left\{\omega_{r} \Lambda\right\}$ is a sequence of lattice converging to a lattice Γ. If Γ is a covering lattice for S, then so is Λ.

Proof. Since $\omega_{r} \Lambda=\Lambda^{(r)} \rightarrow \Gamma$, there exists a basis $A_{1}^{(r)}, \ldots, A_{n}^{(r)}$ of $\Lambda^{(r)}$ and a basis A_{1}, \ldots, A_{n} of Γ such that $A_{i}^{(r)} \rightarrow A_{i}, 1 \leq i \leq n$.

Let $C \in \mathbf{R}_{n}$ be arbitrary, let $C^{(r)}=\omega_{r} C$, and choose $\hat{C}(r)$ in the fundamental parallelopiped $\left\{\sum_{i=1}^{n} \alpha_{i} A_{i}^{(r)} ; 0 \leq \alpha_{i}<1, i=1, \ldots, n\right\}$ of $\Lambda^{(r)}$ such that $C^{(r)} \equiv$ $\hat{C}(r)\left(\bmod \Lambda^{(r)}\right)$, whence $\hat{C}^{(r)}$ is a bounded sequence. On replacing ω_{r} by a subsequence we can suppose that $\hat{C}^{(r)} \rightarrow \hat{C}$.

Since Γ is a covering lattice for S, there exists $B \in \Gamma$ such that $B+\hat{C} \in S$. Let $B^{(r)} \in \Lambda^{(r)}$ be such that $B^{(r)} \rightarrow B$. Then $B^{(r)}+\hat{C}^{(r)} \rightarrow B+\hat{C}$ and hence for larger $r, B^{(r)}+\hat{C}^{(r)} \in S$, and hence there exists $A \in \Lambda$ such that $A+C \in S$. This proves Lemma 2.

If Ω denotes the group of automorphs of the form $x_{1} \cdots x_{n}$, generated by the permutations of x_{i} and the transformations of the type $x_{i} \rightarrow \lambda_{i} x_{i}, \lambda_{i} \in \mathbf{R}$ and $\prod \lambda_{i}=1$, then we have following result due to Birch and Swinnerton-Dyer [2].

Lemma 3. Let Λ be a lattice in \mathbf{R}_{n} with $m_{h}(\Lambda)=0$. Then there exists a sequence ω_{r} in Ω such that $\left\{\omega_{r} \Lambda\right\}$ tends to a lattice Γ having a basis $A_{1} \cdots A_{n}$ such that for some $k, 1 \leq k<n, A_{1}, \ldots, A_{k}$ lie in a k-dimensional coordinate plane.

Theorem 1(a) is a consequence of

THEOREM 1A. Let Λ be a lattice in \mathbf{R}_{3} of determinant 1 with $m_{h}(\Lambda)=0$. For any given $\lambda>0, \varepsilon>0$ and $C=\left(c_{1}, c_{2}, c_{3}\right)$ in \mathbf{R}_{3}, there exists a point $A=\left(a_{1}, a_{2}, a_{3}\right)$ of Λ such that

$$
\begin{equation*}
-\frac{(1+\varepsilon)}{8 \lambda}<\left(a_{1}+c_{1}\right)\left(a_{2}+c_{2}\right)\left(a_{3}+c_{3}\right)<\frac{(1+\varepsilon) \lambda}{8} \tag{4}
\end{equation*}
$$

Proof. By Lemma 3, we can find a sequence $\omega_{r} \in \Omega$ such that $\omega_{r} \boldsymbol{\Lambda} \rightarrow \Gamma=$ $\left\{\left(L_{1}, L_{2}, L_{3}\right)\right.$, for integral values of variables $\}$, where either

On replacing ω_{r} by $\omega \cdot \omega_{r}$ for suitable $\omega \in \Omega$, we can suppose that in case (1) $a_{11}=1$ and in case (2) $a_{33}=1$.

In view of Lemma 2, it is sufficient to prove the result for the lattice Γ.
Case 1. Since $a_{11}=1$, the set $\mathscr{L}=\left(L_{1}, L_{2}\right)$ for integral values of variables is a lattice of determinant 1 . By Lemma 1 , with $\lambda=1$, there exist integers u_{2}, u_{3}
such that for $\left(x_{2}, x_{3}\right)=\left(u_{2}, u_{3}\right)$

$$
\begin{equation*}
\left|\left(L_{2}+c_{2}\right)\left(L_{3}+c_{3}\right)\right| \leq \frac{1}{4} \tag{5}
\end{equation*}
$$

If in (5), $\left(L_{2}+c_{2}\right)\left(L_{3}+c_{3}\right)=0$, then (4) holds for any choice of $u_{1} \in \mathbb{Z}$.
Suppose that $\left(L_{2}+c_{2}\right)\left(L_{3}+c_{3}\right) \neq 0$. Let $\hat{c}_{1}=a_{12} u_{2}+a_{13} u_{3}+c_{1}$. First suppose that $\left(L_{2}+c_{2}\right)\left(L_{3}+c_{3}\right)>0$. In this case, for any given $\lambda>0$, there exists $u_{1} \in \mathbf{Z}$ such that

$$
\begin{equation*}
-\frac{1}{2 \lambda} \leq u_{1}+\hat{c}_{1} \leq \frac{\lambda}{2} \tag{6}
\end{equation*}
$$

Since $0<\left(L_{2}+c_{2}\right)\left(L_{3}+c_{3}\right) \leq \frac{1}{4}$ and $L_{1}+c_{1}=u_{1}+\hat{c}_{1}$, we have for $\left(u_{1}, u_{2}, u_{3}\right) \in$ \mathbf{Z}^{3} that

$$
-\frac{1}{8 \lambda} \leq\left(L_{1}+c_{1}\right)\left(L_{2}+c_{2}\right)\left(L_{3}+c_{3}\right) \leq \frac{\lambda}{8}
$$

and hence (4) holds for the lattice Γ and the point C. The case

$$
\left(L_{2}+c_{2}\right)\left(L_{3}+c_{3}\right)<0
$$

follows on replacing λ by $1 / \lambda$ in (6) and repeating the same argument as in the case of $\left(L_{2}+c_{2}\right)\left(L_{3}+c_{3}\right)>0$.

Case 2. Since $a_{33}=1$, there exists $u_{3} \in \mathbb{Z}$ such that $\left|L_{3}+c_{3}\right| \leq 1 / 2$. As in Case 1, if $L_{3}+c_{3}=0$, we are through. We can suppose that $L_{3}+c_{3} \neq 0$.

Let $\hat{L}_{1}=a_{11} x_{1}+a_{12} x_{2}, \hat{c}_{1}=a_{13} u_{3}+c_{1}$, and $\hat{L}_{2}=a_{21} x_{1}+a_{22} x_{2}, \hat{c}_{2}=$ $a_{23} u_{3}+c_{2}$, so that the set of points $\left(\hat{L}_{1}, \hat{L}_{2}\right)$ for integral values of variables is a lattice of determinant 1 .

Firstly suppose that $L_{3}+c_{3}>0$. By Lemma 1 , for $\lambda>0$, we can find integral values u_{1}, u_{2} of variables such that

$$
\begin{equation*}
-\frac{1}{4 \lambda}<\left(L_{1}+c_{1}\right)\left(L_{2} c_{2}\right) \leq \frac{\lambda}{4} . \tag{7}
\end{equation*}
$$

Since $0<L_{3}+c_{3} \leq \frac{1}{2}$, we get

$$
-\frac{1}{8 \lambda}<\left(L_{1}+c_{1}\right)\left(L_{2}+c_{2}\right)\left(L_{3}+c_{3}\right) \leq \frac{\lambda}{8}
$$

When $L_{3}+c_{3}<0$, the result follows on replacing λ by $\frac{1}{\lambda}$ in (7). This completes the proof of Theorem 1A and therefore of (a).

3. Proof for case (b)

This is equivalent to proving
THEOREM 1B. Lt Λ be a lattice of determinant 4.1 , with $m_{h}(\Lambda)>0$. Then for any given real numbers $\rho, \sigma>0$, with $\rho \sigma=1$, and any given point $C \in \mathbf{R}_{3}$, the grid $\Lambda+C$ has a point in the region

$$
\begin{equation*}
S:-\rho<x y z<\sigma . \tag{8}
\end{equation*}
$$

In order to obtain some restrictions on ρ and σ, we need
Lemma 4. Let L_{1}, L_{2}, L_{3} be three real linear forms in three variables x, y, z of determinant $\Delta \neq 0$. Then given any real numbers c_{1}, c_{2}, c_{3} there exist integers x, y, z such that

$$
\left|\left(L_{1}+c_{1}\right)\left(L_{2}+c_{2}\right)\left(L_{3}+c_{3}\right)\right| \leq \frac{|\Delta|}{8}
$$

This result is due to Remark [8].
For the one sided inequality Chalk [3] proved
LEMMA 5. If L_{1}, \ldots, L_{n} are n real linear forms in n variables of determinant $\Delta \neq 0$, then for any real numbers c_{1}, \ldots, c_{n}, we can find integral values of variables such that

$$
0<\prod_{i=1}^{n}\left(L_{1}+c_{i}\right) \leq|\Delta|, \quad L_{i}+c_{i}>0, \quad i=1, \ldots, n
$$

COROLLARY. It is sufficient to prove Theorem 1B for the case $8 / 4.1 \leq \rho \leq$ 4.1.

Proof On replacing Λ by Λ^{\prime}, where $\Lambda^{\prime}=\{(-x, y, z) \mid(x, y, z) \in \Lambda\}$, if necessary, we can suppose that $\rho \geq \sigma$. Now for $\rho<8 / 4.1$, we have $\rho \geq \sigma>4.1 / 8$, and the result follows by Lemma 4.

For $\rho>4.1$, the result is a consequence of Lemma 5. Hence the Corollary follows.

It is enough to prove Theorem 1B, when $m_{h}(\Lambda)$ is attained, for otherwise as in Birch and Swinnerton-Dyer [2, Theorem 2], following Mahler [7, Theorem 20], there exists a sequence $\omega_{r} \in \Omega$ such that $\omega_{r} \Lambda \rightarrow \Gamma, m_{h}(\Lambda)=m_{h}(\Gamma)$ and the homogeneous minimum is attained for Γ. In view of Lemma 2, it is sufficient to prove Theorem 1B for the lattice Γ. Since Theorem 1B is invariant under Ω, we can further assume that $m_{h}(\Lambda)$ is attained at the point $P=(a, a, a) \in \Lambda, a>0$. By a well known theorem of Davenport [4], it follows that $a^{3} \leq 4.1 / 7$.

Lemma 6. Let Λ be a lattice in \mathbf{R}_{3} of determinant 4.1, with $P=(a, a, a) \in \Lambda$, $a>0$, such that $a^{3}=m_{h}(\Lambda)$. Let \mathscr{L} be the projection of Λ on the x, y plane, parallel to the vector (a, a, a). For any given real numbers $\rho>0, \sigma>0$, with $\rho \sigma=1$, and any point $x \in \mathbf{R}_{2}$, the two dimensional grid, $\mathscr{L}+X$ has a point in the region K in the plane, given as the set of points (x, y) such that

$$
\begin{equation*}
-\frac{(4.1) \sigma}{4 a} \leq x y \leq \frac{(4.1) \rho}{4 a} \tag{9}
\end{equation*}
$$

and either $|x+y| \leq 12.3 / 8 a^{2}$ or $|x-y| \leq 12.3 / 8 a^{2}$.
Proof. Woods [9, Theorem 1B] proved that for a lattice of determinant 8, the corresponding grid $\mathscr{L}+X$, for any given $X \in \mathbf{R}_{2}$, has a point in the region consisting of points (x, y) such that

$$
\begin{equation*}
-\frac{2 \sigma}{a}-\leq x y \leq \frac{2 \rho}{a} \tag{10}
\end{equation*}
$$

and either $|x+y| \leq 3 / a^{2}$ or $|x-y| \leq 3 / a^{2}$.
Now, if Λ is a lattice of determinant 4.1, then for $d^{3}=8 / 4.1, d \Lambda$ is a lattice of determinant 8 , with the point $Q=(a d, a d, a d) \in d \Lambda$, where $m_{h}(d \Lambda)$ is attained. Its projection on the x, y-plane parallel to the vector ($a d, a d, a d$) is $d \mathscr{L}$, so that for any $X \in \mathbf{R}_{2}, d \mathscr{L}+d X$ has a point in the region defined by (10) and hence $\mathscr{L}+X$ has a point in the region K. This completes the proof of Lemma 6.

For any given $\rho, \sigma>0, \rho \sigma=1$. Let K_{1} be the set of points (x, y) such that for any given $t_{0} \in \mathbf{R}$ there exists $t \equiv t_{0}(\bmod a)$ satisfying

$$
\begin{equation*}
-\rho<(x+t)(y+t)(t-b)<\sigma, \quad \text { where } b=4 a / 4.1 . \tag{11}
\end{equation*}
$$

Lemma 7. Let \mathbf{K} be defined by (9) and let \mathbf{K}_{1} be as above. If for some ρ, σ, with $\rho \sigma=1, K_{1} \supset \mathbf{K}$, then Theorem 1B is true for that choice of ρ and σ.

Proof. Let $C \in \mathbf{R}_{3}$ be any given point. Projection of the grid $\Lambda+C$ parallel to the vector (a, a, a) on the plane $Z=-b$ is a translate of the lattice \mathscr{L} and hence in view of Lemma 6, has a point $\left(x^{*}, y^{*},-b\right)$ in $K+(0,0,-b)$, so that $\Lambda+C$ has a point of the type $\left(x^{*}+t_{0}, y^{*}+t_{0}, t_{0}-b\right)$, for $\left(x^{*}, y^{*}\right) \in \mathrm{K}$, for some $t_{0} \in R$. Since $K \subset K_{1}$, there exists $t \equiv t_{0}(\bmod a)$ satisfying (11). Also since $(a, a, a) \in \Lambda$, the point $\left(x^{*}+t, y^{*}+t, t-b\right) \in(\Lambda+C) \cap S$, which completes the proof of Lemma 7.

The corollary to Lemma 4 and Lemma 5, and Lemma 7 imply that Theorem 1B is consequence of

THEOREM 2. Let $a>0$ be a real number satisfying $a^{3} \leq 4.1 / 7$. Let $\rho, \sigma>0$, with $\rho \sigma=1,8 / 4.1 \leq \rho \leq 4.1$ be two given numbers. Then for any point (x, y) of
the region K, defined by (9), and any real number t_{0}, there exists $t \equiv t_{0}(\bmod a)$ such that

$$
\begin{equation*}
-\rho<(x+t)(y+t)(t-b)<\sigma, \quad \text { where } b=\frac{4 a}{4.1} \tag{12}
\end{equation*}
$$

4. Proof of Theorem 2

From the symmetry in x, y we may assume that $|x| \leq|y|$. Further for $(x, y) \in$ K, we have

$$
\begin{equation*}
|x y| \leq \frac{\rho}{b}, \quad|y| \leq \min \left(\frac{12.3}{8 a^{2}}+|x|, \frac{\rho}{b|x|}\right) \tag{13}
\end{equation*}
$$

Also

$$
\begin{equation*}
|x+y| \leq \sqrt{\left(\frac{12.3}{8 a^{2}}\right)^{2}+\frac{4.1}{a} \rho} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
-\rho \leq-x y b \leq \sigma \tag{15}
\end{equation*}
$$

Let $f(t)=(t+x)(t+y)(t-b)$. For $X=(x, y) \in \mathbf{R}_{2}$, denote by S_{X} the set of all real numbers t satisfying (12). We have

Lemma 8. For all $X \in K,[b, a] \subseteq S_{X}$.
Proof. For $b \leq t \leq a$, we have

$$
\begin{aligned}
|f(t)| & =\left|x y+t(x+y)+t^{2}\right||t-b| \\
& \leq\left(|x y|+a|x+y|+a^{2}\right)(a-b) \\
& \leq \frac{\rho}{40}+\frac{1}{41}\left(\left(\frac{12.3}{8}\right)^{2}+(4.1) \rho a^{3}\right)^{1 / 2}+\frac{1}{41} a^{3} \quad(\text { by (13) and (14)) }
\end{aligned}
$$

if

$$
\frac{\rho^{2}}{40}+\frac{\rho}{41}\left(\left(\frac{12.3}{8}\right)^{2}+(4.1) \rho a^{3}\right)^{1 / 2}+\frac{1}{41} a^{3}<1 \quad(\text { since } \rho \sigma=1)
$$

Since $a^{3} \leq 4.1 / 7$ and $\rho \leq 4.1$ the above holds and hence $[b, a] \subseteq S_{X}$ for all $X \in \mathbf{K}$.

REMARK 1. In view of Lemma 8, it is enough to prove that for $X \in K$, we have either

$$
\begin{equation*}
(0, b] \subseteq S_{X} \tag{16}
\end{equation*}
$$

or
or
S_{X} contains a half open interval I of length a,

$$
\begin{align*}
& \text { there exist real numbers } t_{1}<t_{2}<t_{3}<t_{4} \tag{18}\\
& \text { such that } t_{4}-t_{1} \geq 2 a, t_{3}-t_{2}<a \text { and } S_{X} \\
& \text { contains }\left[t_{1}, t_{2}\right) \cup\left(t_{3}, t_{4}\right] \text {. }
\end{align*}
$$

REMARK 2. If $g(t)=(t-\alpha)(t-\beta)(t-\gamma)$ is a polynomial with α, β, γ real and satisfying $\alpha \leq \beta \leq \gamma$ then it is easy to see that
(i) $g(t)$ is monotonically increasing for $t \leq \alpha$ and $t \geq \gamma$,
(ii) $g(t)$ is monotonically decreasing function for $(\alpha+\beta) / 2 \leq t \leq(\beta+\gamma) / 2$.

From now onward (x, y) will stand for a point in K. We distinguish the following cases.

Case I: (x, y) in the first quadrant.
Subcase I (i): $x>b$. Since $y \geq x \geq b, f(t)$ is negative and has no root in the interval $(-x, b)$, so $f(t)$ is monotone in either the interval $[-x, 0)$ or the interval $(0, b]$. Since by $(15), f(0)=-x y b \geq-\rho$, either $(0, b]$ or $[-x, 0)$ is contained in S_{X}. Now if $x \geq a$, we are through. Otherwise for $-a \leq t \leq-x \leq-b$, we have

$$
\begin{aligned}
|f(t)| & =|(x+t)(y+t)(t-b)| \\
& <\left(\frac{1}{41} a\right)(2 a)|y| \\
& \leq \frac{2}{41} \frac{a^{2}}{b^{2}} \rho \quad\left(\text { since }|y| \leq \frac{\rho}{b|x|} \leq \frac{\rho}{b^{2}}\right) \\
& <\sigma
\end{aligned}
$$

since $\rho \leq$ 4.1. So in this case either $[-a, 0)$ or $(0, b]$ is contained in S_{X}, the result follows in view of Remark 1.

Subcase I (ii): $x<b$ and $\rho \geq 2.11$. For $0 \leq t \leq b$, we have $f(t) \leq 0$ and

$$
\begin{aligned}
|f(t)| & =(b-t)(t+y)(t+x) \\
& \leq(b-t)\left(t+x+\frac{12.3}{8 a^{2}}\right)(t+x) \quad(\text { by }(13)) \\
& \leq\left(b^{2}-t^{2}\right)(b+t)+\frac{12.3}{8}\left(\frac{b}{a}\right)^{2}=g(t)
\end{aligned}
$$

say. Since $g(t)$ has maximum value at $t=b / 3$ we have

$$
|f(t)| \leq g\left(\frac{b}{3}\right)<2.108 \cdots<\rho \quad\left(\text { since } b=\frac{4 a}{4.1}, a^{3} \leq \frac{4.1}{7}\right)
$$

so $(0, b] \subset S_{X}$, and the results follows by (16).

Subcase I (iii): $x \leq b, a^{3} \leq 11 / 25,8 / 4.1 \leq \rho \leq 2.11$. Again as in Case I (ii), we have, for $0 \leq t \leq b$, that

$$
|f(t)| \leq g(b / 3)<1.9477 \cdots<8 / 4.1 \leq \rho \quad\left(\text { since } a^{3} \leq \frac{11}{25}\right)
$$

So $(0, b] \subseteq S_{X}$ and the result follows by (16).
Subcase I (iv): $0 \leq x \leq(9.1) b, a^{3}>11 / 25, \rho \leq 2.11$. We have, for $0<t \leq b$, that $f(t)$ is negative and

$$
\begin{aligned}
|f(t)| & =(b-t)(x+t)(y+t) \\
& \leq(b-t)\left(\frac{91}{100} b+t\right)\left(\frac{91}{100} b+\frac{12.3}{8 a^{2}}+t\right) \quad(\mathrm{by}(13)) \\
& =(b-t)\left(\frac{91}{100} b+t\right)^{2}+(b-t)\left(\frac{91}{100} b+t\right) \frac{12.3}{8 a^{2}} \\
& \leq(b-t)\left(\frac{91}{100} b+t\right)^{2}+\left(\frac{191}{200}\right)^{2}\left(\frac{12.3}{8}\right)\left(\frac{b^{2}}{a^{2}}\right) \quad \text { (A.G. mean) } \\
& =h(t)
\end{aligned}
$$

say. Since $h(t)$ has a maximum at $t=(109 / 300) b$, we have

$$
|f(t)| \leq h\left(\frac{109}{300}\right)<1.9<\rho
$$

so $(0, b] \subseteq S_{X}$ and the result follows by (16).
Subcase I (v): $(91 / 100) b \leq x \leq b, y \leq(114 / 100) b, a^{3}>11 / 25$ and $\rho \leq 2.11$. In this case, for $0 \leq t \leq b$, we have

$$
\begin{aligned}
|f(t)| & =-f(t)=(x+t)(y+t)(b-t) \\
& \leq\left(\frac{x+b}{2}\right)^{2}\left(\frac{114}{100} b+b\right) \quad(\text { A. G. mean }) \\
& \leq\left(\frac{214}{100}\right) b^{3}<\rho
\end{aligned}
$$

so that $(0, b] \subseteq S_{X}$. The result follows by (16).
Subcase I (vi): $(91 / 100) b \leq x \leq b, y \geq(114 / 100) b, a^{3} \geq 11 / 25$ and $\rho \leq 2.11$. By Remark 2, $f(t)$ is monotonically decreasing for $-a \leq t \leq-x$. Since $f(t)$ is positive for these values of t, to prove that $[-a,-x] \subset S_{X}$ it is enough to prove that $-a \in S_{X}$. We have

$$
\begin{aligned}
0 & <f(-a)=(-x+a)(b+a)(y-a) \\
& \leq\left(\frac{41}{40} b-\frac{91}{100} b\right)\left(b+\frac{41}{40} b\right)\left(\frac{100^{\rho}}{91 b^{2}}-\frac{41}{40} b\right) \quad\left(\text { since }|y| \leq \frac{\rho}{|x| b}\right) \\
& <\sigma
\end{aligned}
$$

if

$$
\left(\frac{23}{200}\right)\left(\frac{81}{40}\right)\left[\frac{100}{91} \rho^{2}-\left(\frac{40}{41}\right)^{2} a^{3} \rho\right]<1 \quad \text { (since } \rho \sigma=1 \text {). }
$$

Since the L. H. S., as a function of ρ, is monotonically increasing, and for $\rho=2.11$ and $a^{3} \geq 11 / 25$, the above holds, we have $-a \in S_{X}$ and hence $[-a,-x] \subseteq S_{X}$. Now arguing as in Subcase I (i), we have either $[-a, 0$) or ($0, b]$ is contained in S_{X}. This completes the proof for Case I.

Case II: (x, y) in the second quadrant.
Subcase II (i): $|x|>b$. Since $y \geq|x| \geq b$, in view of Remark $2, f(t)$ is positive and monotonically decreasing in the interval $(0, b]$. Since, by (15), $f(0) \leq \sigma$, we have $(0, b] \subseteq S_{X}$. The result follows from (16).

Subcase II (ii): $|x| \leq b$. As in Subcase II (i) above, $(0,-x] \subseteq S_{X}$. For $-x \leq t \leq b$, we have

$$
\begin{aligned}
0 \leq-f(t) & =(b-t)(x+t)(x+t) \\
& \leq \frac{1}{4}(b+x)^{2}(y+t) \\
& \leq \frac{1}{4}(b+x)^{2}\left(\frac{12.3}{8 a^{2}}+|x|+b\right) \\
& =\frac{1}{4}(1-\mu)^{2}\left(\frac{12.3}{8}\left(\frac{b}{a}\right)^{2}+\mu b^{3}+b^{3}\right) \quad(\text { where }|x|=b \mu) \\
& =g(\mu),
\end{aligned}
$$

say. Since $g(\mu)$ is a decreasing function of μ for $0 \leq \mu \leq 1$, we have $|f(t)| \leq$ $g(0)<\rho$, so $(0, b] \subseteq S_{X}$. This completes Case II.

Case III: (x, y) in the third quadrant.
Subcase III (i): $|x| \geq b$. Since $|y| \geq|x| \geq b, b$ is the smallest root of $f(t)$ and by Remark $2, f(t)$ is negative and monotonically increasing for $0 \leq t \leq b$. Since by (15), $f(t) \geq-\rho$, we have $(0, b] \subseteq S_{X}$. This proves the result for Subcase III (i).

Subcase III (ii): $|x| \leq b,|y| \leq 4 \sigma / b^{2}$. As in Subcase III (i), we have ($\left.0,-x\right] \subseteq$ S_{X}. For $-x \leq t \leq b, f(t)$ is positive and

$$
\begin{aligned}
|f(t)| & \leq(t+x)(b-t)(\max (|y|,|t|)) \\
& \leq \frac{b^{2}}{4} \max (|y|, b)<\sigma,
\end{aligned}
$$

since $b^{3}<\frac{4}{7}<4 \sigma$. So $(0, b] \subseteq S_{X}$.

Subcase III (iii): $|x| \leq b,|y| \geq 4 \sigma / b^{2}, \rho<2.733$, so $\sigma>$.36598. As before $(0,-x] \subseteq S_{X}$. Since $4 \sigma / b^{2}>b$, we have $|y|>b$ and thus $f(t)$ is positive for $-x \leq t \leq b$ and we have

$$
\begin{aligned}
0<f(t) & =(x+t)(b-t)(-y-t) \\
& \leq(t-|x|)(b-t)\left(\frac{12.3}{8 a^{2}}+|x|-t\right) \quad(\text { by }(13)) \\
& =g(\mu, t)
\end{aligned}
$$

say, where $\mu=|x| \geq 0$. Since $g(\mu, t)$ as a function of μ is a decreasing function of μ, for all $t \in(0, b]$, we have

$$
\begin{aligned}
f(t) \leq g(0, t) & =t(b-t)\left(\frac{12.3}{8 a^{2}}-t\right) \\
& \leq \frac{b^{2}}{4}\left(\frac{12.3}{8 a^{2}}\right)<.3659<\sigma \quad \text { (A. G. mean) }
\end{aligned}
$$

Thus $(0, b] \subseteq S_{X}$ and the result follows from (16).
Subcase III (iv): $|x| \leq b,|y| \geq 4 \sigma / b^{2}, a^{3} \leq .4317, \rho \geq 2.733$.
As in Subcase III (iii), for $-x \leq t \leq b$, we have

$$
|f(t)| \leq g(0, t) \leq t(b-t)\left(\frac{12.3}{8 a^{2}}\right)=h(t)
$$

say. Since $h(t)$ is monotonically decreasing for $t \geq b / 2$, then for $t \geq(8 / 10) b$, we have

$$
h(t) \leq h\left(\frac{8}{10} b\right)<\frac{1}{4.1}<\sigma
$$

Now for $|x| \geq 8 b / 10$, we have $t \geq 8 b / 10$, so $[-x, b] \subset S_{X}$ and $(0,-x] \subseteq S_{X}$. As in the earlier case we have $(0, b]$, and in particular $\left[\frac{8}{10} b, b\right] \subseteq S_{X}$, for all X in this case.

Since $a^{3} \leq .4317,|y| \geq 4 \sigma / b^{2}>(73 / 40) b$, so $f(t)$ is negative for $b \leq t \leq$ $(73 / 40) b$ and

$$
\begin{aligned}
-f(t) & =(x+t)(t-b)(-y-t) \\
& \leq(t-|x|)(t-b)\left(\frac{12.3}{8 a^{2}}+|x|-t\right)=g_{1}(\mu, t)
\end{aligned}
$$

say, where $\mu=|x| \geq 0$. Since $t<(73 / 40) b<12.3 / 16 a^{2}$, for $a^{3} \leq .4317$, we have $g_{1}(\mu, t)$ is a decreasing function of μ, and hence

$$
\begin{aligned}
-f(t) & \leq g_{1}(0, t)=t(t-b)\left(\frac{12.3}{8 a^{2}}-t\right) \\
& \leq\left(\frac{73}{40} b\right)\left(\frac{33}{40} b\right)\left(\frac{12.3}{8 a^{2}}\right)=2.2033<\rho
\end{aligned}
$$

so $((8 / 10) b,(73 / 40) b] \subseteq S_{X}$. Since this interval is of length a, we are done in view of (17).

Subcase III (v): $|x| \leq b,|y| \geq 4 \sigma / b^{2}, \rho \geq 2.733$ and $a^{3} \geq .4317$. Since $4 \sigma / b^{2}>(71 / 40) b$, we have $|y| \geq(71 / 40) b$.

Again as in Subcase III (iv), $\left[\frac{8}{10} b, b\right] \subseteq S_{X}$. Then for $(71 / 40) b \leq|y| \leq(73 / 40) b$ and for $(71 / 40) b \leq t \leq(73 / 40) b$, we have

$$
|f(t)|=|t+x||t-b||t+y| \leq\left(\frac{73}{40} b\right)\left(\frac{33}{40} b\right)\left(\frac{2}{40} b\right)<\sigma .
$$

Also for $b \leq t \leq \min (|y|,(73 / 40) b), f(t)$ is negative and

$$
\begin{aligned}
-f(t) & =(x+t)(t-b)(-y-t) \\
& \leq(t-|x|)\left(\frac{12.3}{8 a^{2}}+|x|-t\right)(t-b) \quad(\text { by }(13)) \\
& \leq\left(\frac{12.3}{16 a^{2}}\right)^{2} \quad(t-b) \quad(\text { A. G. mean }) \\
& \leq\left(\frac{12.3}{16}\right)^{2} \frac{b}{a^{4}}<\rho \quad\left(\text { since } a^{3} \geq .4317, \text { and } \rho \geq 2.733\right)
\end{aligned}
$$

and so $[8 b / 10,(73 / 40) b] \subseteq S_{X}$. The result follows as in Subcase III (iv). This completes the proof for Case III.

Case IV: (x, y) in the fourth quadrant.
Subcase IV (i): $|x| \geq b$. By Remark 2, $f(t)$ is monotone in the interval ($0, b]$, so we have $(0, b] \subseteq S_{X}$.

Subcase IV (ii): $(25 / 40) b \leq x \leq b$. In this case, since $-x$ is the smallest root of $f(t), f(t)$ is negative and a monotonically increasing function of t for $-a \leq t \leq-x$, and

$$
\begin{aligned}
|f(-a)| & =(a-x)(a+b)(-y+a) \\
& \leq(a-x)(a+b)\left(\frac{12.3}{8 a^{2}}+x+a\right) \quad(\text { by }(13)) \\
& =h(x),
\end{aligned}
$$

say. Since $h(x)$ is monotonically decreasing, for $x \geq(25 / 40) b$, we have $|f(-a)| \leq$ $h(25 b / 40)<1.92 \cdots<\rho$, so $[-a, x] \subseteq S_{X}$.

If $|y| \geq b$, then $f(t)$ has a single extreme point between $-x$ and b, so either $[-x, 0)$ or $(0, b] \subseteq S_{X}$ and hence $[-a, 0)$ or $(0, b] \subseteq S_{X}$.

Otherwise, we have either $[-a, 0)$ or $(0,-y] \subseteq S_{X}$ as before, and for $-y \leq t \leq b$,

$$
|f(t)|=-f(t)=(t+x)(b-t)(y+t) \leq\left(\frac{b+x}{2}\right)^{2} b \leq b^{3}<\rho .
$$

So either $[-a, 0)$ or $(0, b] \subseteq S_{X}$ and result follows by Remark 1.
Subcase IV (iii): $0 \leq x \leq(25 / 40) b,|y| \leq(59 / 40) b, \rho \geq 2.9$. In this case, we have

$$
\begin{aligned}
|f(-a)| & =-f(-a)=(a-x)(a+b)(-y+a) \\
& \leq(a-x)(a+b)\left(\frac{5}{2} a\right) \\
& \leq a(a+b)\left(\frac{5}{2} a\right)<2.892 \cdots<\rho
\end{aligned}
$$

Arguing as in Case IV (ii), we have either $[-a, 0)$ or $(0, b] \subseteq S_{X}$.
Subcase IV (iv): $0 \leq x \leq(25 / 40) b,|y| \leq b, \rho \leq 2.9$, so $\sigma>.344$.
For $b / 10 \leq t \leq-y, f(t)$ is positive and

$$
\begin{aligned}
f(t) & =(t+x)(b-t)(-y-t) \\
& \leq\left(\frac{-y+x}{2}\right)^{2}(b-t) \quad(\text { A. G. mean }) \\
& \leq\left(\frac{b+x}{2}\right)^{2}(b-t) \quad(\text { since }|y| \leq b) \\
& \leq\left(\frac{65}{80}\right)^{2}\left(\frac{9}{10}\right) b^{3}<\sigma
\end{aligned}
$$

so $[b / 10,-y] \subseteq S_{X}$ or $[-y, b] \subseteq S_{X}$ as in Case IV (iii). Also for $b \leq t \leq(9 / 8) b$, we have

$$
\begin{aligned}
0 & \leq f(t)=(t+s)(t-b)(t-|y|) \\
& \leq(t+x)(t-b)(t-x) \quad(\text { since }|y| \geq x) \\
& \leq t^{2}(t-b) \quad(\text { A. G. mean }) \\
& \leq\left(\frac{9}{8}\right)^{2} \frac{1}{8}<.16<\sigma
\end{aligned}
$$

so $[b / 10,(9 / 8) b] \subseteq S_{X}$. Since $(9 / 8) b-b / 10=a$, the result follows by (17).
Subcase IV (v): $0 \leq x \leq(25 / 40) b, b \leq|y| \leq(59 / 40) b, \rho \leq 2.9$.
For $|y|-(9 / 10) b \leq t \leq b$, we have

$$
\begin{aligned}
0 & \leq f(t)=(t+x)(b-t)(|y|-t) \\
& \leq\left(\frac{b+x}{2}\right)^{2}(|y|-t) \quad(\text { A. G. mean }) \\
& \leq\left(\frac{65}{80}\right)^{2}\left(\frac{9}{10}\right) b^{3}<\sigma
\end{aligned}
$$

so $[-y-(9 / 10) b, b] \subseteq S_{X}$. For $b \leq t \leq-y$, we have

$$
\begin{aligned}
0 & \leq-f(t)=(x+t)(t-b)(-y-t) \\
& \leq\left(\frac{25}{40} b+\frac{59}{40} b\right)\left(\frac{19}{40} b\right)^{2}<\rho,
\end{aligned}
$$

so $[b,-y] \subseteq S_{X}$. Also for $-y \leq t \leq-y+b / 8$, we have

$$
\begin{aligned}
0 & \leq f(t)=(t+x)(t-b)(t+y) \\
& \leq\left(\frac{64}{40} b+\frac{25}{40} b\right)\left(\frac{24}{40} b\right)\left(\frac{1}{8} b\right)<\sigma
\end{aligned}
$$

so $[-y,-y+b / 8] \subseteq S_{X}$ and hence $[-y-(9 / 10) b,-y+b / 8] \subseteq S_{X}$. This is an interval of length a and the result follows by (17).

Subcase IV (vi): $0 \leq x \leq(25 / 40) b,|y| \geq(59 / 40) b$.
We have

$$
\begin{aligned}
0 & \leq-f\left(-\frac{25}{40} b\right)=\left(\frac{25}{40} b-x\right)\left(b+\frac{25}{40} b\right)\left(-y+\frac{25}{40} b\right) \\
& \leq\left(\frac{25}{40} b-x\right)\left(\frac{12.3}{8 a^{2}}+x+\frac{25}{40} b\right)\left(\frac{65}{40} b\right) \\
& =g(x)
\end{aligned}
$$

say. Since $g(x)$ is monotonically decreasing, for $x \geq 0$, we have

$$
-f\left(\left(-\frac{25}{40} b\right) \leq g(0)<1.8316 \cdots z \rho,\right.
$$

so $-(25 / 40) b \in S_{X}$ and hence $[-(25 / 40) b,-x] \subseteq S_{X}$. For $b \leq t \leq(57 / 40) b$, we have

$$
\begin{aligned}
0 & \leq-f(t)=(t+x)(t-b)(-y-t) \\
& \leq(t+x)(t-b)\left(\frac{12.3}{8 a^{2}}+x-t\right) \quad(\text { by }(13)) \\
& \leq(2 a)\left(\frac{17}{40} b\right)\left(\frac{12.3}{8 a^{2}}\right) \quad(\text { since } x<b \leq t) \\
& <\rho,
\end{aligned}
$$

so $[b,(57 / 40) b] \subseteq S_{X}$.
Between $-x$ and $b, f(t)$ has a single extreme point, so $f(t)$ is monotone in either the interval $[-x, 0)$ or the interval $(0, b]$. In view of (15), either the interval $[-x, 0)$ or the interval $(0, b]$ is contained in S_{X}. If $(0, b] \subseteq S_{X}$, the result follows by (16). Otherwise we have $[-(25 / 40) b, 0) \cup\left[b,(57 / 40) b \subseteq S_{X}\right.$ and the result follows by (18). This completes the proof for Case IV and hence completes the proof of Theorem 2.

The author is grateful to Professor R. P. Bambah for many valuable suggestions in the preparation of this paper.

References

[1] R. P. Bambah and A. C. Woods, 'Minkowski's conjecture of $n=5$, A theorem of Skubenko', J. Number Theory 12 (1980), 27-48.
[2] B. J. Birch and H. P. F. Swinnerton-Dyer, 'On the inhomogeneous minimum of the product of n-linear forms', Mathematika 3 (1956), 25-39.
[3] J. H. H. Chalk, 'On the positive values of linear forms', Quart. J. Math. Oxford Ser. 18 (1947), 215-227.
[4] H. Davenport, 'Note on the product of three homogeneous linear forms', J. London Math. Soc. 14 (1941), 98-101.
[5] H. Davenport, 'Non-homogeneous ternary quadratic forms', Acta Math. 80 (1948), 65-95.
[6] V. K. Grover, 'Asymmetric inequalities for non-homogeneous forms', Ph. D. thesis, 1979.
[7] K. Mahler, 'On lattice points in n-dimensional star bodies I, Existence theorems', Proc. Roy. Soc. London Ser A 187 (1946), 151-187.
[8] R. Remak, 'Verallgemeinerung eines Minkowskischen Satzes I, II', Math. Z. 17 (1923), 1-34, 18 (1923), 173-200.
[9] A. C. Woods, 'The asymmetric product of three inhomogeneous linear forms', J. Austral. Math. Soc. Ser. A 31 (1981), 439-455.

Centre for Advanced Study
in Mathematics
Panjab University
Chandigarh-160 014
India

