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Abstract

If a Banach space E admits a Markuschevich basis, then E can be renormed to be locally uniformly
rotund. When the coefficient space of the basis is 1-norming, and this norm is very smooth, E is
weakly compactly generated.

Subject classification (Amer. Math. Soc. (MOS) 1970): 46 B 99.

1. Introduction

Dyer (1969), page 55, has shown that if E admits a Markuschevich basis, then there
is a continuous one-to-one linear operator which maps E into some co(T). Hence,
by a result of Klee (1953), page 56, E can be equivalently renormed to be rotund.
It will be shown here that if E admits a Markuschevich basis, then E can be renormed
with a locally uniformly rotund norm which is a(E, Y) lower semi-continuous, where
Y is the coefficient space of the basis. This norm is an equivalent norm for E if the
coefficient space is norming (Zizler and John (1974b)). If the coefficient space is
1-norming, and this norm is very smooth, then the Markuschevich basis for E
is shrinking, so E is weakly compactly generated. This improves a result of Zizler
and John (1974b), page 687.

This paper is based on part of a doctoral thesis submitted to the University of
Newcastle under the supervision of Associate Professor J. R. Giles.

2. Notation and definitions

Let E be a real Banach space, E* its dual, and E the canonical embedding of
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https://doi.org/10.1017/S1446788700012489 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012489


372 A. C. Yorke [2]

£ in £**. The unit spheres of E and E* will be denoted by S(E) and S(£*), respec-
tively. The term 'subspace' will always mean norm closed linear subspace. The
density character of a subspace Yc E, denoted dens Y ,is the minimum cardinality
of a norm dense subset of Y. The weak—* density character of a subspace £ c £ * ,
denoted a(E*,E) dens F, is the minimum cardinality of a weak—* dense subset
of F. The norm closed linear span of a set A <= E will be denoted by sp A.

The set {(X(,/(): iel} contained in £ x £ * is said to be a Markuschevich basis
(M-basis) for E if

(1) {(*(,/;)} is biorthogonal; that is, /((*,•) = 1, while/;(*,) = 0 if i#y for all iel.

(2) {*,} is fundamental in £ ; that is, sp{x,} = £.
(3) {/;} is total over £ ; that is, f\i£lJ ~\0) = {0}.

The subspace sp {/J of E* is called the coefficient space of the Af-basis.An Af-basis
is shrinking if sp{/;} = E*; boundedly complete if whenever {y6: deD) is a bounded
net in £ with the property that lima fi(ys) exists for each iel, there is an xeE
such that lima ffar,) = fi(x) for each i.

For any subspace Y<=E*, \\x\\r = sup {\ f(x)\: feS(Y)} defineds a semi-norm
on E. If Y is total over E, then || • ||r is norm. In general, [|x||y< ||x|| for all xeE;
that is, the || • || r topology is a weaker topology than the || • || topology. The space Y
is said to be norming if the || • || and || • ||r topologies are equivalent. Y is l-norming-
if I*|| = \\x\\r for every xeE.

E is locally uniformly rotund (LUR) at xeS(E) if every sequence (or net) {xn} in
S(E) with \\xn + x\\->2, has \\xn-x\\->0. E is LUR if it is LUR at every xeS(E).

The set valued mapping DE of E into 2£* which assigns to each xeE the
{feE*: f(x) = I/I ||JC|| and ||*| = |/||} is called the duality mapping. The mapping
x-*fx which sends each xeS(E) to an fxeDE(x), and has the property that, for
X > 0, f)j. = A/x is called a support mapping on £. The norm of E is said to be very
smooth if every support mapping x-*fx on £ is continuous when £ has the norm
topology and £* has the a(£*,£**) topology (Giles (1975), page 72). The norm of
£ is Frechet differentiable (F-differentiable) if every support mapping on £ is
continuous when both £ and £* have the norm topology (see Giles (1971), page
107). When the norm of £ i s very smooth (F-differentiable), the space £ is said to be
a very smooth (£-differentiable) space.

If £ contains a <r(£, £*) compact fundamental subset, then £ is weakly compactly
generated (WCG).

3. Main result and applications

This section will state the Main Result and give several applications. The proof
of the Main Result will be given in the next section.
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MAIN RESULT Let E admit an M-basis {(xj,/,): iel} with coefficient space Y.
Then E can be renormed with a LUR norm which is o(E, Y) lower semi-continuous.

COROLLARY 1. (Zizler and John (1974b)) Let E admit an M-basis with a norming
coefficient space. Then E can be equivalently renormed to be LUR.

COROLLARY 2. Let E admit a boundedly complete M-basis. Then E can be equiva-
lently renormed to be LUR.

PROOF. If the Af-basis is boundedly complete, then the coefficient space is
norming (Johnson (1970a), page 175).

COROLLARY 3. Let E* admit an M-basis {(/i,Fj): iel} with the property that
its coefficient space Y is contained in E. Then E* can be renormed with a LUR dual
norm.

PROOF. Since {Ft: iel} is total over E*, sp{F;} is a(E**,E*) dense in £**. If
Y<^E, then eachF( = x( for some x(eE. Thus sp{x,} is a(E,E*) dense in£ , hence

sP{*i} = E. Now by the Main Result, E* admits a LUR norm which is o(E*, E)
lower semi-continuous.

COROLLARY 4. Let E* be as in Corollary 3. Then E is WCG.

PROOF. By Corollary 3, E* admits an M-basis {(Ji,x,): iel} with coefficient
space sp{,x,} = E. Thus {(*,•,/;)} is a shrinking Af-basis for E, so E is WCG (see
Zizler and John (1974a), page 10).

This recovers a result of Vasak (1974), page 221.

4. Proof of the main result

Let £ admit an Af-basis {(*;,/;): iel} with coefficient space Y. Assume \\x\\r = 1
for each iel, and let K = {xf: iel}. Clearly, Kv{0} is a{E, Y) compact.

Let X denote the || • || Y completion of E. Since E and X have (essentially) the same
dual, Ku{0} is a(X, Y) compact, as well. Now since A' is a Banach space, the
a{X, Y) closed convex hull of AX»{0}u{- K} is also a{X, Y) compact (Dunford and
Schwartz (1958), page 434). Denote this set by Ku and the gauge of K^ by ||| • |||.
Since K^ is o(X, Y) compact it is || • || Y bounded and so it may be assumed that
\\x\\r< |||x||| for a l l* eAT.

The proof of the Main Result involves modifying a sequence of lemmas due to
Amir and Lindenstrauss (1968).
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LEMMA 1. Let E admit an M-basis with coefficient space Y, and X be its | • || r comple-
tion. Then, given e > 0, an integer n > 0, m elements f\,fi, -. -,fm of S( Y), and a finite
dimensional subspace B<^X, there is a || • ||r separable subspace C of X containing B
such that for every subspace Z, with BcZ<= X and dim Z/B = n, there is a linear opera-
tor T: Z-+C with \\T\\r, \\\T\\\ ^l+e,Tb = bfor all beB, and \fk(z)-fk(Tz)\ <e||z||
for every zeZ and each k, 1 ^ k < m .

PROOF. Proceed exactly as in Lemma 3 of Amir and Lindenstrauss (1968).
Note that in this case Kt has the (relative) a(X, Y) topology and so the operator
T is the homogeneous extension of a a{X, Y) pointwise cluster point of a net on the
compact Hausdorff space

LEMMA 2. (Amir and Lindenstrauss (1968, page 43) Let E and X be as in Lemma 1,
Jl an infinite cardinal number, G a subspace of X with || • || r dens G ̂  J(, and F
a subspace of Y with a{ Y, X)densF^ Jt. Then there is a projection P on X with the
following properties:

0) Mr =111/11 = 1;
(2) Pg = gforallgeG;
(3)P*f = fforallfeF;

and
(4) ||-1

LEMMA 3. (Amir and Lindenstrauss (1968), page 44) Let E and X be as in Lemma
1, and fi be the first ordinal of cardinality \\-\\Y dens X. Then there is a transfinite
sequence of projections {Pa: w < a ^ / i } on X such that

(1) | | /»J r= | | |P . | | | = l /o r« icAa ;
(2) || • || y dens PXX^ cardinality of a, for each a;
(3) PXP0 =PpPt =Pfi whenever 0<<x;

and
(4) U/J<a^/)+i x is II" IIr dense in PaXfor every a>co.
This next lemma is due to Troyanski (1971), page 175.
LEMMA 4. Let E be a Banach space which satisfies the following properties:
(A) There is a continuous one-to-one linear operator T which maps E into co(T),

for some set F.
(B) There is a transfinite sequence of bounded linear operators {Tt: SeD} on E

such that
(1) for each xeE and each e>0, the set

) = {S:\\Ta+lx-Txx\)>B(\\Ta+1\

is finite;

(2) for each xsE, arelp[(||7'1*||7'1£)uUj«A(,)(3;+i

where A(x) = (Je>o A(X,E),
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(3) dens sp [(Tx+1 - Ta) E] s£ dens 7\ E = No.
Then E can be equivalently renormed to locally uniformly rotund.
In order to use Lemma 4 in the proof of the Main Result, one more lemma is

needed.

LEMMA 5. Let X admit an M-basis {(*;,/,): is I). Then (Pa+x-Pa)X admits
an M-basis for each a, co ^ a < n.

PROOF Let x!\ = (Px+l-Px) xt and/" = j ' / j , where y* is the mapping which
restricts each ft to (Px+l-Pa)X. After deleting all x°l and/" which are zero, it
must be shown that {(rfj*): ieQ is an M-basis for (PX+1-PX)X. Firstly,
f%*D=rj(P.+ i-PJxt = {P.+ 1-PJ*ftxd=Uxd, since (i>a+1-Pa)* is the
inverse of j * for each a. Thus if {(*;,/,)} is biorthogonal, so is {(x ,̂/")} foreach a.
Next, for each 0#jePa + 1Ar there is an xeX\{0} such that Px+lx = y, and so
if {*(} is fundamental in X, then (xty must be fundamental in (Pt+l— Pa)X.
Finally, if xe(Px+i-Pa)X and f%x) = 0 for all iel , then j 'Jt(x) = 0 for all
i. But this can not happen since {/J is total over X. Thus {x!\,ff): iel} is an
M-basis for (Pa+1 —Pa) X for each a, co ̂  a < fi.

PROOF OF THE MAIN RESULT The aim is to show that X satisfies the conditions
of Lemma 4. Since £ is || • ||y dense in X, it is clear that if E admits an M-basis, then
this biorthogonal set is also an M-basis for X. By a result of Dyer (1969), page 55,
if X admits an M-basis, then X satisfies condition (A) of Lemma 4. Therefore it
remains to construct a set of operators {7^: 5eD) on E which satisfies (Bl), (B2)
and (B3).

If X is separable, then Ts = I, the identity operator on X, for each S e D. Therefore
assume that X is non-separable and proceed by transf inite induction on dens X.

Assume that the Main Result is true for all cardinal numbers less than dens X.
By Lemma 3, X admits a transf inite sequence of projections {Pa: oo^cc^n},
where fi is the first ordinal number of cardinality dens X and, by Lemma 5, each
(Pa+l— P^X also admits an M-basis. Hence, by the inductive hypothesis, there
is a transfinite sequence of linear operators {Sjj : co < /? ^ FJ, where Tx is the first
ordinal of cardinality dens (Px+i—Px)X, which maps (Px+l— Pa)X into itself
and satisfies (Bl), (B2) and (B3) of Lemma 4. Let Ax denote the set of ordinal
numbers y, with co^y^F^, and D the set of ordered pairs of ordinal numbers
(a,/?), where j3eAau{0} and co^a^/i. Order this set lexiographically. For each

T.-
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As in Troyanski (1971), pages 177-178, the set {T6 : 6eD} satisfies the conditions
(Bl), (B2) and (B3) of Lemma 4. By Lemma 3, the operators Px and S*$ are a(E, Y)
continuous on X for each a, co s? a ^ //, and each /? e Ax. Thus, by Lemma 4, X
can be renormed with an LUR norm which is o(X, Y) lower semi-continuous. Now
restrict this norm to E to get the Main Result.

THEOREM. Let E admit an M-basis with a l-norming coefficient space Y.If\\-\\r is
a very smooth norm, then E admits a shrinking M-basis, and so E is WCG.

PROOF. The fact that Y is norming gives E = X, so proceed by transfinite
induction on dens E. If E is separable the result follows by applying Theorem III. 1
of Johnson (1970b). Now assume the result is true for all cardinal numbers less
than dens.fi1. By Lemma 3 there is a transfintie sequence of projections
{Px: co^x^fi} defined on E with dens (Px+l—Px)E<fi for all a, co^a<fi, where
H is the first ordinal number of cardinality dens if. Since the coefficient space is
1-norming, || • || = || • ||2, so E has a very smooth norm. Hence, by Tacon (1970)
and Zizler and John (1974), page 3, there is a transfinite sequence of projections
{P*: co^a^/x} on E* which are continuous when £*has the weak-* topology.
As in Tacon (1970), page 419, each (Px E)* may be identified (isometrically iso-
morphically) with P *E*. Now continue with the inductive procedure.

Since dens (Px+1-Px)E<(t, the inductive hypothesis gives that (P,,+ 1-/•„).£
admits a shrinking Af-basis {(x^Jf): ielj for each a, co<a<^. Since (Px+i—Px)
maps £ onto (Px+l-PJE, the operator (Pt+l-Pa)* maps [(Pa+l-Pa)E]*
isomorphically onto (JP*+ , -P'JE*. Let f\ = (P*x+l -P'x)?$ for each is I and each
a, oo^<x<fi. Now it must be shown that {(;c%/"): ie/a, a>^a<fi} is a shrinking
M-basis for E.

Clearly, {xty is fundamental in E since, by Lemma 3,

?}= U (P,+ 1-PX)E = E.

Also,

i / ? } = u (P:+1-P:)E* = E*,

since E is very smooth (Tacon (1970), page 421). The set {/"} is total over E, since
{/j} is total over {Px+i— Px) Efor each a, a>^a<fi. Therefore, it only remains to
show that {(*%/;)} is a biorthogonal set.

If a / 0 , then
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But, by Lemma 3, Pa Pp -PfiPx = Pfi whenever j8 < a and so

Hence f%x§ = 0 for all x? with /?^<x. By construction

^ ) = 1 if i =j, and f%xff) = 0 otherwise. Therefore {^,/J} is biorthogonal, and
this completes the proof.
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