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Forage breeding and management to increase the beneficial fatty acid
content of ruminant products
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The declining consumption of ruminant products has been partly associated with their high
proportion (but not necessarily content) of saturated fatty acids. Recent studies have focused on
the less prominent fact that they are also important sources of beneficial fatty acids, including n-
3 fatty acids and conjugated linoleic acids. o-Linolenic acid (18 : 3n-3) is of particular interest
because it also contributes to improved flavour of beef and lamb. Many recent studies showed
large effects of special concentrates on levels of fatty acids in milk and meat. However, the ‘rumen
protection’ treatments, needed to ensure a worthwhile level of fatty acid in products, are
expensive. Herbage lipids are the cheapest and safest source of these fatty acids and so breeding
to increase delivery of fatty acids from plants into ruminant products is an important long-term
strategy. Plant lipids usually contain high levels of polyunsaturated fatty acids, particularly
18 : 2n-6 and 18 : 3n-3 which are the precursors of beneficial fatty acids. Whilst some plants are
particularly rich in individual fatty acids (e.g. 18 : 3n-3 in linseed), there are also useful levels in
grass and clover (Trifolium Spp.). Levels of fatty acids in forages in relation to species and
varieties are considered, as well as management and conservation methods. Relationships between
levels of fatty acids and existing traits and genetic markers are identified. The effects of forage
treatments on the fatty acid content of ruminant products are reviewed. The higher levels of
polyunsaturated fatty acids in milk from cows fed clover silages show that the level of fatty acids
in herbage is not the only factor affecting levels of fatty acids in ruminant products. Further effort
is needed to characterise susceptibility of unsaturated fatty acids to oxidative loss during field
wilting and biohydrogenation losses in the rumen, and the relative importance of plant and
microbial processes in these losses. The pathways of lipolysis and lipid oxidation are reviewed and
other plant factors which offer potential to breed for reduced losses are considered.

Fatty acids in milk and meat: Forage feeding: Plant breeding

The relationships between dietary fat and the incidence rates
of lifestyle diseases, particularly CHD, are well-established
(Enser et al. 1998). Many studies have contributed to advice
that saturated fatty acids (SFA) should not supply >0-10 of
total energy intake, that polyunsaturated fatty acids
(PUFA):SFA should be >0-45, and that n-6:n-3 PUFA
should be <4 for the whole diet (Department of Health,
1994). There is growing concern at the possible adverse
consequences for human health of the increase in n-6:n-3
PUFA that has occurred from the Palaeolithic epoch (< 1) to
the present (15-20 in many Western diets; Simopoulos,
2001).

Ruminant products have been criticised for the possible
adverse effects of their SFA on human health and this factor
has contributed to declining consumption. Much less

attention has been given to the fact that ruminant meats
often have a low fat content and that ruminant products are
important sources of beneficial fatty acids, including n-3
fatty acids and conjugated linoleic acids (CLA). Lean beef
has an intramuscular fat content of <0-05 with approxi-
mately 0-47, 0-42 and 0-04 of total fatty acids as SFA,
monounsaturated fatty acids and PUFA respectively
(Moloney et al. 2001). Stearic acid (18 : 0) makes up 0-3 of
the SFA and is considered to be neutral in its effect on
plasma cholesterol (Yu et al. 1995). PUFA:SFA for beef is
typically low at about 0-1, except for double-muscled
animals, which are very lean, where PUFA:SFA are
typically 0-5-0-7 (Raes et al. 2001). The n-6:n-3 for beef is
beneficially low, typically <3 (Choi et al. 2000; Scollan
et al.2001). Milk fat typically contains 0-69, 0-27 and 0-04
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of total fatty acids as SFA, monounsaturated fatty acids and
PUFA respectively (Jensen, 2002).

Meat and dairy products from ruminants are also the
main dietary sources of CLA. A number of recent studies
identified health-promoting biological activities for CLA,
including anti-carcinogenic activity, anti-atherogenic
activity and ability to reduce the catabolic effects of immune
stimulation, enhance growth promotion and reduce body fat
content (Banni & Martin, 1998).

Fatty acids and product quality

Fatty acids have important effects on a number of compo-
nents of the overall quality of meat and dairy products.

Health effects

A large number of experiments have investigated the effects
of supplementary fatty acids on health and these findings
will not be reviewed here. The study reported by Noakes
et al. (1996) provides an interesting illustration of what is
possible, because it investigated effects that span the whole
process from manipulating the diet of dairy cows to the
health of consumers of the resulting milk and dairy
products. They used rumen protection technology (see
p. 331) to produce milk with 0-51 SFA (control 0-70), 0-39
monounsaturated fatty acids (control 0-28) and 0-10 PUFA
(control 0-02). These milks and derived dairy products were
fed to human volunteers. The authors suggested that the
resultant 0-043 decline in plasma LDL-cholesterol levels
would lead to a 0-09 decline in the incidence of CHD.

Meat flavour

Fatty acids are important components in the development of
flavour during the cooking of meat, with both positive and
negative effects of fatty acids and their oxidation products
(Wood et al. 1999). Lipid breakdown products, such as
aldehydes and ketones, help to explain these flavour differ-
ences (Larick et al. 1987; Elmore et al. 1997). Compounds
resulting from reactions between lipid breakdown products
and the products of Maillard reactions between sugars and
amino acids, including thiazoles and 3-thiazolines, may also
be important in explaining flavour differences (Elmore et al.
1997).

The interpretation of the effects of fatty acids on assess-
ments of meat flavour by taste panels is more difficult
because of the different production systems that predom-
inate in different countries. Reactions to grass- or grain-fed
products reflect, to some extent, the previous experience of
the taste panellists (Sanudo et al. 1998). Widely different
responses have been obtained to beef and lamb with
increased levels of linolenic acid (18 : 3n-3) in studies in the
USA (Larick & Turner, 1990), Canada (McCaughey &
Clipef, 1996; Mandell et al. 1997, 1998), Republic of Ireland
(French et al. 2000) and the UK (Hewerdine et al. 2001).

Spreadability of butter

The more unsaturated fatty acids also have a lower melting
point and this factor affects the spreading and processing
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attributes of milk products. The fatty acid composition of
milk has a direct effect on the hardness (spreadability) of
butter, and so this effect must be taken into account when
considering increasing levels of these fatty acids in milk and
butter. For example, the reduction in concentrations of fatty
acids in grass during the summer months led to higher levels
of SFA in butter and reduced spreadability at this time (in
comparison with butters produced in spring and autumn
months; Thomson & Van Der Poel, 2000).

Oxidative stability of milk and meat

Fatty acids also have important effects on shelf-life and
colour of meat. The oxidation products of PUFA catalyse
the oxidation reactions that form metmyoglobin, which
gives a dark-brown coloration to beef after a period of retail
display. Feeding animals on diets containing fish oil resulted
in meat with higher levels of lipid oxidation and greater
colour deterioration than that from animals fed the other fat
sources (including 18 : 3n-3 rich linseed; Vatansever et al.
2000). Similarly, the increased levels of PUFA in milk from
cows fed red-clover (Trifolium pratense) silage (RJ
Dewhurst, WJ Fisher, JKS Tweed and RJ Wilkins,
unpublished results; RJ Dewhurst, ND Scollan, J]M Moorby
and RJ Merry, unpublished results) was associated with
reduced oxidative stability (Al-Mabruk et al. 2000).

Manipulating fatty acids in ruminant products

Diets containing either whole oilseeds or extracted seed oils
have been widely used to manipulate the fatty acid compo-
sition of ruminant products. Rapeseed, soyabean and linseed
are rich in oleic acid (18 : 1x#-9), linoleic acid (18 : 2rn-6) and
18 : 3mn-3 respectively and generally result in increased
levels of these fatty acids in animal products. Fish oils have
been used to supply the long-chain PUFA eicosapentaenoic
acid (20 : 5r-3) and docosahexaenoic acid (22 : 6n-3) and
can stimulate high levels of CLA (Chilliard et al. 2000).
Linseed oil (rich in 18 : 3#-3) and fish oil or meal (rich in 20
: 5n-3 and 22 : 6n-3) increased the levels of these PUFA in
beef (Choi et al. 2000; Moloney et al. 2001; Scollan et al.
2001). Feeding linseed also increased levels of 20 : 51-3 in
beef, through synthesis (chain elongation and desaturation)
from 18 : 3n-3.

The potential to increase the n-3 PUFA content of milk
and meat is very high. Infusing n-3 PUFA directly into the
small intestine (and hence bypassing the rumen) as linseed
oil significantly (P<0-05) increased the proportion of
18 : 3n-3 compared with feeding an equivalent amount of
18 : 3n-3 in the diet (0-139 v. 0-010 18 : 3x#-3 in milk fatty
acids; Petit et al. 2002). However, rumen biohydrogenation
leads to the loss of most n-3 PUFA and the overall
efficiency of transfer of n-3 PUFA from the diet through
to the product is low (typically <0-05). Typical values
for the biohydrogenation of the major PUFA, 18 : 2xn-6 and
18 : 3n-3 range between 0-70-0-95 and 0-85-1-0 respec-
tively. Conversely, the biohydrogenation of long-chain Cyg
fatty acids 20 : 5x#-3 and 22 : 6n-3 in fish oil has been shown
to be much lower and is inversely related to the proportion
of fish oil in the rumen. It appears that this effect is the result
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of an inhibitory action of the fish oil along the biohydrogen-
ation pathway (Gulati et al. 1999).

Many studies have examined the effects of protecting
dietary lipids from the actions of the rumen micro-
organisms using various methodologies, with varying
extents of success. Strategies to reduce biohydrogenation
have included feeding low-N diets (Gerson et al. 1986),
reducing the size of feed particles (Gerson et al. 1988),
feeding more mature forage (Gerson et al. 1983), removal of
the fatty acid carboxyl group by using calcium salts
(Barowicz & Brejta, 2001), production of fatty acid acyl
amides (Fotouhi & Jenkins, 1992) and Cu supplementation
(Engle et al. 2001). One of the most successful approaches
involves encapsulation of PUFA in formaldehyde-treated
protein (Scott & Ashes, 1993). Using this methodology
Scollan et al. (2002) observed a major increase in
PUFA:SFA from 0-06 to 0-28 in beef from animals fed on
concentrates containing megalac (rich in palmitic acid
(16 :0)) and a protected lipid supplement respectively.
Similarly, 18 : 3n-3 was significantly (P<0-001) increased
in the milk of cows fed a protected linseed (0-064 v. 0-008 in
the control) in the study of Goodridge et al. (2001).
Processing oilseeds is generally far less effective than
feeding rumen-protected lipid supplements (Kennelly,
1996) and can lead to increased production of trans-18 : 1
fatty acids (mainly trans-11, i.e. vaccenic acid), as inter-
mediates during biohydrogenation (for example, see Scollan
et al. 2002).

Forage effects on fatty acids in products

Plants have the unique ability to synthesise de novo
18 : 3n-3, which is the building block of the n-3 series of
essential fatty acids. Fish derive their »n-3 fatty acids from
marine plankton and have been an important source used in
animal feeding. However, plant sources would represent a
more natural and environmentally-sustainable source.
Although forages such as grass and clover usually contain
<0-05 total fatty acids, a high proportion are present as
18 : 3n-3 (Hawke, 1973) and this high proportion of
18 : 3n-3 can have substantial effects on the fatty acid
profiles of products.

Effects of forages on a-linolenic acid in ruminant products

The effect of forages on concentrations of 0-18 : 3n-3 in
products depends on two different processes: increasing the
supply of precursor (a-18 : 3xr-3) in the crop; reducing the

extent of biohydrogenation in the rumen. The effects of the
forage component of diets on the level of 18 : 3x#-3 in milk
fat is shown in Table 1. In each case higher levels were
found in milk from cows grazing fresh herbage, which has a
higher 18 : 3n-3 content than conserved forages (hay,
silage).

Similar results have been obtained with beef cattle.
Larick & Turner (1989) reviewed a number of early studies
that showed increased 18 : 3x#-3 in beef from steers grazing
pasture. Their own study showed increased 18 : 3x-3 in
muscle fatty acids from steers finished with diets based on
grazed grass as opposed to maize silage. Lucerne (Medicago
sativa) silage has a higher content of 18 : 3x#-3 than high-
moisture maize and led to increased levels of 18 : 3n-3 in
beef muscle (Mandell et al. 1997, 1998). French et al.
(2000) suggested that confounding of dietary fatty acids and
growth rates leads to difficulty in interpreting many of the
earlier experiments. They adjusted diets to produce similar
growth rates and increased levels of 18 : 3n1-3 in beef muscle
from 7-1 to 11-3 g/kg total fatty acids when replacing grass
silage and concentrates with fresh grass.

Other studies have shown the effects of forage fatty acids
on beef fatty acids through the effects of different
experimental manipulations. Thomson & Van Der Poel
(2000) showed that the decline in concentrations of fatty
acids in grasses during the summer months was mirrored by
lower levels of PUFA and CLA in milk. Duckett et al.
(1993) conducted a serial slaughter experiment in which
Angus X Hereford steers were taken off grass at 16 months
of age and given a high-concentrate diet for various periods
of time. The initial level of 18 : 3n-3 in longissimus muscle
was 9-3 g/kg total fatty acids, but this level was reduced by
half within 1 month of concentrate feeding and by a further
half in the second month. Levels of 18 : 3n-3 declined to
0-5g/kg total fatty acids after 5 months of concentrate
feeding.

One of the most difficult challenges to address in
increasing the delivery of forage PUFA into products is the
general increase in the extent of biohydrogenation with
increasing proportion of forage in the diet (Latham et al.
1972; Kalscheur et al. 1997; Kucuk et al. 2001;ND Scollan,
MRF Lee and M Enser, unpublished results). This associ-
ation is expected because of the predominant role of the
fibrolytic bacterium Butyrivibrio fibrisolvens in rumen
biohydrogenation (Latham ef al. 1972). The effect will be
exacerbated by the increased rate of lipolysis at high rumen
pH (Van Nevel & Demeyer, 1996). The recovery of
18 :3n-3 from feed into milk declined from 0-0092 to

Table 1. Effect of the forage component of diets on the linolenic acid content of milk fat (9/100g total fatty acids)

Linolenic acid content

Diets based on.... Fresh forage*

Conserved forage*

Timmen & Patton (1988) 0-84 (pasture) 0-36 (grass and wheat silages)
Alii et al. (1988) 1-97 (grass) 1-46 (grass hay)
1-34 (grass) 1-13 (grass hay)
Hebeisen et al. (1993) 2:31 (grass) 0-45 (conserved grass)
Kelly et al. (1998) 0-95 (grass—white clover) 0-25 (maize and legume silages)
Dhiman et al. (1999) 2-02 (grass—white clover) 0-81 (lucerne hay; grass—white clover)

*White clover, Trifolium repens; lucerne, Medicago sativa.
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0-0058 as the proportion in forage increased from 0-18 to
0-73 in the experiment of Kucuk ef al. (2001).

Effects of forages on conjugated linoleic acids in ruminant
products

The effect of forages on concentrations of CLA in products
is more complicated than effects on levels of 0-18 : 3n-3. In
addition to effects of precursor supply and rumen biohydro-
genation, there are important effects on the activity of the A?
desaturase enzyme (stearoyl-coA desaturase) in the
mammary gland or adipose tissue. Griinari et al. (2000)
showed that more than half the CLA in milk are produced by
the action of this enzyme on trans-11-18 : 1 produced in the
rumen. 18 : 2n-6 is a major precursor of cis-9, trans-11-
18 : 2 (CLA) and trans-11-18:1, but o-18 : 3r-3 acid can
also be a precursor, via desaturation of trams-11-18: 1.
Elevated levels of A? desaturase of grazing cattle (Yang
et al. 1999) contribute to increased levels of CLA. ND
Scollan, MRF Lee and M Enser (unpublished results)
showed that muscle CLA in grazing steers was almost
entirely due to tissue synthesis via A° desaturase, due to
the almost complete biohydrogenation of 18 :2n-6 and
18 : 3n-3 fatty acids and the virtual absence of CLA in the
rumen.

The effects of conservation (as hay or silage) of the
forage component of diets on the level of CLA in milk fat is
shown in Table 2. In each case higher levels were found in
milk from cows grazing fresh herbage.

Chouinard et al. (1998) showed a reduction in CLA
content of milk (from 1-14 to 0-48 g/100 g total milk fatty
acids) associated with the decline in fatty acid content (and
perhaps other processes) associated with cutting Timothy
(Phleum pratense) for silage at the early-heading and full-
flowering growth stages. Turnout to grass, from diets based
on grass silage and concentrates, was associated with
increasing content of 18 : 3n-3 and CLA in milk in the
study of Agends ef al. (2002), although increased levels of
18 : 3n-3 were only transient as levels in the grass declined
and grass availability became restricted. Grass availability
was also an important factor in the study of Stanton et al.
(1997); reducing the grass allowance from 20 to 16 kg DM
per head per d reduced CLA from 0-68 to 0-39 g/100 g total
milk fatty acids. Loyola et al. (2002) presented preliminary
evidence of differences in the CLA content of milk from

cows grazing different ryegrass cultivars, despite the similar
18 : 2n-6 and 18 : 3n-3 contents of the grasses.

In order to use plant breeding and crop management to
increase the delivery of beneficial fatty acids from forages
into milk and meat it is necessary to address two issues: the
levels of PUFA in forage; the susceptibility of forage PUFA
to being lost in the silo or rumen. These issues form the basis
of the final two sections of the present paper.

Breeding and management to increase levels of forage
fatty acids

The number and timing of cuts or grazing cycles affects the
fatty acid composition of forages. The concentration of fatty
acids in herbage tends to be highest in the spring and
autumn, with lowest values during the summer, particularly
around flowering. This effect has been noted for perennial
ryegrass (Lolium perenne) by Bauchart et al. (1984) and for
cocksfoot (Dactylis glomerata) and white clover (Trifolium
repens latum) by Saito et al. (1969). Dewhurst et al. (2001)
showed a more pronounced decline in fatty acid content for
hybrid ryegrass and, particularly, for Italian ryegrass
(Lolium multiflorum). There is some evidence that
management that inhibits the initiation of flowering (e.g.
two early cuts in the work of Bauchart et al. 1984 and nine
cuts per year in the work of Dewhurst et al. 2002) will
increase fatty acid levels.

Earlier studies have given a number of indications of the
potential to use plant breeding to alter fatty acid levels and
profiles in forages, as well as highlighting important genetic
correlations and genotype X environment interactions.

Dewhurst ez al. (2001) showed that fatty acid profiles
were distinctive to species when the grasses received the
same management (i.e. at the same cut), confirming a strong
genetic basis. For example, Cocksfoot contained relatively
low levels of 18 : 1 fatty acids and Timothy contained
relatively high levels of 18 : 2 fatty acids. However, the
differences were quite subtle and less clear when considered
across cuts. Dewhurst ef al. (2001) also noted highly signif-
icant (P<0-001) species X cutting date interaction effects,
reflecting most notably high values for Italian ryegrass in
November (vegetative) and low values in July (flowering).
Leaf content is very important in determining fatty acid
content. After the flush of reproductive stem growth during
May and June, leaf content increases to the end of the

Table 2. Effect of the forage component of diets on the conjugated linoleic acid* content of milk fat or beef muscle (g/100g total fatty acids)

Conjugated linoleic acid content

Diets based on.... Fresh foraget

Conserved foraget

Milk fat
Timmen & Patton (1988)
Precht & Molkentin (1997)

1-34 (pasture)
0-76 (grass)
1-05 (grass)
Kelly et al. (1998)
Dhiman et al. (1999)
Beef muscle

French et al. (2000) 1-08 (grass)

1-09 (grass—white clover)
2-21 (grass—white clover)

0-27 (grass and wheat silages)

0-38 (maize and grass silages)

0-55 (grass silage; green maize)

0-54 (maize and legume silages)

0-89 (lucerne hay; grass—white clover)

0-37 (grass hay)

*Generally cis-9, trans-11-linoleic acid.
TWhite clover, Trifolium repens; lucerne, Medicago sativa.
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season, with Italian ryegrass staying stemmier for longer
than hybrid ryegrass and perennial ryegrass being the least
stemmy. Italian ryegrass and hybrid ryegrass had higher
levels of total fatty acids and 18 : 3n-3 in the early and late
season when compared with perennial ryegrass. These
effects show the potential for manipulating forage fatty
acids through genetic manipulation of flowering times and
flowering propensity, and highlight the importance of
correct management to maximise benefits from genetic
differences.

Within the perennial ryegrass varieties that were studied
by Dewhurst et al. (2001), there was no evidence of an
effect of ploidy in relation to levels and patterns of fatty
acids. Within the vegetative material, the highest fatty acid
levels were found in four varieties from the same gene pool
(13-1 v. 99¢g 18 : 3n-3/kg DM; SED 0-68; P<0-001).
Preliminary evidence has been obtained for useful
quantitative trait loci for concentrations of several of the
important fatty acids in a well-characterised population of
perennial ryegrass (LB Turner, unpublished results).

Breeding and management to reduce losses of forage
fatty acids

Lipolysis and oxidation

Oxidation during field wilting and biohydrogenation in the
rumen are the main sources of loss of herbage PUFA. In
both cases the first step towards losses is lipolysis, which
can be under the action of either plant or microbial lipases.
Plant lipases obviously predominate in the field wilting
situation, but there is also some evidence for effects of
plant lipases in rumen lipolysis (Dawson & Hemington,
1974; Faruque et al. 1974; Lee et al. 2002). The importance
of oxidative losses during field drying of crops was
demonstrated during haymaking (Aii et al. 1988) and silage-
making (Dewhurst & King, 1998).

Plant lipases have important roles in plant physiology and
are a potential target for plant breeding, so further work is
needed to define their importance in losses of PUFA in the
food chain. During natural leaf senescence, and in response
to stresses such as wounding or pathogen attack, the action
of lipases causes rapid release of fatty acids from membrane
lipids (Thomas, 1986). These fatty acids are predominantly
18 : 3n-3 and 18 : 2n-6, which in plants are the main
substrates for lipoxygenases. Lipoxygenases (linoleate:
oxygen oxidoreductase) are a large gene family of fatty acid
dioxygenases containing non-haem-Fe (for review, see
Feussner & Wasternack, 2002). They catalyse the dioxygen-
ation of PUFA that contain a (1Z,4Z)-pentadiene system.
The hydroperoxy PUFA so generated are the substrates for
at least seven different enzyme families. Many of the
products, which include signalling compounds such as
jasmonates and antimicrobial and antifungal compounds
such as leaf aldehydes, are volatile.

The rapidity of lipolysis and oxidation of plant fatty acids
can be monitored by studying the emission of volatile
organic compounds (VOC) following leaf damage. In many
species wounding, whether by pathogen attack or otherwise,
greatly increases VOC emission. For example, in grass the
emission of leaf alcohol ((Z)-3-hexen-1-ol) can be induced
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by physical damage to the leaf. Enhanced emissions have
been shown to occur for both grass and clover after cutting
and include hexenals, hexenols and 3-hexenyl acetate (Fall
et al. 1999). Increased emissions have also been shown to
occur during senescence and drying, e.g. after lawn mowing
(Kirstine et al. 1998) and hay harvesting (De Gouw et al.
2000). Wounding (by cutting for haymaking or ensiling, or
by the grazing animal) is an integral part of grassland
management regimens; together with the drying of hay and
grass clippings it makes a major contribution to biogenic
VOC production. It is therefore important to ensure that
selection for increased fatty acid content does not have the
undesirable side effect of elevated VOC emission.

A reduction in the oxidative loss of fatty acids, and a
concomitant reduction in VOC emissions, could be achieved
by selecting for reduced activity of the lipoxygenase
complex and other enzyme activities (including lipases) or
for an increased threshold for induction of VOC emission.

Plant lipids are mainly associated with the thylakoid
membranes of chloroplasts (Harwood, 1980), so an alter-
native strategy for reducing losses is to produce more
resilient chloroplasts. One interesting approach is the
production of ‘stay-green’ varieties, such as the sid mutant
in Festuca pratensis Huds. that lacks one of the enzymes
involved in chlorophyll breakdown (Harwood et al. 1982;
Thomas & Smart, 1993) and retains thylakoid membrane
structure later in senescence than does wild-type grass. Stay-
green material showed substantially reduced losses of fatty
acids when artificially senesced by excision and incubation
on moist filter paper in darkness (Harwood et al. 1982). This
characteristic was transferred to perennial ryegrass using
Festuca—Lolium  intergeneric  crossing  procedures
(Humphreys & Thorogood, 1993). Dewhurst et al. (2002)
found a small reduction in losses of fatty acids during
wilting, although the effect may have been restricted by the
rapid drying conditions.

Rumen biohydrogenation

The challenge of reducing biohydrogenation losses of
forage PUFA is exaggerated by the higher biohydrogenating
activity of the fibrolytic bacteria that are more prevalent in
the rumen of forage-fed animals. The studies with protected
lipids show that it is difficult to accomplish and, as yet, we
have had little success. Studies with stay-green ryegrass and
with red clover may offer some insight into possible future
breeding and management strategies. Dewhurst et al. (2002)
presented a preliminary evaluation of the effect of the stay-
green trait (described earlier) on rumen function. The
pattern of plasma fatty acids for lambs offered stay-
green grass provides some tentative evidence for an effect
of the stay-green trait on the rate of degradation of fatty
acids.

Studies with clover silages (Lee ef al. 2003; RJ Dewhurst,
W] Fisher, JKS Tweed and RJ Wilkins, unpublished results;
RJ Dewhurst, ND Scollan, JM Moorby and RJ Merry,
unpublished results) suggest some other possible
approaches to increasing levels of forage PUFA in milk and
meat. The increase in 18 : 3n-3 content of milk from cows
fed white-clover silage (0-96g/100g total fatty acids v.
0-40 g/100 g total fatty acids for cows fed grass silage) was
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mainly the result of increased intake of 18 : 3x-3, with a
similar level of recovery (0-055 v. 0-049). The increased rate
of passage of white clover from the rumen should contribute
to reduced biohydrogenation and increased recovery in
products. The situation with red-clover silage is very
different; rumen passage rates were very similar to those for
grass silage, whilst the recovery of feed 18 : 3n-3 into milk
almost doubled to 0-090. Further work is needed to under-
stand the mechanisms, whether plant or microbial, involved
in this effect.

Conclusions

The level and type of fatty acids has important effects on
several aspects of ruminant product quality, including
healthiness, taste, texture and shelf-life. Plant lipids contain
a high proportion of PUFA, associated with the thylakoid
membranes of chloroplasts, and are the primary source of
beneficial fatty acids in the food chain. Forage lipids are the
cheapest and safest source of these fatty acids in ruminant
feed sources, so breeding to increase delivery of fatty acids
from plants into ruminant products is an important long-
term strategy. Genetic variation and genetic tools to breed
higher lipid forages have been identified. However, the situ-
ation is complicated by the large genotype X management
interactions, particularly the large changes in fatty acid
levels associated with flowering. The other approach to
increasing the delivery of plant-derived PUFA into ruminant
products is to reduce losses through lipolysis and oxidation
during field wilting or rumen biohydrogenation. Differences
between plants in these processes have been identified, but
further research is needed to establish the relative impor-
tance of plant and microbial processes and develop
strategies to reduce losses.
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