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We consider the adaptive Lasso estimator with componentwise tuning in the frame-
work of a low-dimensional linear regression model. In our setting, at least one of
the components is penalized at the rate of consistent model selection and certain
components may not be penalized at all. We perform a detailed study of the
consistency properties and the asymptotic distribution which includes the effects
of componentwise tuning within a so-called moving-parameter framework. These
results enable us to explicitly provide a set M such that every open superset acts as
a confidence set with uniform asymptotic coverage equal to 1, whereas removing an
arbitrarily small open set along the boundary yields a confidence set with uniform
asymptotic coverage equal to 0. The shape of the set M depends on the regressor
matrix as well as the deviations within the componentwise tuning parameters. Our
findings can be viewed as a broad generalization of Pötscher and Schneider (2009,
Journal of Statistical Planning and Inference 139, 2775–2790; 2010, Electronic
Journal of Statistics 4, 334–360), who considered distributional properties and
confidence intervals based on components of the adaptive Lasso estimator for the
case of orthogonal regressors.

1. INTRODUCTION

The least absolute shrinkage and selection operator or Lasso by Tibshirani (1996)
has received tremendous attention in the statistics literature in the past two decades.
The main attraction of this method lies in its ability to perform model selection and
parameter estimation at very low computational cost, and the fact that the estimator
can be used in high-dimensional settings where the number of variables p exceeds
the number of observations n (“p � n”).

For these reasons, the Lasso has also turned into a very popular and powerful
tool in econometrics, and similar things can be said about the estimator’s many
variants, among them the adaptive Lasso estimator of Zou (2006), where the
l1-penalty term is randomly weighted according to some preliminary estimator.
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This particular method has been used in econometrics in the context of diffusion
processes (DeGregorio and Iacus, 2012), for instrumental variables (Caner and
Fan, 2015), in the framework of stationary and nonstationary autoregressions
(Kock and Callot, 2015; Kock, 2016), and for autoregressive distributed lag models
(Medeiros and Mendes, 2017), to name just a few.

Despite the popularity of this method, there are still many open questions on
how to construct valid confidence regions in connection with the adaptive Lasso
estimator. Pötscher and Schneider (2010) demonstrate that the oracle property
from Zou (2006) and Huang, Ma, and Zhang (2008) cannot be used to conduct
valid inference and that resampling techniques also fail. They give confidence
intervals with exact coverage in finite samples as well as an extensive asymptotic
study in the framework of orthogonal regressors. However, settings more general
than the orthogonal case have not been considered yet.

In this paper, we consider an arbitrary low-dimensional linear regression model
(“p ≤ n”) where the regressor matrix exhibits full column rank. We allow for the
adaptive Lasso estimator to be tuned componentwise with some tuning parameters
possibly being equal to zero, so that not all coordinates have to be penalized.
Due to this componentwise structure, three possible asymptotic regimes arise: the
one where each zero component is identified as such with asymptotic probability
less than one, usually termed conservative model selection, the one where each
zero component is revealed as zero with asymptotic probability equal to one,
usually referred to as consistent model selection, as well as the mixed case where
some components are tuned conservatively and some are tuned consistently. The
framework we consider encompasses the latter two regimes.

The main challenge for inference in connection with the adaptive Lasso and
related estimators lies in the fact that the finite-sample distribution depends on the
unknown parameter in a complicated manner, and that this dependence persists
in large samples. Consequently, the coverage probability of a confidence region
varies over the parameter space, and in order to conduct valid inference, one needs
to guard against the lowest possible coverage and consider the minimal one. This
is done so in the present paper.

Since explicit expressions for the finite-sample distribution and therefore also
the coverage probabilities of confidence regions are unknown when the regressors
are not orthogonal, our study is set in an asymptotic framework. We determine
the appropriate uniform rate of convergence and derive the asymptotic distribution
of an appropriately scaled estimator that has been centered at the true parameter.
While the limit distribution is still only implicitly defined through a minimization
problem, the key observation and finding is that one may explicitly characterize
the set of minimizers once the union over all true parameters is taken. This is done
by heavily exploiting the structure of the corresponding optimization problem and
leads to a compact set M that is determined by the asymptotic Gram matrix as well
as the asymptotic deviations between the componentwise tuning parameters and
the maximal one. Subsequently, this result can be used to show how the set M acts
as a benchmark for confidence regions, since, very loosely put, any larger set will
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necessarily have asymptotic coverage equal to one, and any smaller set will exhibit
zero uniform coverage in the limit. We will formalize this statement, sharpen it for
a wide class of tuning regimes, and demonstrate the intrinsic problem that arises
for inference in connection with this estimation method.

In this article, we show that the one-dimensional case from Pötscher and
Schneider (2010) can indeed be generalized to arbitrary low-dimensional models.
Our investigations reveal the geometry of confidence regions based on the adaptive
Lasso, which cannot be seen in the intervals of the one-dimensional setting.
Our study also encompasses the effects of varying tuning schemes over different
components of the parameter, which may result in a loss of dimension in the
confidence set.

The paper is organized as follows. We introduce the model and the assumptions
as well as the estimator in Section 2. In Section 3, we study the relationship of
the adaptive Lasso to the least-squares (LS) estimator. The consistency properties
with respect to parameter estimation, rates of convergence, and model selection are
derived in Section 4. Section 5 looks at the asymptotic distribution of the estimator
and deduces that it is always contained in a compact set, independently of the
unknown parameter. These results are used to construct and discuss the confidence
regions in Section 6, where their shape is also illustrated. We summarize in
Section 7 and relegate all proofs to the Appendix for readability.

2. SETTING AND NOTATION

We consider the linear regression model

y = Xβ + ε,

where y ∈ R
n is the response vector, X ∈ R

n×p the nonstochastic regressor matrix
assumed to have full column rank, β ∈ R

p the unknown parameter vector, and ε ∈
R

n the unobserved stochastic error term consisting of independent and identically
distributed components with mean zero and finite second moments, defined on
some probability space (�,F,P). To define the adaptive Lasso estimator, first
introduced by Zou (2006), let

Ln(b) = ‖y−Xb‖2 +2
p∑

j=1

λj
|bj|

|β̂LS,j|
,

where ‖.‖ is the euclidean norm, λj are nonnegative tuning parameters, and β̂LS =
(X′X)−1X′y is the ordinary LS estimator. We assume the event {β̂LS,j = 0} to have
zero probability, for all j = 1, . . . ,p, and do not consider this event occurring in the
subsequent analysis. The adaptive Lasso estimator we employ is given by

β̂AL = argmin
b∈Rp

Ln(b),

which always exists and is uniquely defined in our setting. Note that, in contrast
to Zou (2006), we allow for componentwise partial tuning where the tuning
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parameter may vary over coordinates and may be equal to zero, so that not all
components need to be penalized. This is unlike the typical case of uniform
tuning with a single positive tuning parameter. We also look at the leading case
of ωj = 1/|β̂LS,j|γ with γ = 1, in the notation of Zou (2006). For all asymptotic
considerations, we will assume that X′X/n converges to a positive definite matrix
C ∈ R

p×p as n → ∞.
We define the true active set A to be A = {j : βj 	= 0}. The quantity λ∗ is given

by the largest tuning parameter, λ∗ = max1≤j≤p λj. We use R for the extended real

line. Finally, the symbol
d−→ stands for convergence in distribution. For the sake

of readability, we suppress the dependence of the following quantities on n in the
notation: y, X, ε, β̂AL, β̂LS, λj, and λ∗.

3. RELATIONSHIP TO LS ESTIMATOR

The following finite-sample relationship between the adaptive Lasso and the LS
estimator is essential for proving the results in the subsequent section and will also
give some insights for understanding the idea behind the results on the shape of
the confidence regions in Sections 5 and 6. The lemma shows that the difference
between the adaptive Lasso and the LS estimator is always contained in a bounded
and closed set that depends on the regressor matrix as well as on the tuning
parameters. Note that the statements in Lemma 1 and Corollary 2 hold, for all
ω ∈ �, i.e., “surely.”

LEMMA 1 (Relationship to LS estimator).

β̂AL − β̂LS ∈ {z ∈ R
p : (X′Xz)j = 0 for λj = 0,zj(X

′Xz)j ≤ λj for λj > 0,j = 1, . . . ,p},

for all ω ∈ �.

Lemma 1 can be used to determine under which tuning regime the adaptive
Lasso is asymptotically behaving the same as the LS estimator, as is stated in the
following corollary.

COROLLARY 2 (Equivalence to LS estimator). If λ∗ → 0, β̂AL and β̂LS are
asymptotically equivalent in the sense that

√
n(β̂AL − β̂LS) → 0 as n → ∞ for all ω ∈ �.

Corollary 2 shows that in case λ∗ → 0, the adaptive Lasso estimator is asymp-
totically equivalent to the LS estimator, so that this case becomes a trivial one.
How the estimator behaves in terms of parameter estimation and model selection
for different asymptotic tuning regimes is treated in the next section.
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4. CONSISTENCY IN PARAMETER ESTIMATION AND MODEL
SELECTION

We start our investigation by deriving the pointwise convergence rate of the
estimator.

PROPOSITION 3 (Pointwise convergence rate). Let an = min(
√

n,n/λ∗). Then,
the adaptive Lasso estimator is pointwise an-consistent for β in the sense that, for
every δ > 0, there exists a real number Mβ,δ such that

sup
n∈N

Pβ

(
an‖β̂AL −β‖ > Mβ,δ

)
≤ δ.

The fact that the pointwise convergence rate is given by n1/2 only if λ∗/n1/2

does not diverge has implicitly been noted in Zou’s (2006) oracle property in
Theorem 2 in that reference, reflected in the assumption of λ∗/n1/2 → 01. In
the one-dimensional case, it can be learned from Theorem 5(2) in Pötscher and
Schneider (2009) that the sequence n1/2(β̂AL −β) is not stochastically bounded if
λ∗/n1/2 diverges.2 However, neither of these references determine the slower rate
of n/λ∗ explicitly when it applies.

The uniform convergence rate is presented in the next proposition.

PROPOSITION 4 (Uniform convergence rate). Let bn = min(
√

n,
√

n/λ∗).
Then, the adaptive Lasso estimator is uniform bn-consistent for β in the sense
that, for every δ > 0, there exists a real number Mδ such that

sup
n∈N

sup
β∈Rp

Pβ

(
bn‖β̂AL −β‖ > Mδ

)
≤ δ.

Proposition 4 shows that the uniform convergence rate is slower than n1/2 if
λ∗ → ∞. The fact that the uniform rate may differ from the pointwise one has been
noted in Pötscher and Schneider (2009). Unless the estimator is inconsistent in
parameter estimation, the uniform convergence from Proposition 4 is slower than
the pointwise one and cannot, indeed, be improved upon. The latter statement is
substantiated by Theorem 7 in Section 5, which shows that the limit of bn(β̂AL −βn)

is nonzero for certain sequences βn.

THEOREM 5 (Consistency in parameter estimation). The following statements
are equivalent.

(a) β̂AL is pointwise consistent for β.
(b) β̂AL is uniformly consistent for β.

1Note that λn in that reference corresponds to 2λ∗ in our notation, assuming uniform tuning over all components.
2To make the connection from that reference to our notation, note that p = 1 there and set θn = β and nμ2

n = λ∗.
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(c) λ∗/n → 0 as n → ∞.
(d) lim

n→∞Pβ(β̂AL,j = 0) = 0 whenever j ∈ A.

Condition (d) in Theorem 5 states that the adaptive Lasso never chooses
underparameterized models with asymptotic probability equal to 1. It underlines
the fact that λ∗/n → 0 is a basic condition that we will assume in all subsequent
statements.

THEOREM 6 (Consistency in model selection). Suppose that λ∗/n → 0 as n →
∞. If λj → ∞ as well as

√
nλj/λ

∗ → ∞ as n → ∞, for all j = 1, . . . ,p, then the
adaptive Lasso estimator performs consistent model selection in the sense that

lim
n→∞Pβ(β̂AL,j 	= 0 ⇐⇒ j ∈ A) = 1 as n → ∞.

Remark. Inspecting the proof of Theorem 6 shows that in fact a more refined
statement than Theorem 6 holds. Assume that λ∗/n → 0. We then have that
Pβ(β̂AL,j = 0) → 0 whenever j ∈ A and

λj → ∞ and

√
nλj

λ∗ → ∞ �⇒ lim
n→∞Pβ(β̂AL,j = 0) = 1 for j /∈ A �⇒ λj → ∞.

This statement is, in particular, interesting for the case of partial tuning where some
λj are set to zero and the corresponding components are not penalized, revealing
that the other components can still be tuned consistently in this case.

5. ASYMPTOTIC DISTRIBUTION

In this section, we investigate the asymptotic distribution. We perform our analysis
for the case when λ∗ → ∞, which, by Theorem 6, encompasses the tuning regime
of consistent model selection and often is the regime of choice in applications. If
the estimator is tuned uniformly over all components, the condition λ∗ → ∞ is, in
fact, equivalent to consistent tuning, given the basic condition of λ∗/n → 0.

The requirement λ∗ → ∞ also corresponds to the case where the convergence
rate of the adaptive Lasso estimator is given by (λ∗/n)1/2 rather than n1/2, as can be
seen from Proposition 4. Pötscher and Schneider (2009, 2010) demonstrate that in
order to get a representative and full picture of the behavior of the estimator from
asymptotic considerations, one needs to consider a moving-parameter framework
where the unknown parameter β = βn is allowed to depend on sample size. For
these reasons, we study the asymptotic distribution of (n/λ∗)1/2(β̂AL −βn), which
is done in the following.

Throughout Sections 5 and 6, let λ0 ∈ [0,1]p and ψ ∈ [0,∞]p be defined by

λj

λ∗ → λ0
j ∈ [0,1] and

√
λ∗

λj
→ ψj ∈ [0,∞],
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measuring the two different deviations between each tuning parameter to the
maximal one. Note that we have λ0 = (1, . . . ,1)′ and ψ = 0 for uniform tuning,
and that not penalizing the jth parameter leads to ψj = ∞ and λ0

j = 0. Note that
assuming the existence of these limits does not pose a restriction, as we could
always perform our analyses on convergent subsequences and characterize the
limiting behavior for all accumulation points.

THEOREM 7 (Asymptotic distribution). Assume that λ∗/n → 0 and λ∗ → ∞.
Moreover, define φ ∈ R

p
by

√
nβn,j

√
λ∗/λj → φj, for j = 1, . . . ,p. Then,√

n

λ∗ (β̂AL −βn)
d−→ argmin

u∈Rp
Vφ(u),

where

Vφ(u) = u′Cu+
p∑

j=1

⎧⎪⎪⎨⎪⎪⎩
0 uj = 0 or |φj| = ∞ or ψj = ∞
∞ uj 	= 0 and φj = ψj = 0

2
|uj+λ0

j φj|−|λ0
j φj|

|φj+ψjZj| else,

with Z ∼ N(0,σ 2C−1), where X′X/n → C, positive definite.

There are a few things worth mentioning about Theorem 7. First of all, in
contrast to the one-dimensional case, the asymptotic limit of the appropriately
scaled and centered estimator may still be random. However, this can only occur
if ψj is nonzero and finite for some component j, meaning that the maximal tuning
parameter diverges faster (in some sense) than the tuning parameter for the jth
component, but not too much faster. When no randomness occurs in the limit, the
rate of the stochastic component of the estimator is obviously smaller by an order
of magnitude compared to the bias component. In particular, this will always be
the case for uniform tuning when ψ = 0.

As is expected, the proof of Theorem 7 will be carried out by looking at the
corresponding asymptotic minimization problem of the quantity of interest, which
can be shown to be the minimization of Vφ . However, since this limiting function is
not finite on an open subset of Rp, the reasoning of why the appropriate minimizers
converge in distribution to the minimizer of Vφ is not as straightforward as might
be anticipated.

The assumption of n1/2βnλ
∗1/2/λj converging in R

p
in the above theorem is not

restrictive in the sense that otherwise, we simply revert to converging subsequences
and characterize the limiting behavior for all accumulation points, which will prove
to be all we need for Proposition 8 and the confidence regions in Section 6.

While we cannot explicitly minimize Vφ for a fixed φ ∈ R
p other than in trivial

cases, surprisingly, we can still explicitly deduce the set of all minimizers of Vφ

over all φ ∈ R
p, which yields the same set regardless of the realization of Z in Vφ .

This is done in the following proposition.
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PROPOSITION 8 (Set of minimizers). Define

M = M(λ0,ψ) = {
m ∈ R

p : (Cm)j = 0 if ψj = ∞, mj(Cm)j ≤ λ0
j if ψj < ∞}

.

Then, for any ω ∈ �, we have

M =
⋃

φ∈Rp

argmin
u∈Rp

Vφ(u)(ω).

So, while the limit of (n/λ∗)1/2(β̂AL − βn) will, in general, be random, the set
M is not. In fact, Proposition 8 shows that, for any ω, the union of limits over all
possible sequences of unknown parameters is always given by the same compact
set M. This observation is central for the construction of confidence regions in the
following section. It also shows that while in general, a stochastic component will
survive in the limit, it is always restricted to have bounded support that depends
on the regressor matrix and the tuning parameter through the matrix C and the
quantities ψ and λ0. Interestingly,M only depends on ψ for the components where
ψj = ∞, in which case the set M loses a dimension. This can be seen as a result
of the jth component being penalized much less than the maximal one, so that the
scaling factor used in Theorem 7 is not large enough for this component to survive
in the limit. Note that in case of uniform tuning where ψ = 0 and λ0 = (1, . . . ,1)′,
M does not depend on the sequence of tuning parameters at all. Also, we have
M = [−1,1], for p = 1 and C = 1, a fact that has been shown in Pötscher and
Schneider (2009) and used in Pötscher and Schneider (2010).

A simple “quick-and-dirty” way to motivate the result in Proposition 8 is to
rewrite√

n

λ∗ (β̂AL −βn) =
√

n

λ∗ (β̂AL − β̂LS)+
√

n

λ∗ (β̂LS −βn)

and observe that the second term on the right-hand side is op(1), whereas the first
term is always contained in the set{

z ∈ R
p : zj(

X′X
n

z)j ≤ λj

λ∗ for j = 1, . . . ,p

}
by Lemma 1, which contains the set M in the limit. Theorem 7 and Proposition 8
can therefore be viewed as the theory that makes this observation precise by
sharpening the set and showing that it only contains the limits. This can then be
used for constructing confidence regions, which is done in the following section.

6. CONFIDENCE REGIONS—COVERAGE AND SHAPE

The insights from Theorem 7 and Proposition 8 can now be used for deriving the
following theorem on confidence regions.
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THEOREM 9 (Confidence regions). Let λ∗/n → 0 and λ∗ → ∞. Then, every
open superset O of M satisfies

lim
n→∞ inf

β∈Rp
Pβ

(
β ∈ β̂AL −

√
λ∗

n
O
)

= 1.

For d > 0, define Md = M(dλ0,ψ). We then have that

lim
n→∞ inf

β∈Rp
Pβ

(
β ∈ β̂AL −

√
λ∗

n
Md

)
= 0,

for any 0 < d < 1.

Remark. The statements in Theorem 9 can be strengthened in the following
way. Let λ∗/n → 0 and λ∗ → ∞.

(a) If λ0 ∈ (0,1]p, then, for any d > 1, we have

lim
n→∞ inf

β∈Rp
Pβ

(
β ∈ β̂AL −

√
λ∗

n
Md

)
= 1.

(b) If ψ ∈ {0,∞}p, then any closed and proper subset C of M fulfills

lim
n→∞ inf

β∈Rp
Pβ

(
β ∈ β̂AL −

√
λ∗

n
C
)

= 0.

Note that for uniform tuning, both refinements hold, since ψ = 0 and λ0 =
(1, . . . ,1)′.

Part (a) holds since under the given assumptions, Md has nonempty interior and
therefore contains an open superset of M. Part (b) hinges on the fact that the limits
in Theorem 7 are always nonrandom under the given assumptions.

Casually put, Theorem 9 and the subsequent remark show the following. The
set M = M1 acts as a benchmark for confidence sets in the sense that if we take
a “slightly larger” set, multiplied with the appropriate factor and centered at the
adaptive Lasso estimator, we get a confidence region with minimal asymptotic
coverage probability equal to 1. If, however, we base the region on a “slightly
smaller” set than M, we end up with a confidence set of asymptotic minimal
coverage 0. Nothing can be revealed from the above when using M itself. We
get into a deeper discussion in the following.

We focus on the case where λ0 ∈ (0,1]p, i.e., the case where all components of
λ0 are nonzero (implying ψ = 0). This means that all components are penalized
at the same rate, which is obviously fulfilled for uniform tuning. In this case, the
asymptotic distribution is mere point-mass with no stochastic part surviving in the
limit, as can be seen from Theorem 7. The reason for this is the fact that when
controlling for the bias of the estimator (by scaling with the reciprocal of the
uniform convergence rate), the stochastic part vanishes asymptotically. In other
words, the appropriate scaling factor is simply not large enough to keep the random
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component alive in the limit, illustrating that the bias is of larger order than the
stochastic component when viewed under a uniform lens3 —a fact that is generally
inherent to penalized estimators.

Given the above considerations, one might ask what happens when the con-
fidence region is based on Mdn where dn may vary? The following theorem
addresses this question by giving upper and lower bounds for the corresponding
coverage probabilities. To state the theorem, we define the finite sample version
of Md as

M̂d =
{

m ∈ R
p : (X′Xm)j = 0 if λj = 0,mj

(
X′X

n
m

)
j

≤ λj

λ∗ d if λj > 0

}
,

which differs from Md only in that C and λ0 are replaced by their finite-sample
equivalents X′X/n and λ/λ∗, respectively, so that M̂d converges to Md (in the
Hausdorff metric). We now provide lower and upper bounds depending on if and
how dn converges to 1 in relation to λ∗.

THEOREM 10. Assume that λ0 ∈ (0,1]p and let ν = limn→∞
√

λ∗(dn −1) ∈ R.
We then have

limsup
n→∞

inf
β∈Rp

Pβ

(
β ∈ β̂AL −

√
λ∗

n
M̂dn

)
≤ min

1≤j≤p


⎛⎝ ν
√

λ0
j

σ
√

3+ (C−1)jjCjj

⎞⎠,

and, for ν > 0,

liminf
n→∞ inf

β∈Rp
Pβ

(
β ∈ β̂AL −

√
λ∗

n
M̂dn

)
≥ min

1≤j≤p
Fχ2

p

(
(λ0

j ν)2

4κCl0σ 2

)
,

where l0 =∑p
j=1 λ0

j , and  and Fχ2
p

denote the cdf of a standard normal and a chi-
square distribution with p degrees of freedom, respectively. The symbol κC stands
for the condition number of C with respect to the spectral norm, i.e., the ratio of
the largest and the smallest eigenvalue.

Remark.

(a) Theorem 10 can be shown to still hold true when M̂dn is replaced by its
counterpart Mdn , with a slight adaptation of the constant ν involving the
convergence rate of X′X/n to C and λ/λ∗ to λ0.

(b) If dn = 1, for all n, implying that the confidence region is based on M̂1, the
above theorem provides 0 as lower and 1/2 as upper bound. The lower bound
can, in fact, be shown to be strict, implying that using M̂1 will always yield
a positive asymptotic coverage (bounded by 1/2) when all components of λ0

are nonzero.

3Note that Proposition 8 shows that in all settings where at least one component is tuned consistently, even if a
stochastic component survives in the limit, it always has bounded support contained in M, leaving very limited
possibilities for the construction of confidence regions based on the asymptotic distribution.

https://doi.org/10.1017/S0266466621000128 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000128


UNIFORM ASYMPTOTICS FOR THE ADAPTIVE LASSO 1107

(c) Pötscher and Schneider (2010) prove that in the one-dimensional and
Gaussian case, the upper bound of Theorem 10 is sharp: The interval
[β̂AL − (λ∗/n)1/2dn,β̂AL + (λ∗/n)1/2dn] possesses asymptotic infimal coverage
probability of (ν/(2σ)), which is precisely the upper bound in the above
theorem.

(d) Lemma 13, on which the proof of the second statement in the above theorem
is based, reveals that, for any d > 1, the convergence rate of the coverage
probability of M̂d (converging to 1) is at least 1/λ∗.

Theorem 10 furthermore allows to illustrate the following. Assume that the
confidence regionM̂dn has asymptotic coverage strictly between 0 and 1 (implying
that dn → 1). Then, this region will asymptotically not differ in volume from sets
that exhibit asymptotic coverage of probability 1. In fact, it can be shown that there
exists a sequence d̃n such that M̂d̃n

has asymptotic coverage 1, satisfying

(λ∗)q

(
μp(M̂d̃n

)

μp(M̂dn)
−1

)
−→ 0 for all q <

1

2
,

where μp denotes p-dimensional Lebesgue measure. This states that the ratio of
volumes will tend to 1, even faster than rate (λ∗)q, for any q < 1/2. It demonstrates
a peculiar nature inherent to the estimation method, differing strongly from the
standard approach through the LS estimator.

One might wonder now how this type of confidence region does indeed compare
to the confidence ellipse based on the LS estimator. Note that the regions will be
multiplied by a different factor and centered at a different estimator. In general, the
following observation can be made. For 0 < α < 1, let Eα = {z ∈ R

p : z′Cz ≤ kα}
with kα > 0 be such that β̂LS −n−1/2Eα is an asymptotic (1−α)-confidence region
for β. If we contrast this with β̂AL − ( λ∗

n )1/2M, we see that since both Eα and M
have positive, finite volume and since λ∗ → ∞, the regions based on the adaptive
Lasso are always larger by an order of magnitude. This phenomenon is a special
case of what has been found for any consistently tuned model selection estimator
in Pötscher (2009).

Finally, we illustrate the shape of M. We start with p = 2 and the matrix

C =
[

1 −0.7
−0.7 1

]
.

We consider the case of uniform tuning, so that λ0 = (1,1)′ and ψ = (0,0)′
and show the resulting set M in Figure 1. The color indicates the value of
maxj=1,2 mj(Cm)j at the specific point m inside the set. The higher the absolute
value of the correlation of the covariates, the flatter and more stretched the
confidence set becomes. As one may expect intuitively, in case of negative
correlation, the confidence set covers more of the area where the signs of the
covariates are equal, as can be seen in Figure 1. A positive correlation causes the
opposite behavior. Note that the corners of the set M touch the boundary of the
ellipse Eα for a certain value of kα .
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Figure 1. An example for the set M with uniform tuning in p = 2 dimensions.

For the case of p = 3, we again start with an example with uniform tuning, so
that λ0 = (1,1,1)′ and ψ = (0,0,0)′ and consider the matrix

C =
⎡⎣ 1 −0.3 0.7

−0.3 1 0.2
0.7 0.2 1

⎤⎦ .

The resulting set M is depicted in Figure 2. To give a better impression of the
shape, the set is colored depending on the value of the third coordinate. Here,
the high correlation between the first and third covariates stretches the set in the
direction where the signs of the covariates differ. Figure 2(b) shows the projections
of the three-dimensional set of Figure 2(a) onto three planes where one component
is held fixed at a time. The projection onto the plane where the second component
is held constant clearly shows the behavior explained above. On the other hand,
the other two projections emphasize that for covariates with a lower correlation in
absolute value, the confidence set is less distorted.

Finally, Figure 3 illustrates the partially tuned case with the same matrix C. The
first component is not penalized, whereas the remaining ones are tuned uniformly.
This implies that λ0 = (0,1,1)′ and ψ = (∞,0,0)′. Due to the condition (Cm)1 = 0,
for all m ∈ M, the resulting set is an intersection of a plane with the set in Figure
2(a). The fact that the confidence set is only two-dimensional might appear odd and
is due to the fact that the unpenalized component exhibits a faster convergence rate,
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(b)

(a)

Figure 2. An example for the set M with uniform tuning and p = 3 dimensions. The three-
dimensional set is depicted in (a), whereas its two-dimensional projections are shown in (b).
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Figure 3. An example of the set M with partial tuning and p = 3 dimensions. The first component
is not penalized resulting in the set being part of a two-dimensional subspace.

so that the factor (λ∗/n)1/2 with which M is multiplied is not large enough for this
component to survive in the limit.

7. SUMMARY AND CONCLUSIONS

We give a detailed study of the asymptotic behavior of the adaptive Lasso estimator
with partially consistent and partial tuning in a low-dimensional linear regression
model in terms of consistency and distributional properties. We do so within
a framework that takes into account the nonuniform behavior of the estimator,
nontrivially generalizing results from Pötscher and Schneider (2009) that were
derived for the case of orthogonal regressors. We also demonstrate and formalize
what these distributional results imply for valid confidence regions, namely that
there exists a “benchmark” set M, such that open supersets have asymptotic
coverage equal to 1, whereas “slightly smaller” sets exhibit 0 uniform coverage
in the limit. The reason for this phenomenon lies in the different rates of the bias
component and the stochastic component of the estimator. A similar effect has been
observed before for the one-dimensional case in Pötscher and Schneider (2010).
We illustrate the shape of M and demonstrate the effect of componentwise tuning
at different rates, as well as the implications of partial tuning on the confidence set.

https://doi.org/10.1017/S0266466621000128 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000128


UNIFORM ASYMPTOTICS FOR THE ADAPTIVE LASSO 1111

APPENDIX
A. Proofs

We introduce the following additional notation for the proofs. The symbol ej denotes the
jth unit vector in R

p, and the sign function is given by sgn(x) = 1{x>0} −1{x<0}, for x ∈R.
For a function g : Rp → R, the one-sided directional derivative of g at u in the direction of
r ∈ R

p is denoted by Drg(u), given by

Drg(u) = lim
h↘0

g(u+hr)−g(u)

h
.

For a vector u ∈ R
p and an index set I ⊆ {1, . . . ,p}, uI ∈ R

|I| contains only the components

of u corresponding to indices in I. Finally,
p−→ denotes convergence in probability.

A.1. Proofs for Section 3

Proof of Lemma 1. Consider the function Gn : Rp → R

u �→ Ln(u+ β̂LS)−Ln(β̂LS),

which can, using the normal equations of the LS estimator, be rewritten to

u′X′Xu+2
p∑

j=1

λj
|uj + β̂LS,j|− |β̂LS,j|

|β̂LS,j|
.

Note that Gn is minimized at β̂AL − β̂LS and that, since all directional derivatives have to be
nonnegative at the minimizer of a convex function, after some basic calculations, we get

Dej Gn(β̂AL − β̂LS) = 2(X′X(β̂AL − β̂LS))j +2
λj

|β̂LS,j|
(
1{β̂AL,j≥0} −1{β̂AL,j<0}

)
≥ 0,

D−ej Gn(β̂AL − β̂LS) = −2(X′X(β̂AL − β̂LS))j +2
λj

|β̂LS,j|
(
1{β̂AL,j≤0} −1{β̂AL,j>0}

)
≥ 0,

(1)

for all j = 1, . . . ,p. When β̂AL,j = 0, this implies that

|(X′X(β̂AL − β̂LS))j| ≤ λj

|β̂LS,j|
,

and therefore,

|(β̂AL − β̂LS)j(X
′X(β̂AL − β̂LS))j| ≤ λj (2)

holds. When β̂AL,j 	= 0, the equations in (1) imply

(X′X(β̂AL − β̂LS))j = −λj
sgn(β̂AL,j)

|β̂LS,j|
. (3)
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If |β̂AL,j − β̂LS,j| ≤ |β̂LS,j|, clearly, (2) also holds. If |β̂AL,j − β̂LS,j| > |β̂LS,j|, we have

sgn(β̂AL,j − β̂LS,j) = sgn(β̂AL,j) 	= 0 yielding

(β̂AL − β̂LS)j(X
′X(β̂AL − β̂LS))j = −λj

|β̂AL,j − β̂LS,j|
|β̂LS,j|

≤ 0.

In any case, λj = 0 implies (X′X(β̂AL − β̂LS))j = 0, which completes the proof. �

Proof of Corollary 2. By Lemma 1, we have

0 ≤ √
n(β̂AL − β̂LS)

′ X′X
n

√
n(β̂AL − β̂LS) ≤

p∑
j=1

λj ≤ pλ∗ → 0.

Since X′X/n → C with C being positive definite, the claim follows. �

A.2. Proofs for Section 4

Proof of Proposition 3. Consider the function Hn,β : Rp → R defined by Hn,β (u) =
a2

n(Ln(u/an +β)−Ln(β))/n, which can be written as

Hn,β (u) = u′ X′X
n

u− 2an

n
u′X′ε +2

p∑
j=1

λj
a2

n

n|β̂LS,j|
(

| uj

an
+βj|− |βj|

)
.

Hn,β is minimized at an(β̂AL −β) and, since Hn,β (0) = 0, we have Hn,β (an(β̂AL −β)) ≤ 0,
which implies that

an(β̂AL −β)′ X′X
n

an(β̂AL −β) ≤ an√
n

an(β̂AL −β)′ 2√
n

X′ε +2
∑
j∈A

1

|β̂LS,j|
anλj

n
|an(β̂AL −β)j|,

where in the latter sum we have dropped the nonpositive terms for j /∈ A and have used the
fact that |βj|−|uj/an +βj| ≤ |uj/an| on the terms for j ∈A. Now, note that both an/

√
n and

anλj/n are bounded by 1 and that the sequences X′ε/√n and 1/β̂LS,j, for j ∈A, are tight, so
that we can bound the right-hand side of the above inequality by a term that is stochastically
bounded times ‖an(β̂AL −β)‖. Moreover, since X′X/n converges to C and all matrices are
positive definite, we can bound the left-hand side of the above inequality from below by a
positive constant times ‖an(β̂AL −β)‖2, so that we can arrive at

‖an(β̂AL −β)‖2 ≤ Op(1)‖an(β̂AL −β)‖,
which proves the claim. �

Proof of Proposition 4. Let L > 0 denote the infimum of all eigenvalues of X′X/n and
C taken over n and note that b2

nλ∗/n ≤ 1. By Lemma 1, we have

b2
n‖β̂AL − β̂LS‖2 ≤ b2

n
L

(β̂AL − β̂LS)
′ X′X

n
(β̂AL − β̂LS) ≤ p

b2
n

L

λ∗
n

≤ p

L
.

For any M ≥ 2
√

p
L , we therefore have

Pβ(bn‖β̂AL −β‖ > M) ≤ Pβ(bn‖β̂AL − β̂LS‖ > M/2)+P(bn‖β̂LS −β‖ > M/2)
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= P(bn‖β̂LS −β‖ > M/2).

The claim now follows from the uniform
√

n-consistency of the LS estimator. �

Proof of Theorem 5. We have (c) �⇒ (b) by Proposition 4 and, clearly, (b) �⇒ (a)
holds. To show (a) �⇒ (c), assume that β̂AL is consistent for β and that λj/nk → c ∈ (0,∞],

for some j, along a subsequence nk. Let βj 	= 0. On the event β̂AL,j 	= 0, which by consistency
has asymptotic probability equal to 1, we have∣∣∣∣∣
(

X′X
nk

(β̂AL − β̂LS)

)
j

∣∣∣∣∣= λj

nk|β̂LS,j|
by equation (3). By consistency and the convergence of X′X/n, the left-hand side converges
to zero in probability, whereas the right-hand side converges to c/|βj| > 0 in probability
along the subsequence nk, yielding a contradiction. This shows the equivalence of the first
three statements.

Moreover, (a) �⇒ (d) since, for j ∈ A,

Pβ(β̂AL,j = 0) ≤ Pβ(|β̂AL,j −βj| > |βj|/2) → 0

by consistency in parameter estimation.
The final implication we show is (d) �⇒ (c). For this, assume that λ∗/n 	→ 0, so that

there exists a subsequence nk such that λj/nk → c > 0 as nk → ∞ for some j. We first look

at the case of c = ∞. Note that β̂AL is stochastically bounded, since Ln(β̂AL) ≤ Ln(0) = ‖y‖2

implies

β̂ ′
AL

X′X
n

β̂AL ≤ β̂ ′
AL

X′X
n

β̂AL +2
p∑

j=1

λj
|β̂AL,j|
|β̂LS,j|

≤ β̂ ′
AL

2

n
X′y.

As X′X/n → C and X′y/n → X′Xβ, the quadratic term on the left-hand side dominates the
linear term on the right-hand side, which is only possible if β̂AL is Op(1). Now, note that by
equation (3), β̂AL,j 	= 0 implies∣∣∣∣∣
(

X′X
nk

(β̂AL − β̂LS)

)
j

∣∣∣∣∣= λj

nk

1

|β̂LS,j|
.

The fact that X′X/nk → C and that β̂AL and β̂LS are stochastically bounded for fixed β shows
that the left-hand side of the above display is bounded in probability also. The right-hand
side, however, diverges to ∞ regardless of the value of βj. We therefore have Pβ(β̂AL,j =
0) → 1, for all βj ∈ R, which is a contradiction to (d). If c < ∞, we first observe that

X′X/n(β̂AL − β̂LS) is always contained in a compact set by Lemma 1 and the convergence of
X′X/n to C. This implies that ‖X′X/n(β̂AL − β̂LS)‖∞ ≤ L < ∞, for some L > 0 and for all
β. Again, by equation (3),∣∣∣∣∣
(

X′X
nk

(β̂AL − β̂LS)

)
j

∣∣∣∣∣= λj

nk

1

|β̂LS,j|
,

whenever β̂AL,j 	= 0. The left-hand side is bounded by L, whereas the right-hand side

converges to c/|βj| in probability. We therefore get Pβ(β̂AL,j = 0) → 1, for all βj ∈ R,
satisfying |βj| < c/L, also yielding a contraction to (d). �
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Proof of Theorem 6. Since the condition λ∗/n → 0 guards against false negatives
asymptotically by Theorem 5, we only need to show that the estimator detects all zero
coefficients with asymptotic probability equal to one. Assume that βj = 0 and that β̂AL,j 	= 0.
The partial derivative of Ln with respect to bj 	= 0 is given by

∂Ln

∂bj
=2(X′Xb)j −2(X′y)j +2

λj

|β̂LS,j|
sgn(bj)=2(X′X(b−β))j −2(X′ε)j +2

λj

|β̂LS,j|
sgn(bj),

which yields∣∣∣∣∣
(

X′X
n

(an(β̂AL −β))

)
j
− an√

n

1√
n
(X′ε)j

∣∣∣∣∣= λj√
n|β̂LS,j|

an√
n

.

Since β̂AL is an-consistent for β, X′X/n converges, an/n1/2 ≤ 1, and X′ε/√n is tight, the
left-hand side of the above display is stochastically bounded. The behavior of the right-
hand side is governed by λjan/

√
n, as

√
nβ̂LS,j is also stochastically bounded for βj = 0.

If an/
√

n does not converge to zero, then the right-hand side diverges because λj does.
If an/

√
n → 0, we have an = n/λ∗ eventually, so that λjan/

√
n = √

nλj/λ
∗, which also

diverges by assumption. �

A.3. Proofs for Section 5

LEMMA 11. Assume that λ∗/n → 0 and λ∗ → ∞. Moreover, suppose that ψn,j =√
λ∗/λj → ψj ∈ [0,∞] and φn,j = √

nβn,j
√

λ∗/λj → φj ∈ R. Then, for any uj ∈ R, the
term

An,βn,j(uj) = λj√
nλ∗

1

|β̂LS,j|
(

|uj +
√

n

λ∗ βn,j|− |
√

n

λ∗ βn,j|
)

satisfies An,βn,j(uj)
d−→ Aφ,j(uj), where

Aφ,j(uj) =

⎧⎪⎪⎨⎪⎪⎩
0 uj = 0 or |φj| = ∞ or ψj = ∞
∞ uj 	= 0 and φj = ψj = 0

2
|uj+λ0

j φj|−|λ0
j φj|

|ψjZj+φj| else

with Z ∼ N(0,σ 2C−1). Moreover,

p∑
j=1

An,βn,j(uj)
d−→

p∑
j=1

Aφ,j(uj),

for all u ∈ R
p.

Proof of Lemma 11. Note that if uj = 0, the term An,βn,j is clearly equal to 0, so that

we assume uj 	= 0 in the following. Define ζn,j = √
n/λ∗βn,j → ζj ∈ R and notice that

|ζj| ≤ |φj|, as well as ζj = λ0
j φj when λ0

j > 0 or |φj| < ∞. Moreover, let Zn = √
n(β̂LS −βn),

which satisfies Zn
d−→ Z with Z ∼ N(0,σ 2C−1).
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We now look at the case where |φj| = ∞. The term |An,βn,j(uj)| is bounded by

λj

λ∗
|uj|

|Zn,j/
√

λ∗ + ζn,j|
,

where Zn,j/
√

λ∗ is op(1). If |ζj| = ∞ also, the above expression tends to zero in probability.

If 0 < |ζj| < ∞, the same expression converges to λ0
j |uj|/|ζj| in probability. But in this case,

we necessarily have λ0
j = 0, so that the limit also equals zero. If ζj = 0, rewrite the above

bound to

|uj|
|ψn,jZn,j +φn,j|,

which clearly converges to zero in probability when ψj < ∞. If ψj = ∞, note that the above
display converges to zero in probability if and only if, for any δ > 0, the expression

P

(
1

|ψn,jZn,j +φn,j| ≥ δ

)
= P

(
|ψn,jZn,j +φn,j| ≤ 1

δ

)
= P

(−1/δ −φn,j

ψn,
≤ Zn ≤ 1/δ −φn,j

ψn,

)
converges to zero, which it does by Polya’s Theorem.

We next turn to the case where ψj = ∞. If |φj| = ∞ also, the limit equals zero by the
above. If |φj| < ∞, since |An,βn,j(uj)| is bounded by

|uj|
|ψn,jZn,j +φn,j|,

it will converge to zero in probability.
Let us now consider the case where φj = ψj = 0. We write An,βn,j(uj) as

|uj + ζn,j|− |ζn,j|
|ψn,jZn,j +φn,j| ,

which clearly diverges as uj 	= 0, |ζn,j| ≤ |φn,j| → 0, and the denominator tends to 0 in
probability.

For the remaining cases where uj 	= 0, |φj|,ψj < ∞, and max(|φj|,ψj) > 0, note that
An,βn,j(uj) can also be written as

|uj + ζn,j|− |ζn,j|
|ψn,jZn,j +φn,j|

and ζn,j → ζj = λ0
j φj.

The joint distributional convergence of
∑

j An,βn,j(uj) to
∑

j Aφ,j(uj) follows trivially.
�

Proof of Theorem 7. Define Vn,βn(u) = 1
λ∗
(
Ln(

√
λ∗/nu+βn)−Ln(βn)

)
and notice

that Vn,βn is minimized at
√

n/λ∗(β̂AL −βn). The function Vn,βn can be shown to equal

Vn,βn(u) = u′ X′X
n

u− 2√
nλ∗ u′X′ε +2

p∑
j=1

An,βn,j(uj),
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where An,βn,j(uj) is defined in Lemma 11. Since X′X/n → C, X′ε/√n is stochastically
bounded and λ∗ → ∞, invoking Lemma 11 shows that Vn,βn(u) converges in distribution
to Vφ(u). We now wish to deduce the same for the corresponding minimizers mn and m.
As explained in Section 5, the limiting function Vφ is not finite on an open subset of Rp

and we cannot invoke the usual theorems employed in such a context. Instead, we define a
new sequence of functions whose minimizers behave similarly but whose limiting function
remains finite. To this end, we let I = {j : max(|φj|,ψj) > 0} and assume, without loss of
generality, that I = {1, . . . ,p̃} with p̃ ≤ p to ease notation with indices. Now, consider V̄n,βn :
R

p → R defined by

V̄n,βn(u) = u′ X′X
n

u− 2√
nλ∗ u′X′ε +2

∑
j∈I

An,βn,j(uj),

and let Ṽn,βn,Ṽφ : Rp̃ → R with

Ṽn,βn(ũ) = V̄n,βn

(
ũ

mn,Ic

)
and Ṽφ(ũ) = Vφ

(
ũ
0

)
.

We first show that mn,Ic
p−→ 0. Note that Vn,βn(mn) ≤ Vn,βn(0) = 0 implies that

m′
n

X′X
n

mn − 2√
nλ∗ m′

nX′ε +2
∑
j∈I

An,βn,j(mn,j) ≤ −2
∑
j/∈I

An,βn,j(mn,j).

The sequence mn is stochastically bounded by Proposition 4. But then so is the left-hand
side of the above inequality by Lemma 11. The right-hand side, however, tends to −∞
whenever mn,Ic does not tend to zero in probability, yielding a contradiction.

Since mn,Ic
p−→ 0, it is straightforward to see that Ṽn,βn(ũ)

d−→ Ṽφ(ũ) for each ũ ∈
R

p̃ by Lemma 11. Inspired by the Convexity Lemma of Pollard (1991), it can be shown
that the functions also converge uniformly on compact sets of Rp̃. Since Ṽn,βn and Ṽφ are

convex and finite, this means that Ṽn,βn epiconverges to Ṽφ (cf. Geyer, 1996, p. 2). Through
Theorem 3.2 in that same reference, we may deduce that

argmin
ũ∈Rp̃

Ṽn,βn(ũ)
d−→ argmin

ũ∈Rp̃
Ṽφ(ũ).

To piece together the missing parts for the minimizers mn and m of Vn,βn(u) and Vφ(u),
respectively, we do the following. First note that mIc = 0 since otherwise Vφ is infinite, so
that we have

mn,Ic
p−→ mIc .

To finish, observe that

mn,I = argmin
ũ∈Rp̃

Ṽn,βn(ũ)
d−→ argmin

ũ∈Rp̃
Ṽφ(ũ) = mI .

�
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PROPOSITION 12. The point m ∈ R
p is a minimizer of Vφ if and only if⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

mj = 0 φj = ψj = 0

(Cm)j = 0 |φj| = ∞ or ψj = ∞
(Cm)j = − sgn(mj+λ0

j φj)

|ψjZj+φj| 0 < max(|φj|,ψj) < ∞ and mj 	= −λ0
j φj

|(Cm)j| ≤ 1
|ψjZj+φj| 0 < max(|φj|,ψj) < ∞ and mj = −λ0

j φj.

Proof of Proposition 12. Clearly, mj = 0 if φj = ψj = 0 as otherwise Vφ is infinite. The
other conditions immediately follow by noting that m is a minimizer of the convex function
Vφ if and only if 0 is a subgradient of Vφ at m. �

Proof of Proposition 8. “⊆”: We first show that the union of minimizers is contained in
the set M. For this, let m = argminu Vφ(u), for some φ ∈ R

p
. We distinguish three cases.

First, if φj = ψj = 0, we have mj = 0, which immediately implies mj(Cm)j = 0 ≤ λ0
j .

Second, if |φj| = ∞ or ψj = ∞, Proposition 12 implies that (Cm)j = 0, which also yields

mj(Cm)j = 0 ≤ λ0
j .

Third, if 0 < max(|φj|,ψj) < ∞, we consider two subcases. When ψj > 0, λ0
j = 0

necessarily holds. Here, if mj = 0, we immediately have mj(Cm)j = 0 = λ0
j . Otherwise,

mj 	= 0 implies

mj(Cm)j = − |mj|
|ψjZj +φj| < 0 = λ0

j

by Proposition 12. The other subcase of ψj = 0 can be treated as follows. If mj = −λ0
j φj,

Proposition 12 yields

|(Cm)j| ≤ 1

|φj|,

so that

mj(Cm)j ≤ |mj(Cm)j| ≤
|λ0

j φj|
|φj| = λ0

j .

If mj 	= −λ0
j φj, the same proposition gives

(Cm)j = −
sgn(mj +λ0

j φj)

|φj| .

If |mj| > |λ0
j φj|, we have sgn(mj) = sgn(mj +λ0

j φj) and

mj(Cm)j = −|mj|
|φj| < 0 ≤ λ0

j .

Finally, if |mj| ≤ |λ0
j φj|, similarly to above, we get

mj(Cm)j ≤ |mj(Cm)j| = |mj|
|φj| ≤

|λ0
j φj|
|φj| = λ0

j .
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“⊇”: We now need to show that, for any m ∈ M, we can construct a φ ∈ R
p
, such that

m = argminu Vφ(u). To this end, we define

φj =

⎧⎪⎪⎨⎪⎪⎩
∞ (Cm)j = 0

−mj

λ0
j

(Cm)j 	= 0 and λ0
j > 0 and |mj(Cm)j| ≤ λ0

j

1
(Cm)j

−ψjZj else

(4)

and show that m is a minimizer of the resulting function Vφ . First, note that since m ∈ M,
ψj = ∞ immediately implies (Cm)j = 0, satisfying the second condition of Proposition 12.
We therefore assume that ψj < ∞ in the following and go through the three definitions
in (4).

If (Cm)j = 0, then the second condition in Proposition 12 is satisfied.

When φj = −mj/λ
0
j , the condition λ0

j > 0 implies that ψj = 0. So when mj = 0, we are in
the case where φj = ψj = 0 and the first condition in Proposition 12 is fulfilled. If mj 	= 0,
we have

|(Cm)j| ≤
λ0

j

|mj| = 1

|φj|,

and the fourth condition in Proposition 12 is satisfied.
Finally, when φj = 1/(Cm)j − ψjZj and λ0

j > 0, we again have ψj = 0 and therefore

φj = 1/(Cm)j. In that case, we also have |mj(Cm)j| > λ0
j , which, since m ∈ M, implies

that mj(Cm)j < 0, so that we have sgn((Cm)j) = −sgn(mj). But this also entails |mj| >

λ0
j /|(Cm)j| = |λ0

j φj|, so that mj 	= −λ0
j φj as well as sgn(mj) = sgn(mj +λ0

j φj). Thus,

(Cm)j = sgn((Cm)j)|(Cm)j| = − sgn(mj)

|φj| = −
sgn(mj +λ0

j φj)

|φj| ,

and the third condition in Proposition 12 holds. Finally, if λ0
j = 0 here and mj = 0, it is

easily seen that the fourth condition of Proposition 12 is satisfied. If mj 	= 0, we are again

in the case where mj 	= −λ0
j φj. Since m ∈ M, we get mj(Cm)j ≤ λ0

j = 0 and mj 	= 0 and
(Cm)j 	= 0 implies sgn((Cm)j) = −sgn(mj). Therefore, similarly as above,

(Cm)j = sgn((Cm)j)|(Cm)j| = − sgn(mj)

|ψjZj +φj|
holds, satisfying the third condition in Proposition 12. �

A.4. Proofs for Section 6

Proof of Theorem 9. We start by proving the first statement. Let gn(β) = Pβ(β ∈ β̂AL −√
λ∗
n O) and cn = infβ∈Rp gn(β). We have to show that cn → 1 as n → ∞. Since cn are the

infima of gn, we can choose sequences (β̃n,k)k∈N ⊆ R
p such that

|cn −gn(β̃n,k)| ≤ 1

k
,
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for all n,k ∈ N. Let βn = β̃n,n and note that |cn −gn(βn)| = o(1) as n → ∞, so that we can

look at the limiting behavior of gn(βn) instead. For
√

nβn

√
λ∗
λj

→ φj ∈ R, by Theorem 7,

the Portmanteau Theorem, and Proposition 8, we immediately get

1 ≥ limsup
n

gn(βn) ≥ liminf
n

gn(βn) = liminf
n

Pβn

(√
n

λ∗ (β̂AL −βn) ∈ O
)

≥ Pφ(argmin
u

Vφ(u) ∈ O) ≥ Pφ(argmin
u

Vφ(u) ∈ M) = 1,

proving that limn cn = limn gn(βn) = 1.
To show the second statement, we define a specific point m on the boundary of M, as

well as φ ∈R
p

such that m = argminu Vφ(u) and
√

n/λ∗(β̂AL −β)
p−→ m, implying that the

limiting distribution is nonrandom. Hence, excluding an open set around that m of M will
give an infimal coverage probability tending to 0. Toward this end, let S = {j : λ0

j > 0} and

note that S 	= ∅, so that we have r = C−1λ0 	= 0. Moreover,

0 < r′Cr =
∑
j∈S

λ0
j rj

implies that there is at least one positive component rj with j ∈ S. Now, define r0 =
maxj∈S rj > 0, let m = r−1/2

0 r, and note that this m satisfies m ∈ M \Md , since Cm =
r−1/2
0 λ0 and

mj(Cm)j = λ0
j

rj

r0
,

implying that (Cm)j = 0, for j /∈ S, mj(Cm)j ≤ λ0
j , for j ∈ S, and mj(Cm)j = λ0

j > dλ0
j , for

some j ∈ S. Also, note that ψj = ∞ implies j /∈ S. Now, let φ ∈ R
p

with

φj =

⎧⎪⎪⎨⎪⎪⎩
∞ (Cm)j = 0

−mj

λ0
j

(Cm)j 	= 0 and |mj(Cm)j| ≤ λ0
j

1
(Cm)j

else.

According to (4) in the proof of Proposition 8, m then is the unique minimizer of the
corresponding function Vφ . This can be seen by noting that (Cm)j = 0 if and only if

λ0
j = 0, as well as ψj > 0 implying that λ0

j = 0. It is crucial to observe that the function
Vφ is nonrandom in this case and that Md is closed. Now, take any sequence (βn)n∈N ⊆
R

p converging to φ and let fn(β) = Pβ(β ∈ β̂AL −
√

λ∗
n Md). By Theorem 7 and the

Portmanteau Theorem, we have

0 ≤ liminf
n

inf
β∈Rp

fn(β) ≤ limsup
n

inf
β∈Rp

fn(β) ≤ limsup
n

Pβn

(√
n

λ∗ (β̂AL −βn) ∈ Md

)
≤ Pφ(argmin

u
Vφ(u) ∈ Md) = 1{m∈Md} = 0.

�
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The following lemma is the basis to prove Theorem 10. For a symmetric matrix A, we
denote by κA the condition number of A with respect to the spectral norm, i.e., the ratio of
the largest by the smallest eigenvalue of A (in absolute value).

LEMMA 13. Let

cn = min
1≤j≤p

λj

(
dn −1

2
√

κX′Xlnλ∗

)

with ln =∑p
j=1 λj/λ

∗. If dn ≥ 1, we have

inf
β∈Rp

Pβ

(
β ∈ β̂AL −

√
λ∗
n
M̂dn

)
≥ P

(√
ε′X(X′X)−1X′ε ≤ cn

(
1− cn

2
√

lnλ∗
))

.

Proof. Let a = cn(1 − cn/(2
√

lnλ∗)). The above statement is trivial when a < 0. Note
that by Lemma 1, β̂AL − β̂LS is an element of

√
λ∗/nM̂1. If a = 0, the event on the right-hand

side implies X′ε = 0 and therefore β̂LS −β = (X′X)−1X′ε = 0. But then, we get β̂AL − β̂LS =
β̂AL −β ∈ √

λ∗/nM̂1, which implies the claim since M̂1 ⊆ M̂dn .
We now prove the statement for a > 0. If we can show that whenever z′X′Xz ≤ a2 and

m ∈ √
λ∗/nM̂1, we get z+m ∈ √

λ∗/nM̂dn , then the following holds:

P

(
ε′X(X′X)−1X′ε ≤ a2

)
= Pβ

(
(β̂LS −β)′X′X(β̂LS −β) ≤ a2,β̂AL − β̂LS ∈√λ∗/nM̂1

)
≤ Pβ

(
β̂LS −β + β̂AL − β̂LS ∈√λ∗/nM̂dn

)
= Pβ

(
β ∈ β̂AL −√λ∗/nM̂dn

)
,

for all β ∈ R
p, which is what we have to prove. It only remains to show that z + m ∈√

λ∗/nM̂dn whenever z′X′Xz ≤ a2 and m ∈ √
λ∗/nM̂1. To do so, we show that (z +

m)j(X
′X(z+m))j ≤ λjdn, for all j. As a > 0 implies λj > 0, for all j, this suffices to conclude

z+m ∈ √
λ∗/nM̂dn . Clearly, m ∈ √

λ∗/nM̂1 implies m′X′Xm ≤∑p
j=1 λj. We also have

Ln‖m‖2∞ ≤ Ln‖m‖2
2 ≤ m′X′Xm

and

‖X′Xm‖2∞ ≤ ‖X′Xm‖2
2 ≤ Unm′X′Xm,

where Ln and Un are the smallest and largest eigenvalues of X′X, respectively. With the same
argument, we get ‖z‖2∞ ≤ a2/Ln and ‖X′Xz‖2∞ ≤ a2Un. Equipped with these inequalities,
we conclude, for every j, that

(z+m)j(X
′X(z+m))j = zj(X

′Xz)j +mj(X
′Xm)j + zj(X

′Xm)j +mj(X
′Xz)j

≤ a2
√

Un/Ln +λj +2a
√

(Un/Ln)lnλ∗

≤ λj +2cn(1− cn/(2
√

lnλ∗))
√

κX′Xlnλ∗ +a2√
κX′X

≤ λj +2cn
√

κX′Xlnλ∗ − c2
n
√

κX′X +a2√
κX′X

≤ λjdn + (a2 − c2
n)

√
κX′X ≤ λjdn,

which completes the proof. �
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Remark. Lemma 13 bases on a purely algebraic argument and is still valid if X and λ are
stochastic (possibly depending on ε and each other) and ε follows an arbitrary distribution.
The only condition needed is the regularity of X′X with probability 1.

Proof of Theorem 10. We start by proving the second statement. Note that if ν > 0, we
have δn > 1 eventually, allowing to apply Lemma 13. We have that

cn = min
1≤j≤p

λj

(
dn −1

2
√

lnκX′Xλ∗

)
= min

1≤j≤p

(√
λ∗(dn −1)

2
√

lnκX′X

λj

λ∗

)
−→

n→∞ min
1≤j≤p

νλ0
j

2
√

l0κC
.

Moreover, ε′X(X′X)−1X′ε/σ 2 converges to a chi-square random variable with p degrees of
freedom. The second claim then follows by Lemma 13 and Polya’s Theorem.

The main idea to show the first claim is the following. We pick a sequence βn close to
the boundary of, but outside the set

√
λ∗/nM̂dn . As

√
λ∗/nM̂dn converges to

√
λ∗/nM̂1,

we expect the LS estimator to lie in the set
√

λ∗/nM̂1 with a positive probability. (This
is actually the fact if and only if ν ∈ R, because then the gap between

√
λ∗/nM̂1 and√

λ∗/nM̂dn is of order n−1/2.) However, β̂LS ∈ √
λ∗/nM̂1 guarantees β̂AL = 0. In that

case, β̂AL −βn = −βn is located outside of M̂dn . Hence, Pβn(β̂LS /∈ √
λ∗/nM̂1) gives an

upper bound for the infimal coverage probability.
For an arbitrary but fixed component 1 ≤ s ≤ p, we define

βn =
√

λsdn + δn

(X′X)ss
es,

where δn > 0 and limn→∞ δn = 0. From βn,s(X′Xβn)s = λsdn + δn, it follows that βn /∈√
λ∗
n M̂dn . Hence,

sup
β∈Rp

Pβ

(
β /∈ β̂AL +

√
λ∗
n
M̂dn

)
≥ Pβn

(
βn /∈ β̂AL +

√
λ∗
n
M̂dn

)
≥ Pβn

(
β̂AL = 0

)
.

If |β̂LS,j(X
′Xβ̂LS)j| < λj, for all j, then Gn(u) = Ln(u + β̂LS)− Ln(β̂LS) is minimized at u =

−β̂LS, which gives β̂AL = 0. So in order to finish the proof, we only have to show that

lim
n→∞Pβn

(
|β̂LS,j(X

′Xβ̂LS)j| < λj for all j
)

= 

⎛⎝ −ν

√
λ0

s

σ
√

3+ (C−1)ssCss

⎞⎠ .

Since βn,j(X
′Xβn)j = 0, for j 	= s, we have β̂LS,j(X

′Xβ̂LS)j ∼ Op(
√

λ∗), implying

|β̂LS,j(X
′Xβ̂LS)j| < λj with asymptotic probability 1 as λ0

j > 0. So it only remains to show
that

lim
n→∞Pβn

(
|β̂LS,s(X

′Xβ̂LS)s| < λs

)
= 

⎛⎝ −ν

√
λ0

s

σ
√

3+ (C−1)ssCss

⎞⎠
holds true. For this, we use the equality

1√
λsdn + δn

(
β̂LS,s(X

′Xβ̂LS)s −βn,s(X
′Xβn)s

)
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= 1√
λsdn + δn

(
((X′X)−1X′ε)s(X

′ε)s +βn,s(X
′ε)s

+((X′X)−1X′ε)s(X
′Xβn)s

)
d−→ Z,

where Z ∼ N (0,σ 2(Css(C−1)ss +3)). This implies

Pβn

(
β̂LS,s(X

′Xβ̂LS)s < λs

)
= Pβn

(
1√

λsdn + δn

(
β̂LS,s(X

′Xβ̂LS)s −βn,s(X
′Xβn)s

)
<

λs(1−dn)+ δn√
λsdn + δn

)
,

where the right-hand side inside the probability converges to −ν

√
λ0

s , even in the case

where limn→∞ dn 	= 1. Since limn→∞Pβn

(
β̂LS,s(X′Xβ̂LS)s ≤ −λs

)
= 0 follows by

β̂LS,s(X′Xβ̂LS)s/λs
p−→ limn→∞ dn ≥ 0, the proof is complete. �
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