CONGRUENCE LATTICES OF FINITE SEMIMODULAR LATTICES

G. GRÄTZER, H. LAKSER AND E. T. SCHMIDT

AbSTRACT. We prove that every finite distributive lattice can be represented as the congruence lattice of a finite (planar) semimodular lattice.

1. Introduction. A classical result of R. P. Dilworth (circa 1940, unpublished, see [1], pp. 455-457) states that a finite distributive lattice D can be represented as the congruence lattice of a finite lattice L.

There are a number of papers strengthening this result by requiring that the lattice L representing D have special properties. The lattice L constructed by Dilworth is atomistic. A sectionally complemented lattice L is constructed in G. Grätzer and E. T. Schmidt [7], while a planar lattice is constructed in G. Grätzer and H. Lakser [4]. A "small" lattice L is constructed in G. Grätzer, H. Lakser, and E. T. Schmidt [5]: if D has n join-irreducible elements, the lattice L is of size $O\left(n^{2}\right)$. (This is "best possible", according to G. Grätzer, I. Rival, and N. Zaguia [6].)

In this paper, we construct a semimodular lattice L :
THEOREM. Every finite distributive lattice D can be represented as the congruence lattice of a finite semimodular lattice S. In fact, S can be constructed as a planar lattice of size $O\left(n^{3}\right)$, where n is the number of join-irreducible elements of D.

This result, with size $O\left(n^{4}\right)$, was announced in [9]; the present paper contains an improved construction, due to the second author, yielding size $O\left(n^{3}\right)$. It would be interesting to decide whether the size $O\left(n^{2}\right)$ is possible for (planar) semimodular lattices.
2. Preliminaries. We use the basic concepts and notations as in [2]; in particular, for a finite distributive lattice $D, \mathrm{~J}(D)$ denotes the poset of join-irreducible elements. Con L denotes the congruence lattice of the lattice L. For a prime interval $\mathfrak{p}=[a, b]$, $\Theta(p)=\Theta(a, b)$ is the smallest congruence collapsing a and $b . \widetilde{๒}_{2}$ denotes the two-element chain.

It is convenient to describe congruences of a finite lattice using coloring:
Let L be a finite lattice and let Γ be a finite set; the elements of Γ will be called colors. A coloring μ of L over Γ is a map

$$
\mu: \mathfrak{X}(L) \rightarrow \Gamma
$$

Received by the editors January 8, 1997.
The research of the first and second authors was supported by the NSERC of Canada. The research of the third author was supported by the Hungarian National Foundation for Scientific Research, under Grant No. T7442.

AMS subject classification: Primary: 06B10, secondary: 08A05.
Key words and phrases: Congruence lattice, semimodular, planar, finite.
(C)Canadian Mathematical Society 1998.

Figure 1: D

Figure 2: J
of the set of prime intervals $\mathfrak{P}(L)$ of L into Γ satisfying the condition: if two prime intervals generate the same congruence relation of L, then they have the same color; that is,

$$
\mathfrak{p}, \mathfrak{q} \in \mathfrak{P}(L) \quad \text { and } \quad \Theta(\mathfrak{p})=\Theta(\mathfrak{q}) \quad \text { imply that } \quad \mathfrak{p} \mu=\mathfrak{q} \mu .
$$

Since the join-irreducible congruences of L are exactly those that can be generated by prime intervals, equivalently, μ can be regarded as a map of the set $\mathrm{J}(\operatorname{Con} L)$ of join-irreducible congruences of L into Γ :

$$
\mu: \mathrm{J}(\operatorname{Con} L) \longrightarrow \Gamma .
$$

In view of this condition, it is enough to define μ on sufficiently many prime intervals so that every prime interval is projective to one on which μ is defined.

Let A and B be lattices, D_{A} a dual ideal of A, I_{B} an ideal of B, and D_{B} a dual ideal of B. Let us assume that D_{A}, I_{B}, and D_{B} are isomorphic. We now define what it means that we obtain C by gluing B to A-times. For $k=1$, let C be the gluing of A and B over D_{A} and I_{B} with the dual ideal D_{B} regarded as a dual ideal D_{C} of C. Now if C_{k-1} with the dual ideal $D_{C_{k-1}}$ is the gluing of B to $A k-1$-times, then we glue C_{k-1} and B over $D_{C_{k-1}}$ and I_{B} to obtain C the gluing of B to $A k$-times with the dual ideal D_{B} regarded as a dual ideal D_{C} of C. Observe that if A and B are semimodular, then so is C. Since we construct the lattice S of the Theorem from semimodular components using gluing, the semimodularity of S follows.
3. The construction. We construct the semimodular lattice S of the Theorem in several steps. The construction is easy to follow on pictures but somewhat notational in a formal presentation. So we suggest that the reader follow it on the example we present; the example is the smallest one that illustrates various aspects of the construction. This example represents the 22 -element distributive lattice D of Figure 1 as the congruence lattice of a semimodular lattice. The poset J of join-irreducibles has six elements, and it is shown in Figure 2.

Take the eight-element, nonmodular, semimodular lattice S_{8} of Figure 3. S_{8} has an ideal, $I_{S_{8}}=(b]$, and a dual ideal, $D_{S_{8}}=[c)$, both isomorphic to $⿷_{2}$; we shall utilize these

Figure 3: S_{8}
for repeated gluings. The elements of $I_{S_{8}}$ are black filled and the elements of $D_{S_{8}}$ are shaded in Figure 3. It is easy to see that the congruence lattice of S_{8} is the three-element chain. Using the notation $\mathrm{J}\left(\operatorname{Con} ⿷_{3}\right)=\{p, q\}$, with $p>q$, we also show the colored S_{8} in Figure 3.

Let D be a finite distributive lattice, and let $J=\mathrm{J}(D)$ be the poset of its join-irreducible elements, $n=|J|$. We enumerate

$$
p_{1}, p_{2}, \ldots, p_{m}
$$

the non-minimal elements of J. For every $p_{i}, i=1,2, \ldots, m$, let

$$
v\left(p_{i}\right)=\left\{q_{i}^{1}, q_{i}^{2}, \ldots, q_{i}^{k_{i}}\right\}
$$

denote the set of all lower covers of p_{i} in J; since p_{i} is non-minimal, it follows that $k_{i}>0$. Let

$$
r_{1}, r_{2}, \ldots, r_{t}
$$

enumerate all elements of J that are incomparable with all other elements.
In the example, $m=3, t=1$. Let

$$
\begin{array}{cl}
p_{1}=\alpha, & v(\alpha)=\{\beta, \epsilon\}, \quad q_{1}^{1}=\beta, \quad q_{1}^{2}=\epsilon, \\
& p_{2}=\beta, \quad v(\beta)=\{\gamma\}, \\
& p_{3}=\delta, \quad v(\delta)=\{\epsilon\} .
\end{array}
$$

So $k_{1}=2, k_{2}=k_{3}=1$.
Step 1. For every i, with $1 \leq i \leq m$, we construct a lattice A_{i} with an ideal I_{i} and a dual ideal D_{i}, where I_{i} is a chain of length $2\left(k_{i}+\cdots+k_{m}\right)$ and D_{i} is a chain of length $2\left(k_{i+1}+\cdots+k_{m}\right)$.

Now we shall twice use the construction, gluing k-times, described in Section 2. To form A_{i}, glue S_{8} to itself $\left(k_{i}-1\right)$-times with the ideal $I_{S_{8}}$ and the dual ideal $D_{S_{8}}$, to obtain the lattice A_{i}^{1} with a dual ideal $D_{A_{i}^{1}}$. Now take

$$
\mathfrak{S}_{2}^{2}=\{\langle 0,0\rangle,\langle 0,1\rangle,\langle 1,0\rangle,\langle 1,1\rangle\}
$$

Figure 4: A_{2}

Figure 5: A
with the ideal

$$
I_{\mathbb{E}_{2}^{2}}=\{\langle 0,0\rangle,\langle 1,0\rangle\}
$$

and the dual ideal

$$
D_{\mathbb{S}_{2}^{2}}=\{\langle 0,1\rangle,\langle 1,1\rangle\},
$$

and glue $2\left(k_{i+1}+\cdots+k_{m}\right)$-times \mathfrak{V}_{2}^{2} to A_{i}^{1}. The ideal I_{i} is generated by the element $\langle 0,1\rangle$ of the top \mathfrak{V}_{2}^{2}, while D_{i} is generated by the unit element of A_{i}^{1}.

We define a coloring μ_{i} of A_{i} as follows. On any copy of $S_{8},[o, b] \mu_{i}=p_{i}$ and on the j-th copy of S_{8},

$$
[o, d] \mu_{i}=[d, c] \mu_{i}=q_{i}^{j}
$$

on the first two copies of \mathfrak{C}_{2}^{2},

$$
[\langle 0,1\rangle,\langle 1,1\rangle] \mu_{i}=q_{i+1}^{1}
$$

on the next two copies,

$$
[\langle 0,1\rangle,\langle 1,1\rangle] \mu_{i}=q_{i+1}^{2}
$$

after k_{i+1} pairs, the next two satisfy

$$
[\langle 0,1\rangle,\langle 1,1\rangle] \mu_{i}=q_{i+2}^{1},
$$

and so on.
Figure 4 shows A_{2} for the example. The elements forming I_{2} are black filled; the elements forming D_{2} are shaded. Note that I_{2} is of length $2\left(k_{2}+k_{3}\right)=4$, while D_{2} is of length $2 k_{3}=2$.

LEMMA 1. μ_{i} is a coloring of A_{i}. The join-irreducible congruences of A_{i} are generated by prime intervals of I_{i} and by $[o, b]$ of the bottom S_{8} in A_{i}. If \mathfrak{p} and \mathfrak{q} are $[o, b]$ or a prime interval $[o, d]$ or $[d, c]$ of a copy of S_{8} in A_{i}, then $\Theta(\mathfrak{p}) \geq \Theta(\mathfrak{q})$ iff $\mathfrak{p} \mu_{i} \geq \mathfrak{q} \mu_{i}$. In particular, $\Theta(o, b) \succ \Theta(o, d)$ in $\mathrm{J}\left(\operatorname{Con} A_{i}\right)$, where o, b, d are in a copy of S_{8} in A_{i}. If \mathfrak{p} is a prime interval $[\langle 0,1\rangle,\langle 1,1\rangle]$ in a copy of \mathfrak{C}_{2}^{2}, then $\Theta(\mathfrak{p})$ is incomparable to any $\Theta(\mathfrak{q})$, where \mathfrak{q} is $[o, b]$ or a prime interval of I_{i} different from \mathfrak{p}.

Proof. This is trivial since every prime interval of S_{8} is projective to one of $[o, b]$, $[o, d],[d, c]$.
Step 2. We define the lattice A by gluing together the (colored) lattices $A_{i}, 1 \leq i \leq m$.
For $1 \leq i \leq m$, we define, by induction, the lattice \bar{A}_{i}, which contains A_{i}, and, therefore, D_{i}, as a dual ideal. Let $\bar{A}_{1}=A_{1}$. Assume that \bar{A}_{i} with D_{i} as a dual ideal has been defined. Observe that both D_{i} and I_{i+1} are chains of length $2\left(k_{i+1}+\cdots+k_{m}\right)$, and so they are isomorphic; in fact, this isomorphism preserves colors. We glue \bar{A}_{i} to A_{i+1} over D_{i} and I_{i+1} to obtain \bar{A}_{i+1}. Define $A=\bar{A}_{m}$ and $I_{A}=I_{1}$.

Observe that μ_{i} on D_{i} agrees with μ_{i+1} on I_{i+1}; therefore, the $\mu_{i}, 1 \leq i \leq m$, define a coloring μ_{A} of A.

Let D_{A} be the dual ideal of A generated by the element $\langle 0,1\rangle$ of the top \mathfrak{C}_{2}^{2} in $A_{1} . D_{A}$ is a chain of length m. The prime interval $[o, b]$ in the bottom S_{8} in $A_{i}(1 \leq i \leq m)$ is projective to a unique prime interval \mathfrak{p} of D_{A}; define $\mathfrak{p} \mu_{A}=[o, b] \mu_{A}$.

Figure 5 show this lattice for the example. The elements of I_{A} and D_{A} are black filled.
LEMMA 2. μ_{A} is a coloring of A. The join-irreducible congruences of A are generated by prime intervals of I_{A} and D_{A}. Let \mathfrak{p} and \mathfrak{q} be prime intervals in I_{A} and D_{A}.
(i) If \mathfrak{p} and \mathfrak{q} are prime intervals of D_{A}, then $\Theta(\mathfrak{p})$ and $\Theta(\mathfrak{q})$ are incomparable.
(ii) If \mathfrak{p} is a prime interval of D_{A} and \mathfrak{q} is a prime interval of I_{A}, then $\Theta(\mathfrak{p})$ and $\Theta(\mathfrak{q})$ are comparable iff $\mathfrak{p} \subseteq A_{i}$, for some $1 \leq i \leq m, \mathfrak{q}$ is perspective to some $[o, d]$ or $[d, c]$ in some S_{8} in A_{i}; in which case, $\Theta(\mathfrak{p}) \succ \Theta(\mathfrak{q})$ in $\mathrm{J}(\operatorname{Con} A)$.
(iii) If \mathfrak{p} and \mathfrak{q} are prime intervals of I_{A}, then $\Theta(\mathfrak{p}) \geq \Theta(\mathfrak{q})$ iff \mathfrak{p} and \mathfrak{q} are perspective to prime intervals \mathfrak{p}^{\prime} and \mathfrak{q}^{\prime} in some A_{i}, respectively, for some $1 \leq i \leq m$, and \mathfrak{p}^{\prime} and \mathfrak{q}^{\prime} are adjacent edges of some S_{8} in A_{i}; in which case, $\Theta(\mathfrak{p})=\Theta(\mathfrak{q})$.
Proof. This is obvious from the statement that if A and B are glued together over the dual ideal D of A and the ideal I of B, then a congruence of the glued lattice is obtained from a congruence Θ of A and a congruence Φ of B with the property that the restriction of Θ to D agrees with the restriction of Φ to I.

Observe that the congruence lattice of A is still quite different from D in two ways: the congruences that correspond to the r_{i} are still missing; prime intervals in $I_{A} \cup D_{A}$ of the same color generate incomparable congruences with one exception: they are adjacent intervals in I_{A}, perspective to the two prime intervals of some S_{8} in some A_{i}. For instance, in the example, see Figure 5, the prime interval of D_{A} of color β generates a congruence incomparable to the congruence generated by a prime interval of I_{A} of color β; also, a prime interval of color ϵ in the top part of I_{A} generates a congruence incomparable to the congruence generated by a prime interval of color ϵ in the lower part of I_{A}.

Step 3. We extend A to a lattice B with an ideal I_{B} which is a chain and which has the property that every prime interval of B is projective to a prime interval of I_{B}.

This step is easy. We form the lattice D_{A}^{2} with the ideal

$$
I_{D_{A}^{2}}=\left\{\left\langle x, 0_{D_{A}}\right\rangle \mid x \in D_{A}\right\},
$$

where $0_{D_{A}}$ is the zero of D_{A}. Let $1_{D_{A}}$ denote the unit element of D_{A} and, for $x \in D_{A}$, $x<1_{D_{A}}$, let x^{*} denote the cover of x in D_{A}. For every $x \in D_{A}, x<1_{D_{A}}$, we add an element m_{x} to D_{A}^{2} so that the elements

$$
\langle x, x\rangle,\left\langle x, x^{*}\right\rangle,\left\langle x^{*}, x\right\rangle, x_{m},\left\langle x^{*}, x^{*}\right\rangle
$$

form a sublattice isomorphic to \mathfrak{M}_{3} with $\langle x, x\rangle$ as zero and $\left\langle x^{*}, x^{*}\right\rangle$ as unit. Let M be the resulting lattice. Obviously, M is a finite planar modular lattice whose congruence lattice is isomorphic to the congruence lattice of $D_{A} . I_{D_{A}^{2}}$ is also an ideal of M; we shall denote it by I_{M}.

Figure 6 shows M for the example. The elements of I_{M} are black filled.

Figure 6: M
We glue A to M over D_{A} and I_{M} to obtain B. Let I_{B} be defined as the ideal generated by $\left\langle 0,1_{D_{A}}\right\rangle$. We define μ_{B} as an extension of μ_{A}; every prime interval \mathfrak{p} of M is projective to exactly one prime interval $\overline{\mathfrak{p}}$ of I_{M}, we define $\mathfrak{p} \mu_{B}=\overline{\mathfrak{p}} \mu_{A}$.

LEMMA 3. μ_{B} is a coloring of B. The join-irreducible congruences of B are generated by prime intervals of I_{B}. Let \mathfrak{p} and \mathfrak{q} be prime intervals in I_{B}.
(i) If \mathfrak{p} and \mathfrak{q} are prime intervals of M, then $\Theta(\mathfrak{p})$ and $\Theta(\mathfrak{q})$ are incomparable.
(ii) If \mathfrak{p} is a prime interval of M and \mathfrak{q} is a prime interval of I_{A}, then $\Theta(\mathfrak{p})$ and $\Theta(\mathfrak{q})$ are related exactly as $\Theta_{A}(\overline{\mathfrak{p}})$ and $\Theta_{A}(\mathfrak{q})$ are related in A.
(iii) If \mathfrak{p} and \mathfrak{q} are prime intervals of I_{A}, then $\Theta(\mathfrak{p})$ and $\Theta(\mathfrak{q})$ are related exactly as $\Theta_{A}(\mathfrak{p})$ and $\Theta_{A}(\mathfrak{q})$ are related in A.

Proof. This is obvious from the congruence structure of M.
Step 4. We extend B to the lattice S of the Theorem.
This is also an easy step. We take a chain C of length n and we color C over J so that the coloring is a bijection. We form the lattice $C \times I_{B}$. For every pair of prime intervals,

FIGURE 7: S
$\mathfrak{p}=[a, b]$ of C and $\mathfrak{q}=[c, d]$ of I_{B}, if \mathfrak{p} and \mathfrak{q} have the same color, then we add an element $m(\mathfrak{p}, \mathfrak{q})$ to C over J so that the elements

$$
\langle a, c\rangle,\langle b, c\rangle,\langle a, d\rangle, m(\mathfrak{p}, \mathfrak{q}),\langle b, d\rangle
$$

form a sublattice isomorphic to \mathfrak{M}_{3}. Let N denote the resulting lattice. N is obviously modular and planar. Set

$$
\begin{aligned}
& I_{N}=\left\{\left\langle x, 0_{I_{B}}\right\rangle \mid x \in C\right\} \\
& D_{N}=\left\{\left\langle 1_{C}, x\right\rangle \mid x \in I_{B}\right\}
\end{aligned}
$$

where ${D_{I}}_{B}$ is the zero of I_{B} and 1_{C} is the unit of C. Then I_{N} is the ideal of N (isomorphic to C) and D_{N} is a dual ideal of N (isomorphic to I_{B}). Every prime interval of N is projective to a prime interval of I_{N}, so we have a natural coloring μ_{N} on N. Note that this coloring agrees with the coloring μ_{B} on D_{N} under the isomorphism with I_{B}.

We glue N to B over D_{N} and I_{B} to obtain S with the coloring μ_{S}. Set $I_{S}=I_{N}$. Figure 7 is a sketch of S.

It is clear from the construction and from the lemmas that every prime interval of S is projective to a prime interval of I_{S} and that distinct prime intervals of I_{S} generate distinct join-irreducible congruences of S.

It remains to see that if \mathfrak{p} and \mathfrak{q} are distinct prime intervals, then $\Theta(\mathfrak{p}) \geq \Theta(\mathfrak{q})$ iff $\mathfrak{p} \mu_{S} \geq \mathfrak{q} \mu_{S}$. Since J is finite, it is sufficient to prove that $\Theta(\mathfrak{p}) \succ \Theta(\mathfrak{q})$ in $\mathrm{J}($ Con $S)$ iff $\mathfrak{p} \mu_{S} \succ \mathfrak{q} \mu_{S}$ in $\mathrm{J}(D)$. But this is clear since if $\mathfrak{p} \mu_{S} \succ \mathfrak{q} \mu_{S}$ in $\mathrm{J}(D)$, then $p \mu_{S}=p_{i}$, for some $1 \leq i \leq m$, and $q \mu_{S}=q_{i}^{j}$, for some $1 \leq j \leq k_{i}$, so $\Theta(\mathfrak{p}) \succ \Theta(\mathfrak{q})$ was guaranteed in A_{i}.

To establish that the size of S is $O\left(n^{3}\right)$, we give a very crude upper bound for $|S|$. $2 n^{2}+1$ is an upper bound for $\left|I_{i}\right|, 1 \leq i \leq m$, so $3\left(2 n^{2}+1\right)$ is an upper bound for $\left|A_{i}\right|$ and $3\left(2 n^{2}+1\right) n$ is an upper bound for $|A|$. Since $\left|D_{A}\right| \leq n+1$, we get the upper bound $(n+1)^{2}+n+1$ for $|M|$. Finally, $\left|I_{B}\right| \leq 2 n^{2}+1+n+1=2 n^{2}+n+2$, so $|N| \leq 2\left(2 n^{2}+n+2\right)(n+1)$. Therefore,

$$
3\left(2 n^{2}+1\right) n+(n+1)^{2}+n+1+2\left(2 n^{2}+n+2\right)(n+1)
$$

is an upper bound for S and it is a cubic polynomial in n. This completes the proof of the Theorem.

It is not difficult to find better upper bounds for $|S|$; for instance,

$$
|S| \leq 3 n^{3}+2 n^{2}-7 n+4
$$

References

1. R. P. Dilworth, The Dilworth theorems. Selected papers of Robert P. Dilworth (Eds. Kenneth P. Bogart, Ralph Freese and Joseph P. S. Kung). Contemporary Mathematicians. Birkhäuser Boston, Inc., Boston, MA, 1990.
2. G. Grätzer, General Lattice Theory. Pure Appl. Math., Academic Press, New York; Mathematische Reihe, Band 52, Birkhäuser Verlag, Basel; Akademie Verlag, Berlin, 1978.
3. G. Grätzer and H. Lakser, Homomorphisms of distributive lattices as restrictions of congruences. Canad. J. Math. 38(1986), 1122-1134.
4. \qquad Congruence lattices of planar lattices. Acta Math. Hungar. 60(1992), 251-268.
5. G. Grätzer, H. Lakser and E. T. Schmidt, Congruence lattices of small planar lattices. Proc. Amer. Math. Soc. 123(1995), 2619-2623.
6. G. Grätzer, I. Rival and N. Zaguia, Small representations of finite distributive lattices as congruence lattices. Proc. Amer. Math. Soc. 123(1995), 1959-1961.
7. G. Grätzer and E. T. Schmidt, On congruence lattices of lattices. Acta Math. Acad. Sci. Hungar. 13(1962), 179-185.
8.

, Congruence-preserving extensions of finite lattices to sectionally complemented lattices. (Submitted to Proc. Amer. Math. Soc.)
9. \qquad , Congruence lattices of finite semimodular lattices. Abstracts Amer. Math. Soc. 97T-06-56.

Department of Mathematics
University of Manitoba
Winnipeg, Manitoba
R3T 2N2
email: gratzer@cc.umanitoba.ca
hlakser@cc.umanitoba.ca

Mathematical Institute
Technical University of Budapest
Mǘegyetem rkp. 3
H-1521 Budapest
Hungary
email: schmidt@euromath.vma.bme.hu

