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POISSON HAIL ON A HOT GROUND

By FRANCOIS BACCELLI anD SERGEY FOSS

Abstract

We consider a queue where the server is the Euclidean space, and the customers are
random closed sets (RACSs) of the Euclidean space. These RACSs arrive according to
a Poisson rain and each of them has a random service time (in the case of hail falling
on the Euclidean plane, this is the height of the hailstone, whereas the RACS is its
footprint). The Euclidean space serves customers at speed 1. The service discipline is a
hard exclusion rule: no two intersecting RACSs can be served simultaneously and service
is in the first-in—first-out order, i.e. only the hailstones in contact with the ground melt
at speed 1, whereas the others are queued. A tagged RACS waits until all RACSs that
arrived before it and intersecting it have fully melted before starting its own melting. We
give the evolution equations for this queue. We prove that it is stable for a sufficiently
small arrival intensity, provided that the typical diameter of the RACS and the typical
service time have finite exponential moments. We also discuss the percolation properties
of the stationary regime of the RACS in the queue.

Keywords: Poisson point process; Poisson rain; random closed set; Euclidean space;
service; stability; backward scheme; monotonicity; branching process; percolation; hard-
core exclusion process; queueing theory; stochastic geometry
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1. Introduction

Consider a Poisson rain on the d-dimensional Euclidean space R¢ with intensity A; by
Poisson rain, we mean a Poisson point process of intensity A in R9*! which gives the (random)
number of arrivals in all time—space Borel sets. Each Poisson arrival, say at location x and
time ¢, brings a customer with two main characteristics.

e A grain C, which is a random closed set (RACS) of R4 [10] centered at the origin. If the
RACS is a ball with random radius, its center is that of the ball. For more general cases,
the center of a RACS could be defined as, e.g. its center of gravity.

e A random service time o.

In the most general setting, these two characteristics will be assumed to be marks of the point
process. In this paper we will concentrate on the simplest case, which is that of an independent
marking and independent and identically distributed (i.i.d.) marks: the mark (C, o) of point
(x, t) has some given distribution and is independent of everything else.

The customer arriving at time ¢ and location x with mark (C, o) creates a hailstone, with
footprint x + C in R¢ and with height o

These hailstones do not move: they are to be melted/served by the Euclidean plane at the
location where they arrive in the first-come—first-served order, respecting some hard exclusion
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rules. If the footprints of two hailstones have a nonempty intersection then the hailstone
arriving second has to wait for the end of the melting/service of the first hailstone to start its
melting/service. Once the service of a customer is started, it proceeds uninterrupted at speed 1.
Once a customer is served or the hailstone is fully melted, it leaves the Euclidean space. A finite
domain model of a similar nature was considered in [8].

Note that the customers being served at any given time form a hard exclusion process as no
two customers having intersecting footprints are ever served at the same time. For instance, if
the grains are balls, the footprint balls served concurrently form a hard ball exclusion process.
Here are a few basic questions on this model.

e Does there exist any positive A for which this model is (globally) stable? By stability, we
mean that, for all k and all bounded Borel sets By, ..., B, the vector Ni(t), ..., N¢(t),
where N () denotes the number of RACSs which are queued or in service at time ¢ and
intersect the Borel set B, converges in distribution to a finite random vector when ¢ tends
to oo.

o If there exist any positive A for which this model is (globally) stable, does the stationary
regime percolate? By this, we mean that the union of the RACSs which are queued or in
service in a snapshot of the stationary regime has an infinite connected component.

The paper is structured as follows. In Section 3 we study pure-growth models (the ground
is cold and hailstones do not melt) and show that the heap formed by the customers grows at
(most) a linear rate with time and that the growth rate tends to O if the input rate tends to 0. We
consider models with service (hot ground) in Section 4. Discrete versions of the problems are
studied in Section 5.

2. Main result

Our main result bears on the construction of the stationary regime of this system. As we
will see below (see in particular (1) and (7)), the Poisson hail model falls into the category
of infinite-dimensional max-plus linear systems. This model has nice monotonicity properties
(see Sections 3 and 4). However, it does not satisfy the separability property of [2], which
prevents the use of general subadditive ergodic theory tools to assess stability, and makes the
problem interesting.

Denote by & the (random) diameter of the typical RACS (i.e. the maximal distance between
its points) and by o the service time of that RACS. Assume that the system starts at time t = 0
from the empty state, and denote by W} the time to empty the system of all RACSs that contain
point x and that arrive by time .

Theorem 1. Assume that the Poisson hail starts at time t = 0 and that the system is empty
at that time. Assume further that the distributions of the random variables £? and o are light
tailed, i.e. there is a positive constant ¢ such that E ¢’ and E e are finite. Then there exists
a positive constant Ao (Which depends on d and on the joint distribution of & and o ) such that,
for any & < Ao, the model is globally stable. This means that, for any finite set A in R?, as
t — 00, the distribution of the random field (W, x € A) converges weakly to the stationary
distribution.

3. Growth models

Let ® be a marked Poisson point process in RY*L: for all Borel sets B of RY and a < b,
a random variable ® (B, [a, b]) denotes the number of RACSs with center located in B that
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arrive in the time interval [a, b]. The marks of this point process are i.i.d. pairs (C,, o5,), where
C, is a RACS of R? and 0, is a height (in RT, the positive real line).

The growth model is best defined by the following equations satisfied by H;*, the height
at location x € R? of the heap made of all RACSs that arrive before time ¢ (i.e. in the (0, )
interval): forall r > u > 0,

Htx:H;_"/

[u

(o3 + sup H — HY)N*(dv), (1)
1) yecCy

where N* denotes the Poisson point process on R of RACS arrivals intersecting location x,
that is,
Niaoh= [ 1€ NG £ o)),
R9 x[a,b]
and o;; and C;, respectively denote the canonical height and RACS mark processes of N*. That
is, if the point process N* has points 7;*, and if we denote by (o;*, C;") the mark of point 7",
then o,/ and C;; respectively equal o;" and C;' on [T}", T}%, ).

These equations lead to some measurability questions. Below, we will assume that the
RACSs are such that the last supremum actually bears on a subset of Q¢, where Q denotes the
set of rational numbers, so that these questions do not occur.

Of course, in order to specify the dynamics, we also need some initial condition, namely
some initial field Hy, with Hy € R forall x € R4,

If we denote by t¥(¢) the last epoch of N* in (—o0, t) then this equation can be rewritten
as the recursion

H} = H} +/ (alf + sup H) — H;‘)Nx (dv) + 0%+ sup thx(,) — Hp
[0,7% (1)) yeCy yeCly,
that is,
HE = (o + s Hl ) 1650 2 0+ B 10 < 0). @
C.X

YECix(p

These are the forward equations. We will also use the backward equations, which give the
heights at time O for an arrival point process which is the restriction of the Poisson hail to the
interval [—t, 0] for + > 0. Let Hy denote the height at locations x and time O for this point
process. Assuming that the initial condition is 0, we have

HY = (o;gm + sup HD 0 9,5(,)) 1 (1) > —1), 3)

YECTx

where 7% (¢) is the last arrival of the point process N* in the interval [—¢, 0], ¢ > 0, and {6, }
is the time shift on the point processes [1].

Remark 1. Here are a few important remarks on these Poisson hail equations.

e The above pathwise equations hold for all point processes and all RACSs/heights
(although how to handle ties when RACSs with nonempty intersection arrive at the
same time should be specified—we postpone the discussion on this matter to Section 5).
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e These equations can be extended to the case where customers have a more general
structure than the product of a RACS of R? and an interval of the form [0,0]. We
will define a profile to be a function s(y, x): R x RY — R U {—o0}, where s(y, x)
gives the height at x relative to a point y; we will say that point x is constrained by point
y in the profile if s(y, x) # —oo. The equations for the case where random profiles
(rather than product-form RACSs) arrive are

H' = (supd(HTyX([) + s2x () (0, x))) 1(z*(t) = 0) + Hi 1(z*(t) < 0),
yeR

where t¥(¢) is the last date of arrival of N* before time ¢t and N* is the point process
of arrivals of profiles having a point which constrains x. We assume here that this point
process has a finite intensity. The case of product-form RACSs considered above is a
special case with

oy ifyeCY..,
srw)(y,x):{ ©o T

—o0  otherwise,
where N* is the point process of arrivals with RACSs intersecting x.
We now present some monotonicity properties of these equations.

. Representation (2) shows that if we have two marked point processes {N*}, and {N 1y
such that, for all x, N* C N* (in the sense that each point of N* is also a point of N*),
and if the marks of the common points are unchanged, then H} < Htx for all ¢ and x
whenever Hj < 1:16‘ for all x.

2. Similarly, if we have two marked point processes {N*}, and {N*}, such that, for all x,
]Yx < N’ (in the sense that, for all n, the nth point of N* is later than the nth point~of
N¥), and the marks are unchanged, then H;* < H; for all r and x whenever Hy < Hy
for all x.

3. Finally, if the marks of a point process are changed in such a way that C C Cando <&,
then H}' < H} for all t and x whenever Hé‘ < H(’)C for all x.

These monotonicity properties hold for the backward construction as well.
They are also easily extended to profiles. For instance, for the last monotonicity property, if
the profiles are changed in such a way that

s(y,x) <5(y,x) forallx,y,

then H} < I:Itx for all t and x whenever Hy < ﬁé‘ for all x.
Below, we use these monotonicity properties to obtain upper bounds on the H;* and H
variables.

3.1. Discretization of space

Consider the lattice Z¢, where Z denotes the set of integers. To each point in x =
(x1,...,xq) € R?, we associate the point z(x) = (z1(x), ..., z4(x)) € 74 with coordinates
zi(x) = |x;], where |-] denotes the integer part. Then, with the RACS A centered at point
x € R? and having diameter £, we associate an auxiliary RACS A centered at point z(x) and
being the d-dimensional cube of side 2|£] + 2. Since A C A, when replacing the RACS A
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by the RACS A at each arrival, and keeping all other features unchanged, it follows from
monotonicity property 3 that, for all 7 € R and x € R?,

H* < I:IZ(X )
t — t ’
where I:I,Z is the solution of the discrete state space recursion

H = (ogzm + max AL (t)) 1E(@) > 0) + B 1 () <0),  zezd,
yeZ"ﬁé‘;z()

with 72(¢) the last epoch of the point process

N (la, b) = [ 1, N {2} £ 2)D(dv)

RY x[a,b]

in (—o0, t). The above model will be referred to as model 2. We will denote by R the typical
half-side of the cubic RACS in this model. These sides are i.i.d. (with respect to RACSs), and
if £ has a light-tailed distribution, then R has too.

3.2. Discretization of time

The discretization of time is carried out in three steps.

Step 1. Model 3 is defined as follows. All RACSs centered on z that arrive to model 2 within
the time interval [n — 1, n), arrive to model 3 at time instant n — 1. The ties are then solved
according to the initial continuous-time ordering. In view of monotonicity property 2, model 3
is an upper bound to model 2.

Note that, for each n, the arrival process at time n forms a discrete Poisson field of parameter X,
i.e. the random number of RACSs M? arriving at point z € Z attime n has a Poisson distribution
with parameter A, and these random variables are i.i.d. in z and n.

Let (Rn Hor ), i=1,2,. X, be thei.i.d. radii and heights of the cubic RACSs arriving
at point z and time . Furthermore let M =M R, = Rg ;»and oj = a(‘)),

Step 2. Let Ry™ be the maximal half-side of all RACSs that arrive at point z and time 7 in
model 2, and let R™ = RZ™¥* The random variables RZ™ arei.i.d. in z and in n. We adopt
the convention that RS™* = 0 if there is no arrival at this point and this time. If the random
variable £¢ is light tailed, the distribution of R? is also light tailed, and so is that of (R™3)4,
Indeed,

M
maxyd __ M . d d
= () = 2
so, forc > 0,

M
Eexp(c(R™)4) < Eexp (c Z R;’> — exp(LEeR") < o0,
1

. d. oo
given that E e®” is finite. Let

z sum 0,sum
E an ; and oS = =0, .
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Then, by similar arguments, o*"™ has a light-tailed distribution if o; does. By monotonicity
property 3 (applied to the profile case), when replacing the heap of RACSs arriving at (z, n) in
model 3 by the cube of half-side R5™* and of height ¢,>*"™ for all z and n, we again obtain
an upper-bound system, which will be referred to as model 4.

Step 3. The main new feature of the last discrete-time models (models 3 and 4) is that the
RACSs that arrive at some discrete time on different sites may overlap. Below, we consider
the clump made by overlapping RACSs as a profile and use monotonicity property 3 to obtain
a new upper-bound model, which will be referred to as Boolean model 5.

Consider the following discrete Boolean model, associated with time n. We say that there
is a ‘ball’ at z at time n if MZ > 1 and that there is no ball at z at this time otherwise. By a
ball we mean an L ball with center z and radius RS™. By decreasing A we can make the
probability p = P(M? > 1) as small as we wish.

Let CA'ﬁ be the clump containing point z at time n, which is formally defined as follows. If
there is a ball at (z, n), or another ball at time n covering z, this clump is the largest union of
connected balls (these balls are considered as subsets of Z¢ here) which contains this ball at
time n; otherwise, the clump is empty. For all sets A of the Euclidean space, let L(A) denote
the number of points of the lattice Z¢ contained in A. It is known from percolation theory that,
for sufficiently small p, this clump is almost surely (a.s.) finite [6] and, moreover, L(é Z) has
a light-tailed distribution (since (RMaxyd jg light tailed) [5]. Recall that the latter means that
Eexp(cL((:‘é)) < oo for some ¢ > 0.

Below, we will denote by A the critical value of A below which this clump is a.s. finite and
light tailed.

For each clump ¢ 2, let 67 be the total height of all RACSs in this clump:

My
A7 § § : X _ § : X,sum
n Un,j - On :

xeCt =1 xeC?

The convention is again that the last quantity is 0 if C = @. We also conclude that 67 has a
light-tailed distribution.
Using monotonicity property 3 (applied to the profile case), we find that Boolean model 5,
which satisfies the equation
H = 6, + max I-AILI, (4)
yeCrU{z}

with the initial condition PAIé = 0 a.s., forms an upper bound to model 4. Similarly,

H; =6, + max ]le_l 007!,
yeCZ_IU{z}

where @ is the discrete shift on the sequences {5, c +}. By combining all the bounds constructed
so far we obtain
HY < A7 and H <TY  as. (5)
for all x and ¢. The drawbacks of (4) are twofold.
(i) For all fixed n, the random variables {CA',i}z are dependent. This is a major difficulty,

which will be taken care of by building a branching upper bound in Sections 3.3.1 and
33.2.
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(ii) For all given n and z, the random variables C 2 and 6; are dependent. We will take care
of this by building a second upper-bound model in Section 3.3.3.

Each model will bound (4) from above and will hence provide an upper bound to the initial
continuous-time, continuous-space Poisson hail model.

3.3. The branching upper bounds

3.3.1. The independent set version. Assume that Boolean model 5 (considered above) has no
infinite clump. Again, let Cx be the clump containing x € Z? at time n. For x # y € Z¢,
either C r = C 7 or these two (random) sets are disjoint, which shows that these two sets are
not 1ndependent (Here ‘independence of sets’ has the following probabilistic meaning: two
random sets V| and V; are independent if P(Vy = Ay, Vo = Ay) =P(V] = A1) P(V, = A»)
forall Aj, Ay C 74 .) The aim of the following construction is to show that a certain independent
version of these two sets is ‘larger’ (in a sense to be made precise below) than their dependent
version.
Below, we call (2, ¥, P) the probability space that carries the i.i.d. variables

sum ,max
{(o™"™ RG™™)) ezd»

from which the random variables {(CO, G5)},eza are built.

Lemma 1. Assume that A < Ac. Let x # y be two points in Z2. Then there exist an extension
of the probability space (2, ¥, P), denoted by (2, F , P), which carries another i.i.d. family

{(ag™, Ry™)) ez0

and a random pair (CO, ao) built from the latter in the same way as the random variables
{(CO, 65)) ez are built from {(o5™"™, RE™™ )} cza, and such that the following assertions
hold.

1. The inclusion
CEuC) cCiuc,
holds a.s.

2. The random pairs (6’6‘, o) and (Qg, Qg) are independent, i.e.

P(CE = Ay, 6§ € Bi, Cpy = Az, 63 € Ba)
=P(C} = A1, 6§ € B)P(Cy = A2, 63 € By)
=P(C§ = A1, 6§ € BOP(Cyy = Ay, &) € By)
forall sets A1, By and A, Bs.
3. The pairs (Qg, QS) and (CA’())', &8’) have the same law, ie.
P(Cy=A,6)eB)=P() =A, &) €B)
for all sets (A, B).

Proof. We write, for short, C* = C‘g and 6* = 66‘ . Consider first the case of balls with
a constant integer radius R = R™¥* (the case with random radii is considered after). Recall
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that we consider Loo-norm balls in RY, i.e. d-dimensional cubes with side 2R, so a ‘ball B*
centered at point x = (x1, ..., xg)’ is the closed cube x + [—R, ~|—R]d.

We assume that the ball B exists at time O with probability p = P(M > 1) € (0, 1)
independently of all the others. Let EX¥ = B* if B* exists at time 0 and E* = & otherwise,
and let «* = 1(E* = B”") be the indicator of the event that B* exists (we drop the time index
to have lighter notation). Then the family of random variables {a*}, 74 is i.i.d.

Recall that the clump éx, for the input {&*}, is the maximal connected set of balls that
contains x. This clump is empty if and only if «” = 0 for all y with dso(x, y) < R. Let L(CY)
denote the number of lattice points in the clump C*, 0 < L(CY) < o0. Clearly, L(C*) forms
a stationary (translation-invariant) sequence.

For all sets A C Z4, let

Int(A) = {x € A: B* C A} and Hit(A) = {x € Z¢: B*N A £ 2).

For A and x, y € A, we say that the event

Rl
Int(A), {o"}

occurs if, for the input {«*}, the random set £ A= Uzelnt( A) E* is connected, and both x and
y belong to EA. The following events are then equal:

{C'sz}zﬂ{x — z}n N =0
Int(A), {a"} .
ZEA zeHit(A)\Int(A)

Therefore, the event {é‘x = A} belongs to the sigma-algebra ?I_‘fit( A) generated by the random
variables {a*, x € Hit(A)}. Also, let ?gi’t‘(’ A) be the sigma-algebra generated by the random
variables {a*, 0¥, x € Hit(A)}.

Recall the notation o™ = Z?/Izol o, ;- We will write, for short, 0% = o™ Clearly,
0% = 0if o? = 0, and the family of pairs {(«%, 0%)}isi.i.d.inz € 74.

Let {(aZ, 07)} be another i.i.d. family in z € Z¢ which does not depend on all the random
variables introduced earlier, and whole elements have a common distribution with (%, o9).
Let (22, ¥, P) be the product probability space that carries both {(«?, 0%)} and {(«Z, 03)}.
Introduce then a third family, {(«%, 0%)}, defined as follows: for any set A containing x, on the
event {éx = A}, we let

(0%, 0%) if z € Hit(A),

@ (4), 2°(4) = (a?, 0%) otherwise.

When there is no ambiguity, we will use the notation («*, o%) in place of («¢*(A), 0?(A)). First,
we show that {(«®, 0%)} is ani.i.d. family. Indeed, for any finite set of distinct points yi, ..., yk,
any (0-1)-valued sequence i1, ..., ix, and all measurable sets By, ..., By,

PV =ij, o% €Bj,j=1,....k)
=Y P(C"=A, @ =ij, a% €Bj, j=1,....k)
A
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=Y P(C* = A, oy) =ij, o)) € B, y; € Hit(A)
A

and o’/ =i;, 0¥ € Bj, y; € (Hit(A))°)
=Y P(C* = AP’ =i, 0.’ € B}, y; € Hit(A))
A

x P(a?i = ij, o’ € Bj, y; € (Hit(A))©)

k
P(C* = A) l_[P(ao =i;, 0% ¢ B))

I

Note that the sum over A is a sum over finite A. This keeps the number of terms countable.
This is permitted due to the assumption on the finiteness of the clumps.
Let Q} be the clump of y for {«?}, and let

"= o
zel”

‘We now show that the pairs (é *,0%) and (Q y, 6”) are independent. For all sets A, let A be
the sigma-algebra generated by the random variables

@, 6W)y = (o, 6", u € Hit(A); a¥, 0¥, v € (Hit(A))°},

and let Qy(A) be the clump containing y in the environment a”. Also, let

&'(A) =) a¥(A).

Y
zeC

Clearly, (oc(A), (T(A)) is also an i.i.d. family. Then, for all sets A, B; and A3, B,

P(C*=A1, 6B, C' =4y, 6" € By)
=P(C* = Ay, 6" € B), C’(A)) = A2, 6”(A)) € By)
=P(C* = Ay, 6 € BYP(CY (A1) = A2, 67 (A)) € By)
=P(C* = A, 6 € B))P(C” = Ay, 6 € By).

The second equality follows from the fact that the event (C¥ = Ay, 6% € By} belongs to the
sigma-algebra J(?I?i}((’Al)’ whereas the event {Qy(m) = A,, 6”7 (A1) € By} belongs to the sigma-
algebra ¥ 41, which is independent. The last equality follows from the fact that {a(41), o (4D}
is an i.i.d. family with the same law as {«*, 0*}.

We now prove the first assertion of the lemma. If C* = €Y then the inclusion is obvious.
Otherwise, C* N €Y = @ and if C* = A, the size and the shape of C* depend only on
{a*, u € (Hit(A))¢}. Indeed, on these events,

veC’ ifandonlyif y <= w.
Int(A)°, {a*}
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Then the first assertion follows since, first, the latter relation is determined by {«”, u € Int(A°)}
and, second, Int(A€) = (Hit(A))¢. We may conclude that Qy (A) D €Y because some ai, z e
Hit(A) \ Int(A), may take the value 1.

Finally, the second assertion of the lemma follows from the construction.

The proof of the deterministic radius case is complete.

Now we turn to the proof in the case of random radii. Recall that we assume that the radius
R of a model 2 RACS is a positive integer-valued random variable and that this is a radius in
the Loo norm. Forx € Z4 and k = 1,2, ..., let B** be the Lso-norm ball with center r and
radius k. Recall that Mg ** is the number of RACSs that arrive at time 0, are centered at x, and
have radius k. Then, in particular,

Ry™ = max{k: Mg‘k > 1}.

Let o*** be the indicator of the event {Mg ok > 1}, and let E** be a random set. Then

gk _ | BT ifett =1,
T e otherwise.

Again, the random variables o* k

i.i.d. (in x).

For each A C Z4, we let Int2(A) = {(x,k): x € A, k € N, B®¥ C A} and Hity(A) =
{(x,k):x € A, ke N, BN A # ).

For x, y € A, we say that the event

are mutually independent (now both in x and in k) and also

Ep - el
Inty(A),{a™ !}

occurs if, for the input {&*}, the random set E A= U(Z’ k)elnt(A) E%* is connected, and both x

and y belong to E4. The following events are then equal:

{C‘sz}zﬂ{x — z}ﬂ N {a®* = o).

u,l
zea n(A)fe7) (z,k)€Hit2 (A)\Intz (A)

Therefore, the event {éx = A} belongs to the sigma-algebra }‘]_‘fitz( A) generated by the random
variables {&*, (x, k) € Hitp(A)}. Forx € Z¢ andk = 1,2, ..., we let

x,k
MO
x,k X
o= E:Uo,j’
j=1

where the sum of the heights is taken over all RACSs that arrive at time 0, are centered at x,
and have radius k. Clearly, the random vectors (oe”’k, ok ) are independent in all x and k and
identically distributed in x, for each fixed k.

Let {(ai’k, oy ’k)} be another independent family of pairs that does not depend on all random
variables introduced earlier and is such that, for each k and x, the pairs (aif’k, ox ’k) and
%k, 59%) have a common distribution. Let (2, ¥, P) be the product probability space that
carries both {(a**K, *¥)} and {(e**, 6*)}. Introduce then a third family {(*F, o)}
defined as follows: for any set A containing x, on the event {é" = A}, we let

@ 0%l = @' ofh) i (z.1) € Hita(A),
- (a®!, 0%ty otherwise.
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The rest of the proof is then quite similar to that of the constant radlus case: we 1ntroduce again
C which is now the clump of y for {a® l} Wlth the height ¥ = >, Zz céy 07, then we
show that the random pairs (C *,0%) and (C &) are independent, and, ﬁnally, we estabhsh
the first and the second assertions of the lemma.

We will need the following two remarks on Lemma 1.

Remark 2. In the proof of Lemma 1, the roles of the points x and y and of the sets C* and CY
are not symmetrical. It is important that Crisa clump, while from V = C? we need only the
following monotonicity property: the set V' \ C¥isas. bigger in the environment {¢*} than in
the environment {«*}. We note that any finite union of clumps also satisfies this last property.

Remark 3. From the proof of Lemma 1, the following properties hold.

1. On the event where C§ and C0 are disjoint, we have C) € €y and oF™"™ = g&™™ ass.

forall z € CO, so that & ‘7() < 90'
2. On the event where 6‘6‘ = CA’())’, we have 6§ = 6.

Let us deduce from this that, for all constants a Z a” and all 7 € C() U CO, there exists a
random variable r(z) € {x, y} such that z € C0 (w1th the conventions that C0 = C0 and
6y =63) as. and

max _ (a" +6)) < a"@ +Q{)(Z) a.s.
{uelx.y}: zeCy}

In cases 1 and 2 with z € CO, we take r(z) = x and use the fact that a* > a”. In case 1 with
z € CO, we take r(z) = y and use the fact that 6 00 < Qg.

As a direct corollary of the last property, the inequality
max(a® + 6y, a” + (Arg) < max(a* + 6y, a” +§(y))

AY z sum
holds a.s. Here &) = Z T

We are now in a position to formulate a more general result.
Lemma 2. Assume again that . < he. Let S be a set of 7% of cardinality p > 2, say
S = {x1, ..., Xp}. Then there exist an extension of the initial probability space and random

pairs (C0‘ _O’) i =2,...,p, defined on this extension which are such that the following
assertions hold.

1. The inclusion

j=1 j=1
holds with Cx' Co
2. For all real-valued constants a*',a*?, ..., a*r such that a*' = maxi<j<pa™, and all
AXj . . AT (2)
zZ € U?:l Cg’, there exists a random variable r(z) € {x1,...,xp} such that z € C
a.s. and
max (@' + 6, N <d@ 4 ar(Z) a.s. (6)

{jellip): zeCy)

. . . . AXj . AXj
In paralcular xthe inequality maxi<j<,(a*i +6,’) < max|<j<,(a*i + &,’) holds a.s.
with 6)' = 6,'.
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3. The pairs (CO 651, (C o2 BRI (Qép, &) are mutually independent.

4. The pairs (C0 , 60’) and (CO , 63’) have the same law for each fixedi = 2, ..., p.

Proof. We proceed by induction on p. Assume that the result holds for any set with p points.
Then consideraset S of cardinality (p+1) and number its points arbitrarily, S = {x1, ..., xp41}.
For fixed A, consider the event {CA‘S ' = A}. On this event, define the same family (a*!, g%!)
as in the previous proof and consider the p clumps D*2, ..., D*»*! with their heights, say
%2, ..., s*rt1 for this family. By the same reasoning as in the proof of Lemma 1, (égl, a())”)
is independent of (D*2, s°2), ..., (D*r+!, s*r+1). By Remark 2,

p+1 p+1

AXi _ Ay .
& céstul Y as
j=1 j=2

By the induction step,

D?U---UD P+ Cy ng U... Ugg”“

)

with ng, el G defined as in the lemma’s statement, and then the first, third, and fourth
assertions follow.

We now prove the second assertion, again by induction on p. If p = 2, this is Remark 3.
Forp > 2,wedefineL; ={p+1>j>1: é’gj = é’gl} and we consider two cases.

Case I: z € Cy'. In this case let L; = {1,..., p+ 1}\ Ly. Since z ¢ Cy’ for j € Ly and
AXJ

0y = 8(’)‘ ! for all j € L1, we find that (6) holds with r(z) = 1 when using the fact that
a*' = max|<j<pa®

Case2: z ¢ CO . In this case let l_lf ={l1<j<p+1l:j¢Ly, ze é‘xf}. We can assume
without loss of generality that this set is nonempty. Then, for all j € Lj, we have
s% > 6%, by Lemma 1 and Remark 2. So

max(a*/ + &, Yy < max(a"/ +sY)  as.
JeLy JjeL}

Now, since the cardinality of I:f is less than or equal to p, we can use the induction
assumption, which shows that when choosing iy € L7 such that ™t = max; i a’i, we
have

A X
max(a® + s*) < a¥@ + g ’()

jEL‘

with r(z) € LZ and the random variables {00’ } defined as in the lemma’s statement, but
for & _0 , Wthh we take equal to s*1. The proof is concluded in this case too when using
the fact that the random variable s*1 is mutually independent of the random variables
({6xj} 6,") and it has the same law as 6™1.

3.3.2. Comparison with a branching process.

(a) Paths and heights in Boolean model 5. Below, we focus on the backward construction
associated with Boolean model 5, for which we will need more notation. Let ID}; denote the set
of descendants of level n of x € R in this backward process, defined as follows:

=CiU(x), = LUl nx1
yeDy

https://doi.org/10.1239/jap/1318940476 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1318940476

Poisson hail on a hot ground 355

By construction, I, is a nonempty set for all x and n. Let d;, denote the cardinality of ;.
Let IT} denote the set of paths starting from x = x¢ € Z® and of length n in this backward

process: xg, X1, - .., Xn is such a path if xg, x1, ..., x,—1 is a path of length n — 1 and x,, €
Cf"nj'r 1 U {xn—1}. Let ;) denote the cardinality of IT;,. Clearly, d;, < 7, a.s. for all n and x.
Furthermore, the height of a path [, = (xo, ..., x,) is the sum of the heights of all clumps
along the path:
n—1
>4
—1
i=0
-1 ~AXn—1

In particular, if the paths [, and [;, differ only by the last points x,, € 6" w1 and x, €6, e
then their heights coincide. For z € Z4, let h}** be the maximal height of all paths of length n
that start from x and end at z, where the maximum over the empty set is 0. Let ]HI ,n>0,be
the maximal height of all paths of length n that start from x. Then

H(n) = max flfiz

(b) Paths and heights in a branching process. Now we introduce a branching process (also in
backward time) that starts from point x = x¢ at generation 0. Let (V? TR l) ZE Zd, n >0,
i > 1, be afamily of mutually independent random pairs such that, for each z, the pair (V* i ﬁ ;)
has the same distribution as the pair (C0 U {z}, 65) forall n and i.

In the branching process defined below, we do not distinguish between points and paths.

In generation 0, the branching process has one point: H 20 = {(x0)}. In generation 1, the
points of the branching process are H 10 = {(xg, x1), X1 € VO 1} Here the cardinality of this
set is the number of points in VJ"I and all end coordinates x; differ (but this is not the case for
n > 2 in general). In generation 2, the points of the branching process are

I3 = {(x0, x1, x2), (x0, x1) € I\, x2 € V{'}}.

Here a last coordinate x, may appear several times, so we introduce a multiplicity function k»:
forz € 74, k% is the number of (xo, x1, x2) € H such that x; = z.

Assume that the set of all points in generatlon nis I1° = {(xo, x1, ..., x,)} and that k% is
the multiplicity function (for the last coordinate). For each z with k% > O, number arbltrarlly
all points with last coordinate z from 1 to k% and let g(x1, x2, . . ., x;;) denote the number given
to point (xp, ..., x,) with x, = z. Then the set of points in generation n + 1 is

. .
ne o = {0, - X Xy 1)y (X0, ., Xp) €TI0, Xyyp € V) o)

Finally, the height of point (xg, ..., x,) € f[ﬁ“ is defined as

n—1

- .
h(xo,...,x,) = Zsi,lqi’ where g; = q(xo, ..., Xi).
i=0

(c) Coupling of the two processes.

Lemma 3. Let xg be fixed. Assume that A < A.. Then there exists a coupling of Boolean
model 5 and of the branching process defined above such that, for all n and all points z in the
set DY, there exists a point (xq, - . ., Xp) € L1 such that x, = z and h;° < h(xo, ..., xp) a.s.

Proof. We construct the coupling and prove the properties by induction. For n = 0, 1, the
process of Boolean model 5 and the branching process coincide. Assume that the statement
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of the lemma holds up to generation n. For z € D}, let a® = h}>*. Now, conditionally on
the values of both processes up to and including level n, we perform the following coupling at
level n + 1. We choose z, with the rnaxnnal a® and we apply Lemma 2 with § = ID) , with z,
in place of x1, and with {CZ }; and {Cfn}z respectively in place of {CZ}Z and {CO}Z, we then
take

v = 6%, U ()

¢ Vnz,l zéz—n U {Z} forall z € Dﬁo, z ;ﬁ Z%)

[ ]
[
Il
Q

Az X0
° 52,1 =g, forallz € D;°, z # z4.

By the induction assumption, for all z € ID;°, there exists a (xg, . .., X,) € 1'[n such thatx,, = z.
This and assertion 1 of Lemma 2 show that if u € DZ(-)H then (xo, ceey Xp,U) € Dy w1 which
proves the first property.

By a direct dynamic programming argument, for all u € Dn 1

pX0.U X0, A
hn+l - }glax . hno ‘+ G—n
zely,’, ueC:,,
It follows from assertion 2 of Lemma 2 applied to the set {x1, ..., x,} = {z € D, ue C’in}
that
hz(fl:l %mx (hz()’z + éz—n)'
zeDy, ,ueC~

By the induction assumption, for all z as above,

}AZXOvZ 5 ﬁ(-x()a LR ] -xl‘l)
a.s. for some (xg,...,x,) € HXO with x, = z. Hence, for all u as above, there exists a
path (xo, ... xn,x,,+1) e Y .1 with x, 41 = u such that hx < h(x0, ..., Xn, Xny1) With
(X0s - -+ s X, Xpy1) € I el andxn+1 =u.

3.3.3. Independent heights. Below, we assume that the light tail assumptions on £ and o are
satisfied (see Section 3.1).

In the last branching process, the pairs (V? Wi S, v ;) are mutually independent in n, 7, and z.
However, for all given n, i, and z, the random variables (VZ Sp. v ) are dependent It follows
from Proposition 1 in Appendix A that we can find random varlables (WZ ., t% ) such that

e foralln,i,and z, Vnzl- C W,fi a.s.;

nt’ nl

e the random sets WZ are of the form z + w? ., where the sequence {wZ }isiid.inmn, i,

and z;

n,i’

e the random variable card(W(()) 1) has exponential moments;

Z .
e foralln,i, andz,sni <1,; a8

e the random variable to | has exponential moments;

e the pairs (W, % ) are mutually independent in n, i, and z.

nl’ nt

So the branching process built from the {(W
from the {(Vnz’ i S, © )} variables.

. s ,l.)} variables is an upper bound to that built
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3.4. Upper bound on the growth rate

The next theorem, which pertains to branching process theory, is not new (see, e.g. [4]). We
nevertheless give a proof for self-containedness. It features a branching process with height (in
the literature, we also say with age or with height), starting from a single individual, as defined
in Section 3.3.3. Let v be the typical progeny size, which we assume to be light tailed. Let s
be the typical height of a node, which we also assume to be light tailed.

Theorem 2. Assume that . < ,e. Forn > 0, let h(n) be the maximal height of all descendants
of generation n in the branching process defined above. There exists a finite and positive
constant ¢ such that

lim sup
n—oo N

<c a.s.
Proof. Let (v;, s;) be the i.i.d. copies of (v, s). Take any positive a. Let D(a) be the event
D(a) = | J{d, > ",
n>1

where d,, is the number of individuals of generation » in the branching process. For all ¢ > 0
and all positive integers k, let W, i be the event {h(k)/k < c}. Then

Wek € (Wex N D(@) U D(a),
where D(a) is the complement of D(a). From Chernoff’s inequality we have, for y > 0,

P(D(a)) = P(U{d,,_H >a"t d <a' foralli < n})

n>0

< ZP(i vj > a”+1>
j=1

n>1

S Z(E eyv)ane_yan+l

n>1

<D (@79,

n>1

where ¢(y) = Ee??. First, choose ¥y > 0 such that ¢(y) < oo. Then, for any integer
m=1,2,...,choose a,, > max(E v, 2) such that

_ 1
qm = @(y)e " < =

m

SoP(D(a;;)) <27 — 0asm — oo.
For any m and any c,

: h(n) : h(n) -
lim sup — > ¢y € D(ay) U {lim sup — > ¢y N D(ay)
n—oo N t—>o0 N

and

n—oo

P({lim sup @ > c} mD(am)> < ZP(n,c, m),

where P(n, c,m) = P({h(n)/n > ¢} N D(ap)).
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We deduce from the union bound that, for all m,
n
P(n,c,m) < ay, P(Zsi > cn).
i=1

The inequality follows from the assumption that the v-family and s-family of random variables
are independent. Hence, by Chernoff’s inequality,

P(n,c,m) < ay,(¥(8))"e ",
where ¥ (8) = Ee®. Take § > 0 such that ¥ (8) is finite and then ¢,, > 0 such that
I = @ (8)e > < 1.

Zhl,‘n < 00.

keN

Then

Hence, for all m,

(n)

. h
hmnsup — l[)(am) <cp ID(a,,,) a.s.

Let u be a random variable taking the value ¢, on the event D(am) \ D(apm—1). Then W is finite
a.s. and I
lim sup _(n) <u as.
n n
But lim sup, #(n)/n must be a constant (by ergodicity), and this constant is necessarily finite.
Indeed, since

h
lim sup ﬂ > lim su
n n n

h(n) o6~
p——— as,
n

and since the shift 6 is ergodic, for each c, the event {lim sup, 4(n)/n < c} has a probability
of either 1 or 0.

Recall that A. is the maximal value of intensity A such that Boolean model 5 has a.s. finite
clumps for any A < Ac.

Corollary 1. Let H(t) = ]HI? be the height at 0 € Z% in the backward Poisson hail growth
model defined in (3). Under the assumptions of Theorem 2, for all . < ¢, with Ao > 0 the
critical intensity defined above, there exists a finite constant k (A) such that

. H(r)

lim sup — =«(A) a.s.
t—oo I

with M the intensity of the Poisson rain.

Proof. The proof of the fact that the limit is finite is immediate from bound (5) and Theorem 2.
The proof that the limit is constant follows from the ergodicity of the underlying model.

Lemma 4. Let a < Ac, where ) is the critical value defined above. For all A < A,

A
k(L) = —«(a).
a

https://doi.org/10.1239/jap/1318940476 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1318940476

Poisson hail on a hot ground 359

Proof. A Poisson rain of intensity A on the interval [0, #] can be seen as a Poisson rain of
intensity a on the time interval [0, Af/a]. Hence, with obvious notation,

1A
H(z, A) =H(—,a),
a

4. Service and arrivals

which immediately leads to (4).

Below, we focus on the equations for the dynamical system with service and arrivals, namely
on Poisson hail on a hot ground.

Let W} denote the residual workload at x and ¢, namely the time elapsing between ¢ and the
first epoch when the system is free of all the workload that arrived before time 7 and intersecting
location x € R, We assume that Hé‘ = 0. Then, with the notation of Section 3,

' +
Wi =(of -t O+ sip W) 10 2 0), 7)

X
yECIX(t)

We will also consider Loynes’s scheme associated with (7), namely the random variables

W‘;{ = th [¢] 9t
forall x € R4 and t > 0. We have
+
Wi = (o H RO+ s W 00e) 10 2 1), ®)
yecC:

X ()

Assume that Wy = W§ = 0 for all x. Using the Loynes-type arguments (see, e.g. [7] or
[9]), it is easy to show that, for all x, W} is nondecreasing in 7. Let

Y, = lim W},
Wos t—00 Wi
By aclassical ergodic theory argument, the limit W is either finite a.s. or infinite a.s. Therefore,
for all integers n and all (xy,...,x,) € R9" | either Wi = ooforalli = 1,...,n as. or
Wil < ooforalli =1,...,n as. In the latter case,

o {WZ } is the smallest stationary solution of (8);

o (W', ..., W) converges a.s. to (W3}, ..., Wa) as ¢ tends to oo.
Our main result is as follows (using the notation of Corollary 1).
Theorem 3. If A < min(Ac, ak(a)~Y) then, forall x € R4, W}, < ooas.

Proof. For all t > 0, we say that x is a critical path of length 0 and span ¢ starting from xg
in the backward growth model {H} defined in (3) if 72°(r) < —t. The height of this path is
Hf" =0. Forall r > 0 and ¢ > 1, we say that xg, x1, ..., X4 is a critical path of length ¢ and
span ¢ starting from xg in the backward growth model {Hj } defined in (3) if

HXO X0 X1
1

=004 T L o ° 000
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with x| € CXQO
(1)

X0 . . .
t + T~ (t? sta)lcrtlng from x; in the backward growth model {Hz-HfO(
this path is H;°.

Assume that WX = co. Since W is a.s. finite for all finite # and all x, there must exist

an increasing sequence {1}, with r — o0, such that W;’ > W,? > 0 for all k. This in turn
k k

and tX°(t) > —t, and if x1, .. ., X4 is a critical path of length ¢ — 1 and span
5 ° 6. %0 (I)}. The height of

implies the existence, for all k, of a critical path of length g and span 1, say xo, x7, ..., Xg ,
of height H;” such that
W;Ck(irl = H;Cko —t > 0.
Then
X0
l > 1
e
for all k and, therefore,
X0
«(A) > liminf —% > 1.
k—oo I

Using (4), we obtain
A
k(M) = —«(a)>1 as.
a
But this contradicts the theorem assumptions.

Remark 4. Theorem 1 follows from Theorem 3 and the remarks that precede it.

Remark 5. We will say that the dynamical system with arrivals and service percolates if there is
a time for which the directed graph of RACSs present in the system at that time (where directed
edges between two RACSs represent the precedence constraints between them) has an infinite
directed component. The finiteness of Loynes’s variable is equivalent to the nonpercolation of
this dynamical system.

5. Bernoulli hail on a hot grid

The aim of this section is to discuss discrete versions of the Poisson hail model, namely
versions where the server is the grid Z¢ rather than the Euclidean space R?. Some specific
discrete models were already considered in the analysis of the Poisson hail model (see, e.g.
Sections 3.1 and 3.2). Below, we concentrate on the simplest model, emphasize the main
differences with the continuous case, and give a few examples of explicit bounds and evolution
equations.

5.1. Models with Bernoulli arrivals and constant services

The state space is Z. All RACSs are pairs of neighboring points/nodes {i, i + 1}, i € Z, with
service time 1. In other words, such a RACS requires 1 unit of time for simultaneous service
from nodes/servers i and i + 1. For short, a RACS {i, i + 1} will be called a ‘RACS of type i’.
Within each time slot (of size 1), the number of RACSs of type i arriving is a Bernoulli-(p)
random variable. All these variables are mutually independent. If a RACS of type i and a
RACS of type i + 1 arrive in the same time slot, the first-in—first-out tie is solved at random
(with probability %). The system is empty at time 0, and RACSs start to arrive from time slot
0, 1) on.
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5.1.1. The growth model.

(a) The graph §(1). We define a precedence graph §(1) associated with p = 1 nodes to be
all (i, n) pairs where i € Z is the type and n € N = {1, 2, ...} is the time. There are directed
edges between certain nodes, some of which are deterministic and some random. These edges
represent precedence constraints: an edge from (i, n) to (i’, n’) means that (i, n) ought to be
served after (i’, n’). Here is the complete list of directed edges.

1. There is either an edge (i,n) — (i + 1, n) with probability % (exclusive) or an edge
(i 4+ 1,n) — (i, n) with probability %; we call these random edges spatial.

2. Theedges (i,n) > (i—1,n—1),(i,n) > (i,n—1),and (i,n) — (i +1,n — 1) exist
for all i and n > 2; we call these random edges time edges.

Note that there are at most five directed edges from each node. These edges define directed
paths: for x; = (ij,n;), j =1,...,m, the path x; — x2 — --- — Xy, exists if (and only if)
all edges along this path exist. All paths in this graph are acyclic. If a path exists, its length is
the number of nodes along the path, i.e. m.

(b) The graph (p). We obtain §(p) from §(1) by the following thinning.

1. Each node of (1) is colored ‘white’ with probability 1 — p and ‘black’ with probability
p, independently of everything else.

2. If anode is colored white then each directed spatial edge from this node is deleted (recall
that there are at most two such edges).

3. Forn > 2, if anode (i, n) is colored white then two time edges (i,n) - (i — 1,n — 1)
and (i,n) - (i + 1,n — 1) are deleted, and only the ‘vertical’ edge, (i, n) — (i,n — 1),
is kept.

So, the sets of nodes are the same in §.(1) and §(p), whereas the set of edges in §(p) is a subset
of that in §(1). Paths in §(p) are defined as above (a path is made of a sequence of directed
edges present in §(p)). The graph §(p) describes the precedence relationship between RACSs
in our basic growth model.

(c) The monotone property. We have the following monotonicity in p: the smaller p, the thinner
the graph. In particular, by using the natural coupling, we can make 4(p) C §(q) forall p < g;
here inclusion means that the sets of nodes in both graphs are the same and the set of edges of
4(p) is included in that of §(q).

5.1.2. The heights and the maximal height function. We now associate heights to the nodes:
the height of a white node is 0 and that of a black node is 1. The height of a path is the sum of
the heights of the nodes along the path. Clearly, the height of a path cannot be larger than its
length.

For all (i, n), let H,’; = H,’l' (p) denote the height of the maximal height path among all paths
of G(p) which start from node (i, n). By using the natural coupling alluded to above, we find
that H(p) can be made a.s. increasing in p.

Note that, for all p < 1, and all n and i, the random variable H,’; is finite a.s. To show this,
it is enough to consider the case in which p = 1 (thanks to monotonicity) and i = 0 (thanks to
translation invariance). Let

+ o=

wp =minfi > 1: ((,n) - (@ —1,n)}
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and, form=n—-1,n-2,...,1,let

1+

g =min{i > b 41 m) = (= 1,m)}.

Similarly, let

tpy=max{i < —1:(,n)—> (@+1,n)}

n

and, form=n—1,n—-2,...,1,let

by =max{i <t . —1:@G,m)— @+1,m}

Then all these random variables are finite a.s. (moreover, they have finite exponential moments)
and the following rough estimate holds:

n
HY <> (e, —1,) +n.
i=1
5.1.3. Time and space stationarity. The driving sequence of RACSs is i.i.d. and does not depend
on the random ordering of neighbors, which is again i.i.d., so the model is homogeneous both in
timen = 1,2, ...and in space i € Z. Then we may extend this relation to nonpositive indices
of n and introduce the measure-preserving time transformation 6 and its iterates 6", —oo <
m < 00. So H,i o 6™ is now representing the height of the node (i, n + m) in the model which
starts from the empty state at time m. Again, due to the space homogeneity, for any fixed n,
the distribution of the random variable H,f does not depend on i. So, in what follows, we will
write, for short, ‘
H, = H,(p) = H,;7

when it does not lead to confusion.

Definition of the function h. We will also consider paths from (0, n) to (0, 1) and we will
denote by h, = h,(p) the maximal height of all such paths. Clearly, s, < H, a.s.

5.1.4. Finiteness of the growth rate and its continuity at 0.

Lemma 5. There exists a positive probability py > % such that, for any p < po,

. H,
limsup — < C(p) < oo a.s.
n—oo N

and
ha(p)

— y(p) a.s.andin Ly,
with y (p) and C(p) positive and finite constants, y (p) < C(p).

Remark. The sequence {H, } is neither subadditive nor superadditive.

Lemma 6. For all p,

lim sup
n—0od

Lemma 7. Under the foregoing assumptions,

H(p) <2y(p) as.
n

oo H),
limlimsup — =0 a.s.
Pl0 nsoo N

The proofs of Lemmas 5-7 are in a similar spirit to those of the main results (Borel-Cantelli
lemma, branching upper bounds, and also superadditivity), and therefore are omitted.
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FIGURE 1: Top: a realization of the random graph §(p). Only the first six time layers are represented.
A black node at (7, n) represents the arrival of a RACS of type i at time n. Bottom: the associated heap
of RACSs, with a visualization of the height H,, of each RACS.

5.1.5. Exact evolution equations for the growth model. We now describe the exact evolution of
the process defined in Section 5.1.1. We adopt here the continuous-space interpretation where
a RACS of type i is a segment of length 2 centered at i € Z. The variable H, is the height
of the last RACS (segment) of type i that arrived among the set with time index less than or
equal to n (namely with index 1 < k < n) in the growth model under consideration. If (i, n)
is black then H,i is at the same time the height of the maximal height path starting from node
(i, n) in $(p) and the height of the RACS (i, n) in the growth model. If (i, n) is white and the
last arrival of type i before time n is k, then H| = H ,é This is depicted in Figure 1.

If there are no arrivals of type i in this time interval then H} = 0. In general, if 8/ is the
number of segments of type i that arrive in [1, n] then H, I > ,Bi Let v' be the indicator of the
event that (z n) is an arrival (v = lifitis black and vj, =0 0therw1se)

Let e’ i+ 1 indicate the direction of the edge between (1 n)and (i +1, n): we write e;, =r
if the right node has priority and el 1 = [if the left node has priority.

The following evolution equations hold: if vfl 41 = 1 then

ii+1

= H L+ D™ =r o =DV H + D1E Y =1L =1

v (H v HT Y HIT
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and if v = =0 then H 41 = Hy. ! Here, for any event A, 1(A) is its indicator function: it
equals 1 1f the event occurs and 0 otherwise.
The evolution equations above may be rewritten as

= HI+DE T = o =10, =D
VH T+ D1ET =L v =L v, =1
VHL Y HTO = D vET I =D+ 1000, = ).

5.1.6. Exact evolution equations for the model with service. The system with service can be
described as follows. There is an infinite number of servers, each of which serves with a unit
rate. The servers are located at the points % + i, —o00 < i < o0. For each i, the RACS (i, n)
(or customer (i, n)) is a customer of ‘type’ i that arrives with probability p at time n and needs
one unit of time for simultaneous service from two servers located at points i — % and i + %
So, at most one customer of each type arrives at each integer time instant. If customers of types
i and i + 1 arrive at time n then we make the decision that either i arrives earlier or i + 1 arrives
earlier, at random with equal probabilities:

P(customer i arrives earlier than customeri + 1) = P(ef;“rl =)= %

Each server serves customers in the order of arrival. A customer leaves the system after the
completion of its service. As before, we may assume that, for each (i, n), customer (i, n)
arrives with probability 1, but is ‘real’ (‘black’) with probability p and ‘virtual’ (‘white’) with
probability 1 — p

Assume that the system is empty at time 0 and that the first customers arrive at time 1. Then,

forany n = 1,2, ..., the quantity W} := max(7! — (n — 1), 0) is the residual amount of time
(starting from time n) which is needed for the last real customer of type i (among customers
@i, 1), ..., (i, n)) to receive the service (or equals O if there is no real customers there).

Then these random variables satisfy the equations, forn > 1 and —oco < i < 00,

i+1 ii+1 _ i+1
n+1 - (Wn—H 1)1(6 =05V = 1, vn+1 =D

VWD =L v =1L 0, =1

V(W=D + 1], = 1)

VW =D+ D1k, =1

V(W = DY+ D1k, = D).
Since the heights are equal to 1 (and the time intervals have length 1), the last two terms in the
equation may be simplified, for instance, ((W,’l_l - DT +1) 1(v,,; = 1) may be replaced by
wit1) = 1).

In the case of random heights {o }, the random variables {W’} satisfy the recursions

1 = (Wlii +‘7n+1) e, ™ =r, ”;ill 1, Un+1 =1
V(Wi el e =10 =1Lk =1
VW=Dt +o) 10, = 1)

VAW = DY o ) 1w = 1)

V(W =Dt 4ol D10, = D).
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The following monotonicity property holds: for any n and i,
Wi 00" <Wiog™ as.
Let
po =sup{p: I'(p) < 1}.
Theorem 4. If p < po then, for any i, the random variables W,l; converge weakly to a proper

limit. Moreover, there exists a stationary random vector {Wi , —00 < i < oo} such that, for
any finite integers ig < 0 < iy, the finite-dimensional random vectors

(wio, wiott L wiml win
converge weakly to the vector
(wio, wiott o wit wi,
Theorem 5. If p < pg then the random variables
min{i >0: W =0} and max{i <0: W' =0}
are finite a.s.

6. Conclusion

We conclude with a few open questions. The first class of questions pertains to stochastic
geometry [10].

e How does the RACS exclusion process which is that of the RACS in service at time ¢ in
steady state compare to other exclusion processes (e.g. Matérn, Gibbs)?

e Assuming that the system is stable, can the undirected graph of RACSs present in the
steady state regime percolate?

The second class of questions is classical in queueing theory and pertains to existence and
properties of the stationary regime.

e In the stable case, does the stationary solution Wgo always have a light tail? At the
moment, we can show this under extra assumptions only. Note that in spite of the fact
that the Poisson hail model falls into the category of infinite-dimensional max-plus linear
systems, unfortunately the techniques developed for analyzing the tails of the stationary
regimes of finite-dimensional max-plus linear systems [3] cannot be applied here.

e In the stable case, does the Poisson hail equation (8) admit other stationary regimes than
obtained from {W_}, the minimal stationary regime?

e For what other service disciplines still respecting the hard exclusion rule, such as, e.g.
priorities or first/best fit, can we also construct a steady state?
Appendix A

Proposition 1. For any pair (X, Y) of random variables with light-tailed marginal distribu-
tions, there exists a coupling with another pair (¢, n) of i.i.d. random variables with a common
light-tailed marginal distribution such that

max(X, Y) <min(¢, n) a.s.
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Proof. Let Fx be the distribution function of X, and let Fy be the distribution function
of Y. Let C > 0 be such that Ee“X and Ee€Y are finite. Let ¢ = max(0, X, Y). Since
eCl <1 4eCX €7, ¢ also has a light-tailed distribution, say F'.

Let F(x) =1 — F(x), G(x) = F'/2(x), and G(x) = 1 — G(x). Let & and 7 be i.i.d. with
common distribution G. Then E¢ is finite for any ¢ < C/2.

Finally, a coupling of X, Y, &, and n may be built as follows. Let U; and U; be two i.i.d.
random variables having uniform (0, 1) distribution. Then let & = G Ly, n= G (),
and ¢ = min(&, n). Finally, define X and Y conditionally independent of (£, n) given
max(X,Y) =¢.
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