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EXPLICIT SURJECTIVITY RESULTS FOR DRINFELD
MODULES OF RANK 2

IMIN CHEN and YOONJIN LEE

Abstract. Let K = Fq(T ) and A= Fq[T ]. Suppose that φ is a Drinfeld A-

module of rank 2 over K which does not have complex multiplication. We

obtain an explicit upper bound (dependent on φ) on the degree of primes ℘

of K such that the image of the Galois representation on the ℘-torsion points

of φ is not surjective, in the case of q odd. Our results are a Drinfeld module

analogue of Serre’s explicit large image results for the Galois representations

on p-torsion points of elliptic curves (Serre, Propriétés galoisiennes des points

d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331; Serre,

Quelques applications du théorème de densité de Chebotarev, Inst. Hautes

Etudes Sci. Publ. Math. 54 (1981), 323–401.) and are unconditional because the

generalized Riemann hypothesis for function fields holds. An explicit isogeny

theorem for Drinfeld A-modules of rank 2 over K is also proven.

§1. Introduction

It is well known that there is a close analogy between the arithmetic of

Drinfeld A-modules of rank 2 over K = Fq(T ) (where A= Fq[T ] and Fq is

a finite field of order q), and elliptic curves over Q, and that considering

arithmetical problems from both perspectives enhances our understanding

of the intrinsic difficulty of the problems in question. In this paper, we

investigate the problem of obtaining explicit large image results for the

fields generated by torsion points of Drinfeld modules.

Serre proved in [24] that if E is an elliptic curve over a number field K

without complex multiplication, then there is a constant cK,E dependent

only on K and E such that the Galois representation ρE,p on the p-torsion

points of E is surjective for any prime number p > cK,E . There has been
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18 I. CHEN AND Y. LEE

some work on obtaining explicit values for the constants cK,E when K = Q
(Serre [26], Kraus [14], Cojocaru–Hall [4], Lombardo [16]). The assumption

of the generalized Riemann hypothesis allows one to considerably improve

these bounds [26].

In the case K = Q, the analysis normally proceeds by dividing the

argument into which type of maximal proper subgroup contains the image of

ρE,p. The most difficult case is when the image of ρE,p lies in the normalizer

of a Cartan subgroup of GL2(Z/pZ). In all other cases, one in fact has a

uniform bound on cK,E which is independent of the elliptic curve E without

complex multiplication, by work of Mazur [17] on rational points on modular

curves.

The analogue of Serre’s result [24] for Drinfeld A-modules of rank 2 was

proved by Gardeyn [11], using the earlier work of Pink on the Mumford–

Tate conjecture for Drinfeld modules [20]. In detail, if φ is a Drinfeld module

of rank 2 without complex multiplication over a fixed finite extension of K,

then there are only finitely many primes ℘ such that the image of the Galois

representation ρφ,℘ on the ℘-torsion points of φ is not surjective. The case

of general rank was recently proven in [21].

In this paper, we obtain an explicit upper bound on the degree of primes

℘ of K such that ρφ,℘ is not surjective, for any Drinfeld A-module φ of rank

2 over K = Fq(T ) without complex multiplication, in the case when q is odd.

The proof is modeled on the strategy of [24] and [26], some parts of which

were made effective, though not explicit in [12].

New difficulties arise however in carrying out the strategy of [24, 26] in the

setting of Drinfeld modules. One of these is obtaining an explicit bound on

the degree of the different divisor of division fields of φ, which in the function

field case does not follow immediately from algebraic considerations. For

this, we rely heavily on the results in [2, 3] to make explicit the bounds on

the different divisor and constant field extensions of torsion fields of Drinfeld

A-modules over K.

On the other hand, the generalized Riemann hypothesis holds for function

fields, so we are entitled to use better effective Chebotarev density theorems,

which makes the final results unconditional and stronger when compared to

the number field setting. In the Drinfeld module setting, we do not have

uniform bounds in the Borel case because Mazur’s method has not yet

been successfully adapted to work with Drinfeld modular curves in general.

However, there are some partial results in this direction [1, 19].
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EXPLICIT SURJECTIVITY RESULTS FOR DRINFELD MODULES OF RANK 2 19

As part of the proof of the Cartan case, we also derive an explicit isogeny

theorem for Drinfeld modules of rank 2 over K which uses the explicit

bounds on the different divisor and constant field extensions obtained in

[2]. A partially explicit isogeny theorem valid for general rank r and K is

proven in [3].

§2. Main result

Let Fq be a finite field of order q, A= Fq[T ], and K = Fq(T ). Throughout

the paper, for the sake of simplicity, := is denoted to mean “is defined to

be”.

Let L be a finite extension of K, OL be the maximal order of L, that is,

the integral closure of A in L, and FL be the constant field of L. For a prime

ideal B of OL, we let degL B be the FL-dimension of the residue class field

FL,B :=OL/B of B, extending this to a general ideal I of OL by additivity

on products. For a in OL, we define the degree of a by degL a := degL(a),

where (a) is the principal ideal of OL generated by a.

By a prime ℘ (or place) of K, we mean a discrete valuation ring with

field of fractions K and maximal ideal ℘, and v denotes the discrete

valuation associated to a prime ℘ of K. Let ∞ be the infinite prime of K

with corresponding discrete valuation v∞(f/g) = degK g − degK f, where

f, g ∈A.

Let τ be the map which raises an element to its qth power. A Drinfeld

A-module φ over K is given by an Fq-algebra homomorphism

φ :A→K{τ}

such that φ(a) has constant term a for any a ∈A, and the image of φ is not

contained in K.

A Drinfeld A-module φ of rank r over K is completely determined by

φ(T ) = T + a1(φ)τ + a2(φ)τ2 + · · ·+ ar(φ)τ r,

where aj(φ) ∈K for j = 1, 2, . . . , r and ar(φ) is nonzero. For any monic

a ∈ Fq[T ], we then have

(1) φ(a) = a+

M−1∑
j=1

aj(φ, a)τ j + ∆(φ)(qM−1)/(qr−1)τM ,

for some aj(φ, a) ∈K, where M = r degK a and ∆(φ) := ar(φ).
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For any nonzero a ∈A, we define the A-module of a-torsion points as

φ[a] = {λ ∈K | φa(λ) = 0},

where φa denotes φ(a) and K is a fixed separable algebraic closure of K.

We have that φ[a]' (A/aA)r (see for instance, [23, Proposition 12.4]). If I

is a nonzero ideal of A, we similarly define the A-module of I-torsion points

φ[I] = {λ ∈K | φa(λ) = 0 for every a ∈ I}.

Let K(φ[a]) be the field obtained by adjoining a-torsion points of φ to K,

and let Kφ,I :=K(φ[I]).

Let L be a finite prime of K. The L-torsion points of φ in K give rise to

a representation

ρφ,L :GK →AutA/L(φ[L])∼= GLr(A/LA),

where GK is the absolute Galois group of K. For a prime ℘ of K, if φ has

good reduction at ℘, then ρφ,L is unramified at ℘ if ℘ 6= L.

If φ is a Drinfeld A-module defined over K, and all its defining coefficients

ai(φ) lie in A, then we say that φ is integral over A. If φ is integral over A,

then it has good reduction outside any set of primes S of K which includes

the prime at ∞ and the primes dividing the discriminant ∆(φ) of φ. In

particular, the GK-modules φ[L∞] :=
⋃
m>1 φ[Lm] and φ[L] are unramified

outside S ∪ {L}.
For a prime ℘ of K, let Frob℘ ∈GK denote a Frobenius conjugacy class

at ℘, and let TL(φ) be the L-adic Tate module of φ, which is defined as an

inverse limit of the φ[Ln], that is, lim
←−n

φ[Ln].

Let a℘(φ) denote the trace of Frob℘ on the TL(φ) and P℘(φ)(X) the

characteristic polynomial of Frob℘ on the TL(φ) (when the Frobenius

conjugacy class is unramified in the relevant extensions). It is known that

a℘(φ) and P℘(φ)(X) are independent of L [9, Theorem 4.12.12].

The ring of K-isogenies of φ is denoted by EndK(φ), and the ring of

K-isogenies is denoted by End(φ). We have that φ(A)⊆ EndK(φ). When φ

is a Drinfeld A-module of rank 2 over K, End(φ) is either φ(A) or an order

O in some quadratic imaginary extension over K. In the latter case, we say

that φ has complex multiplication (by O).

We use the following notation for Theorem 2.1 and throughout the paper.
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Notation 1:

ln x= the natural logarithm of x, logq x = the logarithm of x to base q,

log∗q x= logq max {x, 1},

c0 = 9 + logq
64

3
,

sq =
9 ln(qc0)

ln(qc0)− 1
,

Cq = c0 + 9 logq c0 + sq
(
logq 4 + logq(1 + logq c0)

)
,

φ is a Drinfeld A-module over K,

Sφ is the set of primes of bad reduction of φ over K,

j(φ) =
a1(φ)q+1

a2(φ)
,

m= the least positive integer such that −v∞(j(φ)) 6 qm+1,

κφ =


−v∞(j(φ))− qm

qm(q − 1)
+m− 1 if −v∞(j(φ))> q,

0 if −v∞(j(φ)) 6 q,

s1(φ) =
v∞(a1(φ)) + q

q − 1
,

s̃1(φ) =
v∞(a2(φ)) + q2

q2 − 1
,

δφ = the (monic) denominator of j(φ) as represented by a fraction in

reduced form,

ηφ = the product of finite primes p of K such that φ has bad reduction

over Kp, where Kp is the completion at p of K.

We state the main result of this paper as follows.

Theorem 2.1. Let φ be a Drinfeld A-module of rank 2 over K without

complex multiplication with φ(T ) = i(T ) + a1(φ)τ + a2(φ)τ2, and let q be

odd. Let Sφ be the set of primes of bad reduction of φ over K. Let ρφ,℘ be

the Galois representation on the ℘-torsion points of φ, where ℘ is a finite

prime of K. Let q℘ be the cardinality of the residue field A/℘. We use

notation given in Notation 1.

If ρφ,℘ is not surjective, then either:

(1) q℘ 6 5 or ℘ ∈ Sφ,

(2) or, the image of ρφ,℘ lies in the normalizer of a Cartan subgroup of

GL2(A/℘) but not in the Cartan subgroup and

degK ℘6 2(Cq + W̃ + sq logq(c0 + W̃ )),

https://doi.org/10.1017/nmj.2017.26 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.26
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where

W̃ := log∗q 2

(
degK ηφ +

2

q − 1
degK δφ + 1 + κφ

(
qκφ+1 − 1

))
+

1

4
((q2 − 1)(q2 − q))2

(
1 +

κφ
s1(φ)

)2

,

(3) or, the image of ρφ,℘ lies in a Borel subgroup of GL2(A/℘) and

degK ℘6 ϕ((q − 1)(q2 − 1)nφ) degK P,

where ϕ denotes the Euler-phi function, P is the least degree prime of K

at which φ has good reduction, and nφ 6 (q2 − 1)(q2 − q)(1 + κφ/s1(φ))

is a positive integer.

This paper is organized as follows. We establish an explicit isogeny

theorem for Drinfeld modules of rank 2 in Section 3 which is used in

the Cartan case. Some ingredients needed to set up the proof of the main

theorem are discussed in Sections 4 and 5. Section 6 (Section 7, respectively)

deals with the Cartan case (the Borel case, respectively). The proof of

Theorem 2.1 is then given in Section 8.

§3. An explicit isogeny theorem for rank 2

Let L/K be a finite extension. Writing divisors in terms of places instead

of primes, the different divisor D(L/K) of L/K is defined as

D(L/K) =
∑
w

w(D(Lw/Kv))w,

and its degree is given by

degL D(L/K) =
∑
w

w(D(Lw/Kv)) degL w,

where w ranges through all normalized places of L, and D(Lw/Kv) is the

different ideal of Lw/Kv. For convenience, we define the degree with respect

to K of D(L/K) as

degK D(L/K) =
∑
v

max {v(D(Lw/Kv)) : w|v} degK v,

where v ranges through all normalized places of K.

The following theorem presents an upper bound on the degree of

the different divisor D(K(φ[a])/K) of K(φ[a]) over K based on work

from [2, 3].
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Theorem 3.1. Let φ be a Drinfeld A-module of rank 2 over K with

φ(T ) = i(T ) + a1(φ)τ + a2(φ)τ2 and a be nonzero in A. Let j(φ), m, κφ,

δφ and ηφ be the same as given in Notation 1. Let D(K(φ[a])/K) be the

different divisor of the torsion field K(φ[a]) over K. Then

degK D(K(φ[a])/K) 6 2 degK a+ degK ηφ +
2

q − 1

× degK δφ + 1 + κφ(qκφ+1 − 1).(2)

Proof. See [2, 3].

We have an upper bound on the extension degree of the constant field of

K(φ[a]) over Fq as follows.

Theorem 3.2. Let φ be a Drinfeld A-module of rank 2 over K with

φ(T ) = i(T ) + a1(φ)τ + a2(φ)τ2 and a be nonzero in A. Let j(φ), m and

κφ be the same as given in Notation 1. Let γφ,a := [FK(φ[a]) : Fq], where

FK(φ[a]) denotes the algebraic closure of Fq in K(φ[a]) (that is, FK(φ[a]) is

the constant field of K(φ[a])). Then we have

(3) γφ,a 6 (q2 − 1)(q2 − q)(1 +
κφ
s1(φ)

),

where s1(φ) = (v∞(a1(φ)) + q)/(q − 1).

Proof. Let gφ,∞ = [K∞(Λφ,∞) :K∞], where K∞ denotes the completion

at ∞ of K, C∞ denotes the completion of an algebraic closure of K∞
and Λφ,∞ is the lattice associated to the uniformization of φ over C∞. As

K∞(Λφ,∞) contains φ[a] and FK∞ = FK , we have that

[FK(φ[a]) : FK ] 6 [FK∞(Λφ,∞) : FK∞ ] 6 [K∞(Λφ,∞) :K∞].

Hence, γφ,a 6 gφ,∞.

One can bound gφ,∞ using knowledge of the successive minima of the

lattice Λφ,∞ associated to φ [12, Proposition 4(i)]. Concerning the term

gφ,∞, we have from [12] that

gφ,∞ 6 (q2 − 1)(q2 − q)ν2,∞(φ)/ν1,∞(φ),

where νi,∞(φ) is the ith successive minima of φ associated to its uniformiza-

tion over C∞. From [2], an explicit bound for these successive minima

νi,∞(φ) is determined as follows:
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Case 1: If −v∞(j(φ)) 6 q, then ν1,∞(φ) = ν2,∞(φ) =−s̃1(φ),

Case 2: If q <−v∞(j(φ)) 6 qm+1, then ν1,∞(φ) =−s1(φ) and ν2,∞(φ) =

−s1(φ)− κφ, where notations for s1(φ) and s̃1(φ) are given in Notation 1.

Combining all these yields the result.

Remark 3.3. Under the assumptions of Theorem 3.2, if −v∞(j(φ)) 6 q,

then γφ 6 (q2 − 1)(q2 − q), and if q <−v∞(j(φ)) 6 qm+1, then we see that

γφ,a 6 (q2 − 1)(q2 − q)
(

1 +
m(q − 1)

v∞(a1(φ)) + q

)
.

Recall the isogeny theorem for Drinfeld A-modules, proven in [27,

Proposition 3.1].

Theorem 3.4. Let φ and φ′ be rank r Drinfeld A-modules over K. Then

φ and φ′ are K-isogenous if and only if P℘(φ)(X) = P℘(φ′)(X) for all but

finitely many primes ℘ of K.

The following theorem is an explicit and effective version of the isogeny

theorem for rank 2 Drinfeld A-modules over K. The proof of Theorem 3.5

is similar to that of [3, Theorem 1.2], except that it uses more refined

and explicit bound on the different divisor and the degree of constant field

extensions given in Theorems 3.1 and 3.2. For completeness, we summarize

the proof to explain and justify all the new constants, for example, c0, sq, Cq,

κφi , s1(φi), δφi , which arise.

Theorem 3.5. Let φ1 and φ2 be Drinfeld A-modules of rank 2 over

K which are not K-isogenous with φi(T ) = T + a1(φi)τ + a2(φi)τ
2 for i=

1, 2. Let j(φi) = a1(φi)
q+1/a2(φi) and mi be the least positive integer such

that −v∞(j(φi)) 6 qmi+1 for i= 1, 2. Let S = Sφ1 ∪ Sφ2 ∪ {∞} be the set of

primes of bad reduction of φ1 or φ2 over K together with the infinite prime

∞ of K.

Assume that ℘ 6∈ S is a prime of K of least degree such that P℘(φ1) 6=
P℘(φ2). Then we have

(4) degK ℘6 4
(
Cq +W + sq logq(c0 +W )

)
,

where we let c0, sq, Cq, κφi , s1(φi), δφi and ηφi for each φi, i= 1, 2 be the

same as given in Notation 1, and
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W = log∗q

(
degK ηφ1ηφ2 +

2

q − 1
degK δφ1δφ2

+ 2 + κφ1
(
qκφ1+1 − 1

)
+ κφ2

(
qκφ2+1 − 1

) )
+

1

4
((q2 − 1)(q2 − q))2

(
1 +

κφ1
s1(φ1)

) (
1 +

κφ2
s1(φ2)

)
.

Proof. Let ℘ 6∈ S be a prime of K with least degree such that P℘(φ1) 6=
P℘(φ2) (which exists from the hypotheses and Theorem 3.4). Let α0 be a

nonzero coefficient of P℘(φ1)− P℘(φ2). It is known that a root γ of P℘(φ1)

or P℘(φ2) satisfies

v∞(γ) =−1
2 degK ℘,

(cf. [10, Theorem 3.2.3(c)(d)], [12, Proposition 9]). This implies that each

coefficient β of P℘(φ1) and P℘(φ2) satisfies degK β 6 degK ℘, and hence

each coefficient α of P℘(φ1)− P℘(φ2) also satisfies degK α6 degK ℘, in

particular degK α0 6 degK ℘.

We choose a finite prime L of K by [3, Lemma 5.2] such that

(5) α0 6≡ 0 (mod L) and degK L6 1 + logq degK ℘,

and write L = (a), where a is monic in A. Note that either degK ℘6 2 or

L 6= ℘ by the above inequality.

Suppose we are now in the latter case where L 6= ℘. Consider the

representation

ψL :GK →AutA/L(φ1[L])×AutA/L(φ2[L])∼= GL2(A/L)×GL2(A/L),

where ψL = ρφ1,L × ρφ2,L. Let GL be the image of this homomorphism. Let

CL be the subset of GL consisting of pairs (a, b) such that the characteristic

polynomials of a and b are not equal. Note that CL is invariant under

conjugation, so it is a union of conjugacy classes in GL. Since L 6= ℘, we

have that CL 6= ∅, and in particular, there is some conjugacy class C ⊆ CL

in GL with C 6= ∅.
Let SL = S ∪ {L}. Then the Galois representation ψL is unramified

outside SL. We have that A/L∼= F` where `= qdegK L. Let K̃/K be the

field extension associated to ψL, and let n (resp. n′) be its extension degree

(resp. geometric extension degree). By an explicit Chebotarev argument
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as in [3, Theorem 1.2], we deduce that there is a prime P 6∈ SL such that

FrobP = C ⊆ CL and

(6) degK P 6 4 logq
4
3(B + 3) +m,

where

Σ′ :=
∑
p∈SL

p> Σ :=
∑
p∈S

p, m= [F
K̃

: FK ],

degK Σ′ 6 degK ηφ1ηφ2 + degK L + 1,(7)

D = D(K̃/K) is the different divisor ofK̃/K,

B = max
{

degK Σ′, deg
K̃
D, 2

}
.

By using the explicit bound on the different divisor D in Theorem 3.1, we

obtain

deg
K̃
D6 n′

(
4 degK a+ degK ηφ1ηφ2 +

2

q − 1
degK δφ1δφ2 + εφ1,φ2

)
,(8)

where εφ1,φ2 := 2 + κφ1
(
qκφ1+1 − 1

)
+ κφ2

(
qκφ2+1 − 1

)
.

Then from (6) and (7), we note that B is bounded above by the upper

bound of deg
K̃
D in (8); thus we have that

logq
4

3
B 6 logq n

′ + logq
16

3
+ logq(logq `) + log∗q

×
(

degK ηφ1ηφ2 +
2

q − 1
degK δφ1δφ2 + εφ1,φ2

)
.

(We use the inequality logq(x+ y) 6 logq x+ logq y for x, y > 2; in more

detail, in (8), both 4 degK a and the other terms, degK ηφ1ηφ2 +

(2/(q − 1)) degK δφ1δφ2 + εφ1,φ2 , are greater than 2 since εφ1,φ2 > 2.)

We note that n′ 6 n= |GL|< `8, so logq n
′ < 8 logq `. Returning to (6),

we obtain

degK P 6 4

(
logq

64

3
+ logq(logq `) + 8 logq `

+ log∗q

(
degK ηφ1ηφ2 +

2

q − 1
degK δφ1δφ2 + εφ1,φ2

) )
+m

6 4

(
logq

64

3
+ 9 logq `+ log∗q

(
degK ηφ1ηφ2

+
2

q − 1
degK δφ1δφ2 + εφ1,φ2

))
+m.
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By construction of CL, we have that PP (φ1) 6≡ PP (φ2) (mod L). Thus, we

have degK ℘6 degK P , and from (5), it follows that

degK ℘ 6 4

(
logq

64

3
+ 9(1 + logq degK ℘) + log∗q

×
(

degK ηφ1ηφ2 +
2

q − 1
degK δφ1δφ2 + εφ1,φ2

)
+
m

4

)
.(9)

As 1 + logq y > 1 and (logq y)/y 6 1, we have that

degK ℘

1 + logq(degK ℘)
6 4(c0 +W0),

where c0 := 9 + logq (64/3) and W0 := log∗q(degK ηφ1ηφ2 + (2/(q − 1))

degK δφ1δφ2 + εφ1,φ2) +m/4.

Thus, (9) can be written as follows:

(10) degK ℘6 4(c0 +W0 + 9 logq degK ℘).

Let t∗ = (ln(qc0)− 1)/ ln(qc0) and s∗ = 1/t∗ = ln(qc0)/(ln(qc0)− 1). If x :=

degK ℘> c0, then using [3, Lemma 5.3 and the calculation in (32)] with

c∗ = c0, we see that

logq degK ℘= logq x 6
1

t∗
logq

(
4(c0 +W0)

1 + logq c0

c
1/ ln(qc0)
0

)
6 s∗

(
logq 4 + logq(c0 +W0) + logq(1 + logq c0)

)
+

(
1

1− ln(qc0)

)
logq c0

6 s∗
(
logq 4 + logq(c0 +W0) + logq(1 + logq c0)

)
+ logq c0.(11)

Substitution of (11) into (10) yields

(12) 1
4 degK ℘6 Cq +W0 + 9s∗ logq(c0 +W0),

where Cq := c0 + 9 logq c0 + 9s∗
(
logq 4 + logq(1 + logq c0)

)
.
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Finally, from Theorem 3.2, it follows that m6 γφ1γφ2 and

γφ1γφ2 6 ((q2 − 1)(q2 − q))2

(
1 +

κφ1
s1(φ1)

) (
1 +

κφ2
s1(φ2)

)
.

Therefore, we either have the above upper bound (12) on degK ℘ or

degK ℘6 c0 6 Cq; so in the end, we get

(13) degK ℘6 4
(
Cq +W + sq logq(c0 +W )

)
,

where sq = 9s∗. The result thus follows as desired.

§4. Twists of Drinfeld modules

Let L/K be an extension where K = Fq(T ). Suppose that φ and φ′ are

rank r Drinfeld A-modules over K given by

φ(T ) =
r∑
j=0

ajτ
j and φ′(T ) =

r∑
j=0

a′jτ
j .

Then φ and φ′ are isomorphic over L if and only if there is a c ∈ L∗ such

that

φ′(T )c=

(
r∑
i=0

a′jτ
j

)
c= c

 r∑
j=0

cq
j−1a′jτ

j

= cφ(T ).

Explicitly, this implies that a′j = aj/c
qj−1 for any j = 0, 1, . . . , r. Here c ∈ L∗

is regarded as an element of HomL(φ, φ′) and induces a map L→ L as

Drinfeld A-modules by x 7→ cx, where the first L is an A-module under φ

and the second under φ′.

Lemma 4.1. Let K = Fq(T ) and q be odd. For Drinfeld A-modules φ, φ′

of rank r over K, suppose there is an isomorphism f(x) = cx from φ to φ′

given by cφa = φ′ac, where c= δ1/(q−1) for some δ ∈K∗. Let ε :GK → F×q
denote the Galois character such that σ(c) = ε(σ)c for σ ∈GK . Let φ[a] and

φ′[a] be the A-modules of a-torsion points of φ, φ′ with a ∈A nonzero and

let

ρφ,a :GK →GL(φ[a]), ρφ′,a :GK →GL(φ′[a])

be their associated mod a representations. Then ρφ′,a ∼= ρφ,a ⊗ ε.

Proof. Let ψ : φ[a]→ φ′[a] be the isomorphism induced by f , namely

P 7→ cP , where P ∈ φ[a]. For P ∈ φ[a], we then have that ρφ′,a(σ)(ψ(P )) =

ρφ′,a(σ)cP = σ(cP ) = σ(c)σ(P ) = ε(σ)cσ(P ) = ε(σ)ψ(ρφ,a(σ)(P )),hence the

result follows.
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In the above lemma, we call the resulting φ′ the twist of φ by ε.

Lemma 4.2. Let φ, φ′ be Drinfeld A-modules of rank r over K = Fq(T ),

and suppose that φ′ is the twist of φ by a nontrivial character ε :GK → F×q .

Assume that End(φ) = φ(A) (that is, φ has no complex multiplication). Then

φ and φ′ are not K-isogenous.

Proof. We note that there is an isomorphism ψ : φ′→ φ defined over K

but not over K. Explicitly, it is given by the element c ∈K∗ but not in K∗

such that cφ′(a) = φ(a)c for all a ∈A.

Suppose there is a K-isogeny λ : φ→ φ′. Explicitly, there is a g ∈K {τ}
such that gφ(a) = φ′(a)g for all a ∈A. Hence, ψ ◦ λ : φ→ φ is given by cg so

that (cg)φ(a) = φ(a)(cg) for all a ∈A. We may assume now that cg ∈ φ(A) or

else End(φ) is strictly bigger than φ(A). Hence, cg = φ(m) for some m ∈A.

But this means that c ∈K {τ}, contradicting the fact that c ∈K∗ but not

in K∗.

Lemma 4.3. Let φ1, φ2 be Drinfeld A-modules of rank 2 over K = Fq(T ),

and suppose φ2 is the twist of φ1 by a nontrivial character ε :GK → F×q
which is ramified on a subset of the set of primes of bad reduction of φ1.

Then the bound on the different divisor for K(φ2[a])/K from Theorem 3.1

can be taken to be the bound on the different divisor for K(φ1[a])/K from

Theorem 3.1.

Proof. This follows from the fact that the dependence of the bounds

from Theorem 3.1 on φ is only through the j-invariant of φ and the set of

primes of bad reduction of φ.

§5. Semi-stable reduction in rank 2 and Weil pairings

Let P be a finite prime of K, KP be the completion at P of K and

OP ⊆KP be the valuation ring of P . We say that a Drinfeld A-module φ

of rank 2 over K has stable reduction at P if there exists a Drinfeld module

φ′ over KP which is integral over OP such that its reduction modulo P

defines a Drinfeld module over OP /P and φ′ is isomorphic to φ over KP .

Furthermore, we say that φ has good reduction at P if φ has stable reduction

at P such that P - a2(φ), otherwise we say that φ has bad reduction at P .

If φ has bad reduction at P , but has stable reduction over OP such that

P - a1(φ), we say that φ has bad Tate reduction at P . If φ has good reduction,

or bad Tate reduction at P , we say that φ is semi-stable reduction at P .
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Lemma 5.1. Let P be a finite prime of K and OP ⊆KP be the

valuation ring of P . Let φ be a Drinfeld A-module of rank 2 over K,

with φ(T ) = i(T ) + a1(φ)τ + a2(φ)τ2, and a1(φ), a2(φ) ∈ OP . Then there is

a finite tamely ramified extension K ′/KP such that φ attains semi-stable

reduction over K ′ and the degree of Knr
P ·K ′/Knr

P divides q2 − 1, where Knr
P

is the maximal unramified extension of KP .

Proof. A twist φ′ of φ has the form:

φ′(T ) = T + a1(φ′)τ + a2(φ′)τ2

= T + a1(φ)cq−1τ + a2(φ)cq
2−1τ2.

Let π ∈ OP be a uniformizer, and let v be the corresponding valuation at

P of K which we extend to K.

Recall j(φ) = a1(φ)q+1/a2(φ).

Case v(j(φ)) > 0: Let c= 1/πv(a2(φ))/(q2−1). The corresponding twist

φ′ over K ′ then has v(a1(φ′)) = v(a1(φ)cq−1) > 0 and v(a2(φ′)) =

v(a2(φ)cq
2−1) = 0, where K ′ =KP (πv(a2(φ))/(q2−1)). Hence, φ′ has good

reduction over K ′.

Case v(j(φ))< 0: Let c= 1/πv(a1(φ))/(q−1). The corresponding twist φ′

then has v(a1(φ′)) = v(a1(φ)cq−1) = 0 and v(a2(φ′)) = v(a2(φ)cq
2−1)> 0,

where K ′ =KP (πv(a1(φ))/(q−1)). Hence, φ′ has bad Tate reduction over K ′.

In both cases, K ′/KP is tamely ramified and the degree of Knr
P ·K ′/Knr

P

divides q2 − 1.

Theorem 5.2. Let φ be a Drinfeld A-module over K of rank 2 with

φ(T ) = i(T ) + a1(φ)τ + a2(φ)τ2, q be odd, and let ψ be the Drinfeld A-

module over K of rank 1 defined by ψ(T ) = T − a2(φ)τ . If ℘ is a finite

prime of K, then we have that

det ρφ,℘ = ρψ,℘.

Proof. This follows by combining the second part of [31, Theorem 5.3]

and [31, Proposition 7.4], under the assumption that φ has rank 2 and

A= Fq[T ]. It can also be deduced by showing that det ρφ,℘ and ρψ,℘ coincide

on Frobenius elements using [8, Theorem 2.11], again under the assumption

that φ has rank 2 and A= Fq[T ], so by the Chebotarev density theorem,

the two Galois characters are the same.

For a definition of the Weil pairing between a Drinfeld A-module and its

dual, see [22].

https://doi.org/10.1017/nmj.2017.26 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.26


EXPLICIT SURJECTIVITY RESULTS FOR DRINFELD MODULES OF RANK 2 31

We use the convention χ(P ) := χ(FrobP ) for a Galois character χ :GK →
(A/℘)×.

Proposition 5.3. Under the hypothesis of Theorem 5.2, we have that

det ρφ,℘(FrobP ) = ρψ,℘(FrobP )≡ ε0(P )P (mod ℘),

for all P not in Sφ and P 6= ℘,∞, where ε0 :GK → F×q ⊆ (A/℘)× is a Galois

character.

Proof. Note that ψ is isomorphic to the Carlitz module C(T ) = T + τ

over K(c), where c= (−a2(φ))1/(q−1), that is, C ◦ f = f ◦ ψ where f(z) = cz.

Thus, we have that ρψ,℘ = ρC,℘ ⊗ ε0, where ε0 :GK → F×q giving the action

of GK on c.

Now, C[P ]∼=A/P and the elements of (A/P )× correspond to the roots

of C(P )(X)/X.

Furthermore, from [23, Theorem 12.10], we have that C(P )(X)/X ∈A[X]

is an Eisenstein polynomial for the prime P . Hence, C(P )(X)≡X |P |
(mod P ), where |P |= qdegK P .

Let P be a prime of K(C[℘]) lying above P . We then have that

C(P )(X)≡X |P | (mod P).

Let λ be a generator for C[℘]. Since FrobP (λ)≡ λ|P | (mod P) and

C(P )(λ)≡ λ|P | (mod P), we have that ρC,℘(FrobP )≡ P (mod ℘).

Thus, we get that det ρφ,℘(FrobP ) = ρψ,℘(FrobP ) = ρC,℘ ⊗ ε0(FrobP )≡
ε0(P )P (mod ℘).

§6. The Cartan case

In this section, we assume throughout that q is odd.

Let φ be a Drinfeld A-module of rank 2 over K without complex

multiplication, and let ℘ be a finite prime of K. In this section, we suppose

throughout that the image of ρφ,℘ lies in the normalizer N of a Cartan

subgroup C of GL2(A/℘) but not in C.
Consider the associated character ε℘ :GK →{±1} obtained by applying

ρφ,℘ and then the quotient map N/C ∼= {±1}. Let K ′/K be the quadratic

extension associated to ε℘.

Gardeyn studies the image of the inertia group IK℘ of ρφ,℘ at the finite

prime ℘ of K [11, Theorem 2.23, Corollary 2.24]. He shows the following

theorem, where we do not need the assumption that the image of ρφ,℘ lies

in the normalizer N of a Cartan subgroup C of GL2(A/℘) but not in C.
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Theorem 6.1. Let φ be a Drinfeld A-module of rank 2 over K with good

reduction at ℘ and IK℘ be the inertia group at ℘ of K. Then ρφ,℘(IK℘) is

(1) a nonsplit Cartan subgroup of order q2
℘ − 1 (if φ has good reduction at

℘ of height 2);

(2) a semisplit Cartan or semisplit Borel subgroup of order divisible by

q℘ − 1 (if φ has good reduction at ℘ of height 1),

where q℘ is the size of the residue field A/℘.

Proof. See [21, Proposition 2.7], [11, Theorem 2.23, Corollary 2.24],

[24, Proposition 11, 12, 13].

Remark 6.2. The elliptic curve analogue of the above theorem is

described in [24, Proposition 11, 12, 13]. The reader may be curious about

the situation of bad Tate reduction at ℘. For elliptic curves, one knows by

[24, Proposition 13], that ρE,p(Ip) lies in a semisplit Borel subgroup if E

has bad multiplicative reduction at p. However, for Drinfeld modules, we

only have that ρφ,℘(I℘) lies in a Borel subgroup, for reasons that we explain

below.

If φ has bad Tate reduction at ℘, then over C℘, where C℘ is the completion

of an algebraic closure of K℘, we have a uniformization [6] given by a

surjective analytic map e℘ : C℘→ C℘ which relates φ to a Drinfeld A-module

ψ of rank 1 with good reduction at ℘ via the relation ψa ◦ e℘ = e℘ ◦ φa. Let

Λ℘ be the set of zeros of e℘. Then by [6], Λ℘ =A · λ1 is an A-lattice in C℘
of rank 1, where the A-module structure on C℘ is given by α · x := ψα(x).

Write ℘= (a). The analytic map e℘ is GK℘-equivariant and induces an

isomorphism ψ−1
℘ (Λ℘)/Λ℘ ∼= φ[℘]. We also have an exact sequence

0→ ψ[℘]→ ψ−1
a (Λ℘)/Λ℘→ Λ℘/a · Λ℘→ 0.

Thus, ρφ,℘ has the form

ρφ,℘ =

(
χ′ ∗
0 χ′′

)
,

where χ′ ∼= ρψ,℘. Since ψ is of rank 1 and has good reduction at ℘, by

application of [21, Proposition 2.7], we see that χ′|I℘ has image F×℘ = (A/℘)×.

Since Λ℘ is GK℘-invariant, we have that

σ(λ1) = χ′′(σ)λ1,

where σ ∈GK,℘ and χ′′(σ) ∈A× = F×q . This implies that λq−1
1 = c ∈K∗℘.

Now, χ′′ is unramified at ℘ if and only if v℘(c)≡ 0 (mod q − 1):
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Write c= uπ(q−1)k+r, where 0 6 r < q − 1, π is a uniformizer for K℘,

and u is a unit in K℘. Then λ1 = u1/(q−1)πkπr/(q−1), which lies in Knr
℘

or Knr
℘ (πr/(q−1)) =Knr

℘ (π1/(q−1)) accordingly as r = 0 or r 6= 0. In the

former case, Knr
℘ (λ1) =Knr

℘ is unramified, and in the latter case, Knr
℘ (λ1) =

Knr
℘ (π1/(q−1)) is tamely ramified.

Thus, in general both χ′ and χ′′ are ramified at ℘.

Lemma 6.3. Suppose ℘ /∈ Sφ and q℘ > 5. Then the character ε℘ is

unramified at ℘.

Proof. Using Theorem 6.1, ρφ,℘(IK℘) is a nonsplit Cartan subgroup,

semisplit Cartan subgroup, or semisplit Borel subgroup. In the first case,

we obtain that ε℘(IK℘) = 1 by definition of ε℘.

Recall we are under the running assumption that ρφ,℘ has image contained

in the normalizer of a Cartan subgroup N . Hence, the last case does not

occur as no semisplit Borel subgroup can be contained in N .

In the second case, ρφ,℘(IK℘) is a semisplit Cartan subgroup contained in

N . As q℘ > 5, it follows that ρφ,℘(IK℘) is the unique such semisplit Cartan

subgroup in N (the proof in [24, Proposition 14] works for general finite

fields). Since this semisplit Cartan subgroup is contained in C, we have that

ε℘(IK℘) = 1.

Corollary 6.4. Assume the notation and hypotheses of Lemma 6.3.

Let φ′ be the twist of φ by the character ε℘. Then

degK ηφηφ′ = degK η2
φ = 2 degK ηφ,

and in fact, ηφ = ηφ′.

Proof. The character ε℘ is unramified outside the set of primes containing

∞ and the primes which divide ηφ. Thus, ηφ′ | ηφ from Lemma 4.1. On the

other hand, φ is the twist of φ′ by ε℘ as well, so we obtain ηφ | ηφ′ .

Let φ′ be the twist of φ by the character ε℘, and let S denote a set of

primes outside of which both φ and φ′ have good reduction. We have that

(14) ρφ′ ,℘
∼= ρφ,℘ ⊗ ε℘

by Lemma 4.1 as φ′ is the twist of φ by ε℘. Thus, aP (φ′) = aP (φ)ε℘(FrobP ),

where a℘(φ) denotes the trace of a Frobenius conjugacy class Frob℘ at

℘ on the Tate module TL(φ), and similarly for aP (φ′). Also, ρφ′,℘ |GK′
∼=

ρφ,℘ |GK′
∼= σ for a 1-dimensional representation σ :GK′ → F×q , so we have
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ρφ′,℘ ∼= IndGKGK′ σ
∼= ρφ,℘. Hence, we have aP (φ′)≡ aP (φ) (mod ℘) for all

primes P 6∈ S. Now, if ε℘(FrobP ) =−1, we get that

(15) ℘ | 2aP (φ)

by the relationship between aP (φ
′
) and aP (φ) following (14). Since φ does

not have complex multiplication and ε℘ is nontrivial, by Lemma 4.2 we

have that φ and φ′ are not K-isogenous. Hence, by the isogeny theorem [27,

Proposition 3.1], there are only finitely many P 6∈ S such that ε℘(FrobP ) =

−1 and aP (φ) = 0.

We now use Theorem 3.5 with φ′ being the twist of φ by ε℘ to obtain the

following result.

Theorem 6.5. Assume that q is odd, ℘ /∈ Sφ, and q℘ > 5. Let φ be a

Drinfeld A-module of rank 2 over K without complex multiplication, and let

℘ be a finite prime of K. Suppose that the image of ρφ,℘ lies in the normalizer

of a Cartan subgroup of GL2(A/℘) but not in the Cartan subgroup. Let

ε℘ :GK → F×q be the associated Galois character as before.

Let p 6∈ S = Sφ ∪ {∞} be a prime of least degree such that ε℘(Frobp) =−1

and ap(φ) 6= 0; such a prime exists since φ has no complex multiplication.

Then

(16) degK p6 4(Cq + W̃ + sq logq(c0 + W̃ )),

where

W̃ := log∗q 2

(
degK ηφ +

2

q − 1
degK δφ + 1 + κφ

(
qκφ+1 − 1

))
+

1

4
((q2 − 1)(q2 − q))2

(
1 +

κφ
s1(φ)

)2

,(17)

and the notation is taken from Notation 1.

Proof. Let φ′ be the twist of φ by ε℘ over K given explicitly by cφa = φ′ac,

where c=
√
δ for some δ ∈K∗ with v∞(δ) 6 0.

We note that if ε℘(Frobp) = 1 then ap(φ) = ap(φ
′). Therefore, if ap(φ) 6=

ap(φ
′), we have that ε℘(Frobp) =−1 and ap(φ) 6= 0.

Since ℘ /∈ Sφ and q℘ > 5, by Corollary 6.4, we have that ηφ = ηφ′ .

Furthermore, as j(φ) = j(φ′), we have that δφ = δφ′ . We thus have s1(φ′) =

s1(φ)− 1
2v∞(δ) since a1(φ′) = a1(φ)/cq−1.
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By taking φ2 = φ′ to be the twist of φ1 = φ by ε℘ and Sφ ∪ Sφ′ ∪ {∞}=

Sφ ∪ {∞}= S, we deduce from Theorem 3.5 that

(18) degK p6 4
(
Cq +W + sq logq(c0 +W )

)
,

where

W = log∗q 2

(
degK ηφ +

2

q − 1
degK δφ + 1 + κφ

(
qκφ+1 − 1

))
+

1

4
((q2 − 1)(q2 − q))2

(
1 +

κφ
s1(φ)

)(
1 +

κφ

s1(φ)− 1
2v∞(δ)

)
.

Since 1/(s1(φ)− 1
2v∞(δ)) 6 1/s1(φ), the result follows.

The above theorem implies the following bound on the degree of ℘ in the

Cartan case:

Theorem 6.6. Assume that q is odd. Let φ be a Drinfeld A-module of

rank 2 over K without complex multiplication, and let ℘ be a finite prime

of K. Suppose that the image of ρφ,℘ lies in the normalizer of a Cartan

subgroup of GL2(A/℘) but not in the Cartan subgroup.

Then either ℘ ∈ Sφ, or

degK ℘6 2
(
Cq + W̃ + sq logq(c0 + W̃ )

)
,

where

W̃ := log∗q 2

(
degK ηφ +

2

q − 1
degK δφ + 1 + κφ

(
qκφ+1 − 1

))
+

1

4
((q2 − 1)(q2 − q))2

(
1 +

κφ
s1(φ)

)2

,(19)

and the quantities in the above formula are as given in Notation 1.

Proof. Note that if q℘ < 5, then the conclusion follows as the bounds on

℘ are larger than 1, so we may assume without generality from now on that

℘ /∈ Sφ and q℘ > 5.

As φ has no complex multiplication, there exists a prime p 6∈ Sφ ∪ {∞}
of least degree such that ε℘(Frobp) =−1 and ap(φ) 6= 0. Then applying

Theorem 6.5, it follows that

(20) degK p6 4
(
Cq + W̃ + sq logq(c0 + W̃ )

)
,

where the quantities in the above formula are as given in Notation 1.
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Then ℘ | 2ap(φ) by (15). Since the analogue of Hasse’s Theorem [7] gives

degK ap(φ) 6 1
2 degK p,

we obtain

(21) degK ℘6 2
(
Cq + W̃ + sq logq(c0 + W̃ )

)
.

Hence, the assertion follows.

§7. The Borel case

The arguments in this section are Drinfeld module analogues of the

arguments in [24, Section 5.6] for elliptic curves.

In this section, let K = Fq(T ). Let φ be a Drinfeld A-module of rank 2

over K without complex multiplication, and let ℘ be a finite prime of K

such that ρφ,℘ is not surjective.

We also suppose that the image of ρφ,℘ lies in a Borel subgroup of

GL2(A/℘).

Let χ′, χ′′ :GK → (A/℘)× be the characters of GK such that

ρφ,℘(g) =

(
χ′(g) ∗

0 χ′′(g)

)
.

We use the convention χ(P ) := χ(FrobP ) for a Galois character χ :GK →
(A/℘)×.

We fix K ⊆KP for each prime P of K.

Recall we let Sφ be the set of primes of bad reduction of φ over K. Let

S′φ be the subset of Sφ of primes where φ does not have bad Tate reduction.

Proposition 7.1. We assume that the image of ρφ,℘ lies in a Borel

subgroup of GL2(A/℘).

(1) The characters χ′ and χ′′ are unramified outside Sφ ∪ {℘,∞}.
(2) For all primes P /∈ Sφ ∪ {℘,∞}, we have that

aP (φ)≡ χ′(P ) + χ′′(P ) (mod ℘) and

ε0(P )P ≡ χ′(P )χ′′(P ) (mod ℘),

where aP (φ) is the trace of ρφ,℘(FrobP ) and ε0 :GK → (A/℘)× is some

character.
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(3) Suppose ℘ /∈ Sφ. Then one of χ′ or χ′′ is unramified at ℘. Denoting this

by α℘, we have that

aP (φ)≡ α℘(P ) + ε0(P )Pα℘(P )−1 (mod ℘),

for all primes P /∈ Sφ ∪ {∞}.
(4) Suppose ℘ /∈ Sφ. Then we have that α

(q−1)(q2−1)nφ
℘ = 1,

where nφ 6 (q2 − 1)(q2 − q)(1 + κφ/s1(φ)) is a positive integer, and s1(φ)

and κφ are the same as given in Notation 1.

Proof. Since ρφ,P is unramified for P /∈ Sφ ∪ {℘,∞}, the same is true for

χ′ and χ′′; hence, the part (1) follows.

If P 6∈ Sφ ∪ {℘,∞}, then from Proposition 5.3, we obtain that ε0(P )P ≡
χ′(P )χ′′(P ) (mod ℘), and hence

aP (φ)≡ χ′(P ) + χ′′(P ) (mod ℘).

Suppose ℘ /∈ Sφ. Then ρφ,℘(IK℘) is a semisplit Cartan or semisplit Borel

subgroup from Theorem 6.1 (the image of ρφ,℘ is assumed to lie in a Borel

subgroup, which does not contain any nonsplit Cartan subgroup, so the

case of a nonsplit Cartan subgroup in Theorem 6.1 does not occur under

the hypotheses of this proposition). From Theorem 6.1, we also know that

χ′ can be assumed to be unramified at ℘, which we now denote by α℘. Thus,

we have

aP (φ)≡ α℘(P ) + ε0(P )Pα℘(P )−1 (mod ℘),

for all P /∈ Sφ ∪ {℘,∞}.
Now, if P = ℘, then we still have

aP (φ) = a℘(φ)≡ α℘(℘) (mod ℘)

by the following argument. Note that we now define a℘(φ) as the trace

of ρφ,℘(Frob℘) on inertial invariants. The inertial invariants under ρφ,℘ are

spanned by the vector T (1, 0). Then we have that Frob℘ acts on the vector
T (1, 0) via α℘, hence a℘(φ)≡ α℘(℘) (mod ℘).

Thus, parts (2) and (3) follow.

For the part (4), suppose that ℘ /∈ Sφ, so as before α℘ is unramified at ℘.

We show that α
(q−1)(q2−1)
℘ is unramified at every prime P 6= ℘. This will

be done according to each of the following cases:
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(i) P ∈ Sφ \ S′φ with P 6= ℘,

(ii) P ∈ S′φ.

In the case (i), P is a prime of bad Tate reduction of φ over K and P 6= ℘.

Then over CP , where CP is the completion of an algebraic closure of KP ,

we have a uniformization [6] given by a surjective analytic map eP : CP →
CP which relates φ to a Drinfeld A-module ψ of rank 1 via the relation

ψa ◦ eP = eP ◦ φa. Let ΛP be the set of zeros of eP . Then by [6], ΛP =A · λ1

is an A-lattice in CP of rank 1, where the A-module structure on CP is

given by α · x := ψα(x).

Let K0
P =KP (ΛP , ψ[℘]). Then Gardeyn [12, pp. 247–248] shows that:

(1) KP (φ[℘])⊆K0
P (ψ−1

P (ΛP )) =K0
P (s1), where s1 ∈ ψ−1

P (λ1);

(2) the conjugates of s1 over K0
P lie in s1 + ψ[℘].

The equality K0
P (ψ−1

P (ΛP )) =K0
P (s1) can be seen as follows. Pick a s1 ∈ CP

such that ψP (s1) = λ1. Then if α ∈A, α · s1 := ψα(s1) so that ψP (α · s1) =

ψP ◦ ψα(s1) = ψα ◦ ψP (s1) = ψα(λ1) = α · λ1. Hence, ψ−1
P (ΛP )⊇A · s1. If

x ∈ ψ−1
P (ΛP ), then ψP (x) = α · λ1 = ψP (α · s1) for some α ∈A. Hence, x ∈

A · s1 + ΛP . Since K0
P ⊇ ΛP , we have K0

P (ψ−1
P (ΛP )) =K0

P (s1).

The above properties yield a representation ρ : Gal(K0
P (s1)/K0

P )→ ψ[℘]

from the formula σ(s1) = s1 + ρ(σ). Hence, the image of ρφ,℘ consists only

of elements of order a power of p when ρφ,℘ is restricted to GK0
P

.

Finally, since P 6= ℘, we have that K0
P /KP (ΛP ) is unramified, so the

inertia subgroup IKP (ΛP ) of KP (ΛP ) is contained in GK0
P

. Hence, the image

ρφ,℘(IKP (ΛP )) consists only of elements of order a power of p. It follows that

χ′, χ′′ are unramified when restricted to GKP (ΛP ).

Since φ has bad Tate reduction at the finite prime P , by [12, Proposition

4(i)], we have that [KP (ΛP ) :KP ] is bounded above by gP = # GL(1, Fq) =

q − 1. In fact, the proof in [12, Proposition 4(i)] shows that [KP (ΛP ) :KP ] |
q − 1. Thus, αq−1

℘ is unramified when restricted to GKP .

In the case (ii), P ∈ Sφ (we then have that P 6= ℘ because ℘ /∈ Sφ ⊇ S′φ).

We know that there exists an extension K ′ of KP such that φ attains semi-

stable reduction over K ′ by Lemma 5.1, and the extension degree [Knr
P ·K ′ :

Knr
P ] divides q2 − 1.

Let P ′ denote the prime of K ′ above the prime P . If P ′ is a bad Tate

reduction prime of φ over K ′, we thus have P ′ 6= ℘′, where ℘′ is a prime of

K ′ lying above ℘, so the same argument as above shows (by replacing K by
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K ′, P by P ′) that αq−1
℘ is unramified when restricted to GK′

P ′
(the results

from [12] used above apply equally well over the extension K ′P ′).

Now Knr
P ·K ′ is Galois over Knr

P of degree dividing q2 − 1, where Knr
P is

the maximal unramified extension of KP . Also, α
(q−1)(q2−1)
℘ is unramified

when restricted to GKP if and only if α
(q−1)(q2−1)
℘ is unramified when

restricted to GKnr
P

, which is the case.

Finally, α
(q−1)(q2−1)
℘ is unramified at every finite prime of K.

Furthermore, we claim that as a character of GK , we have that

α
(q−1)(q2−1)nφ
℘ = 1, where nφ 6 (q2 − 1)(q2 − q)(1 +

κφ
s1(φ)) is a positive inte-

ger.

Let L be a finite, separable, tamely ramified, and geometric extension of

K (recall L is a geometric extension of K if and only if the algebraic closure

of FK in L is FK itself). Suppose that M is a field with K ⊂M ⊂ L and

L/M is unramified except possibly at the primes∞i lying above a prime∞
of M . From Riemann–Hurwitz, since L/K is tamely ramified, we have the

following equality:

2gL − 2 =m(2gK − 2) +
t∑
i=1

(ei − 1)fi,

where m := [L :K], gL (resp. gM ) is the genus of L (resp. M), and ei
(resp. fi) denotes the ramification index (resp. the inertial degree) of

∞i over ∞. This implies that 2gL = 2−m−
∑t

i=1 fi since gM = 0 and∑t
i=1 eifi =m. Thus, we have m6 2−

∑t
i=1 fi 6 1 as gL > 0, and hence

m= 1, that is, L=M .

Suppose that a Galois character ψ :GK → F×℘ is unramified at every finite

prime ofK. Let L be the field cut out by ψ andM = FL ·K = Fqn ·K (where

FL = Fqn is the algebraic closure of FK = Fq in L) so L/M is a geometric

extension. Applying the previous paragraph, we deduce that L=M . It thus

follows that a Galois character ψ :GK → F×℘ which is unramified at every

finite prime of K must factor through the Galois group of a finite constant

field extension FqnK/K for some positive integer n, where n= [FL : FK ].

Applying the above to the character α
(q−1)(q2−1)
℘ (which is unramified at

every finite prime of K) and using Theorem 3.2, we get α
(q−1)(q2−1)nφ
℘ =

1, where nφ 6 (q2 − 1)(q2 − q)(1 + κφ/s1(φ)) is a positive integer as

claimed.
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Theorem 7.2. Let K = Fq(T ) and φ be a Drinfeld A-module of rank 2

over K without complex multiplication and ℘ be a finite prime of K. Let P

be the least degree prime of K where φ has good reduction.

Suppose that the image of ρφ,℘ lies in a Borel subgroup of GL2(A/℘).

Then either

℘ ∈ Sφ or degK ℘6 ϕ((q − 1)(q2 − 1)nφ) degK P,

where ϕ is the Euler-phi function, s1(φ) and κφ are the same as given in

Notation 1, and nφ 6 (q2 − 1)(q2 − q)(1 + κφ/s1(φ)) is a positive integer.

Proof. Suppose ℘ /∈ Sφ. From Proposition 7.1, we have that

(22) aP (φ)≡ z + ε0(P )Pz−1 (mod ℘),

where z is a (q − 1)(q2 − 1)nφth root of unity in A/℘.

Let d be the order of z, Sd(X) the dth cyclotomic polynomial, and

FP (X) =X2 − aP (φ)X + ε0(P )P .

The congruence in (22) implies that Sd and FP have a common root mod

℘, hence their resultant R ∈A is divisible by ℘. The resultant R is given by

R=
∏

(x− ζ)(x′ − ζ),

where x and x′ are the two roots of FP (X) and ζ runs through the set of

primitive dth roots of unity.

Let |x|= q−v∞(x) denote the absolute value of x associated to the prime

∞. Then we have that

|x|=
∣∣x′∣∣= q(1/2) degK P and

|ζ|= 1.

Hence, we have that

0< |R| 6 max{q(1/2) degK P , 1}2n

= qn degK P ,

where n= deg Sd(X) = ϕ(d). Since d divides (q − 1)(q2 − 1)nφ, we have that

n6 ϕ((q − 1)(q2 − 1)nφ).

Now, ℘ divides R, so we get that

degK ℘6 ϕ((q − 1)(q2 − 1)nφ) degK P.

The result thus follows.
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§8. Proof of Theorem 2.1

Let φ be a Drinfeld A-module of rank 2 over K = Fq(T ) without complex

multiplication, and ℘ be a finite prime of K such that ρφ,℘ is not surjective.

We first recall a classification of the proper maximal subgroups of

PGL2(k), where k is a finite field of characteristic p.

Theorem 8.1. The maximal proper subgroups of PGL2(k), where k is

a finite field of characteristic p, are:

(i) the projective image of a Borel subgroup of GL2(k);

(ii) the projective image of the normalizer of a Cartan subgroup of GL2(k);

(iii) PSL2(k);

(iv) isomorphic to the subgroup PGL2(k′) for some proper subfield k′ of k;

(v) isomorphic to one of the groups A4, S4, or A5.

Proof. This result is stated in [11, Proposition 3.12] as being deduced

from the version of Dickson’s classification of the subgroups of PSL2(k)

proven in [13, Theorem 8.27, Chapter II]. For completeness, we explain how

to deduce the above classification. In order to shorten the arguments, we

also rely on [24, Proposition 16] (or [15, Chapter XI, §2, Theorem 2.3]).

Let K be a finite field of order pf . From [13, Theorem 8.27], a subgroup

of PSL2(K) is one of:

(1) an elementary abelian p-group;

(2) a cyclic group of order n | (pf ± 1)/w where w = (pf − 1, 2);

(3) a dihedral group of order 2n with n as in (2);

(4) isomorphic to A4;

(5) isomorphic to S4;

(6) isomorphic to A5;

(7) a semidirect product of an elementary abelian p-group of order pm with

a cyclic subgroup of order t with t | (pm − 1, pf − 1);

(8) isomorphic to PSL2(K ′), where K ′ is a subfield of K, or PGL2(K ′),

where a quadratic extension of K ′ is a subfield of K.

We note that the proof of [13, Theorem 8.27] shows that the subgroups

in the case (8) are in fact PGL2(K)-conjugate to PSL2(K ′) or PGL2(K ′).

However, since we do not need this additional information for the proof of

our results, we omit further discussion of this point.

Let H̄ be a maximal proper subgroup of PGL2(k). If p -
∣∣H̄∣∣, then we have

that H̄ is
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(1) the projective image of the normalizer of a Cartan subgroup of GL2(k);

(2) isomorphic to A4, S4, or A5

by [24, Proposition 16]. Thus, let us now assume that we are in the case

p |
∣∣H̄∣∣.
If p= 2, then PGL2(k) = PSL2(k). If p is odd, then PGL2(k) is a subgroup

of PSL2(K) where [K : k] = 2. Hence, applying [13, Theorem 8.27] to

PSL2(K), H̄ is isomorphic to one of the eight types of subgroups listed

above.

Cases (2) and (3): The condition p |
∣∣H̄∣∣ implies that we are not in the

case (2). If H̄ is in the case (3), then p= 2. Consider the cyclic subgroup

Z̄ of order n of H̄. If n= 1, then H̄ is generated by a unipotent element of

order 2 and hence lies in a Borel subgroup of GL2(k).

Assume now that n > 1. Since p - n, we have that Z̄ is contained in the

projective image of a Cartan subgroup C̄ of GL2(k) by [24, Proposition

16]. An element of GL2(k) which conjugates a nontrivial element of C̄ to

another nontrivial element of C̄ must in fact normalize all of C̄. Hence H̄

is contained in the projective image of the normalizer of a Cartan subgroup

of GL2(k).

Cases (1) and (7): We show here that H̄ is contained in the projective

image of a Borel subgroup of GL2(k). Let Ē be the elementary abelian

p-subgroup of the case (1) or the case (7). Let E be the inverse image

of Ē under the homomorphism π : SL2(K)→ PSL2(K). Note that E is

abelian and E = E0 × E′ for a unique elementary abelian p-group E0 which

is isomorphic to Ē under π and an abelian group E′ of order coprime to p.

Since every element in E0 has order dividing p and E0 is abelian, it follows

that E0 up to conjugation is contained in the subgroup

U =

{(
1 ∗
0 1

)}
of SL2(K) which has order pf .

An element of SL2(K) which conjugates a nontrivial element of U to

another nontrivial element of U must in fact normalize U . Let H be the

inverse image of H̄ under π. Then H is contained in the normalizer of U in

SL2(K) which is given by{(
a b
0 a−1

)
: a ∈K∗, b ∈K

}
.
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It follows that the line that is fixed by E is also fixed by all of H. Hence,

H̄ is contained in the projective image of a Borel subgroup of GL2(k).

Case (8): Here, H̄ is isomorphic to PGL2(k′) for some proper subfield k′

of k, or PSL2(k).

Assume that q℘ > 5. Suppose also that ℘ /∈ Sφ, so that ρ℘(IK℘) contains a

nonsplit Cartan subgroup or a semisplit Cartan subgroup by Theorem 6.1.

The projective image of a nonsplit Cartan subgroup and of a semisplit

Cartan subgroup has a cyclic subgroup of order at least q℘ ± 1> 5, which

rules out the case (v). On the other hand, the order of the projective image

of a nonsplit Cartan subgroup or of a semisplit Cartan subgroup does not

divide the order of PGL2(k′) for a proper subfield k′ of k, ruling out the

case (iv). Since the image of the determinant map on a nonsplit Cartan and

semisplit Cartan subgroup is (A/℘)×, the case (iii) is ruled out.

Thus, we are in one of the following cases:

(1) Image of ρφ,℘ is contained in the normalizer N of a Cartan subgroup

C, but not in C;
(2) Image of ρφ,℘ is contained in a Borel subgroup;

(3) Image of ρφ,℘ is contained in a nonsplit Cartan subgroup.

Proposition 8.2. Assume q is odd. The representation ρφ,℘ cannot

have image contained in a nonsplit Cartan subgroup.

Proof. Let c̄ be an element of G(K(C[℘])/K)∼= (A/℘)× of order q℘ − 1,

where q℘ = qdegK ℘ and C is the Carlitz module as in Proposition 5.3. Extend

c̄ to an element c ∈GK of order q℘ − 1.

From Proposition 5.3, there is a Galois character ε0 :GK → F×q and a rank

1 Drinfeld A-module ψ such that det ρφ,℘(FrobP ) = ρψ,℘(FrobP )≡ ε0(P )P

(mod ℘) for all primes P of K such that P /∈ Sφ and P 6= ℘,∞.

Let φ′ be the twist of φ by ε−1
0 . From the proof of Proposition 5.3, we have

that det ρφ′,℘ = ρC,℘. If ρφ,℘ has image lying in a nonsplit Cartan subgroup,

then ρφ′,℘ also has image in a nonsplit Cartan subgroup. Therefore, ρφ′,℘(c)

is contained in the scalars, and hence det ρφ′,℘(c) is a square; thus, the

order of det ρφ′,℘(c) divides (q℘ − 1)/2. But det ρφ′,℘(c) = ρC,℘(c) = c̄ has

order q℘ − 1, yielding a contradiction.

Thus, Case (3) is ruled out. We dealt with Case (1) in Section 6, and

with Case (2) in Section 7. Combining all the results together, we obtain

Theorem 2.1.
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