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The nth-order velocity structure function Sn in homogeneous isotropic turbulence is
usually represented by Sn ∼ rζn , where the spatial separation r lies within the inertial
range. The first prediction for ζn (i.e. ζ3 = n/3) was proposed by Kolmogorov (Dokl.
Akad. Nauk SSSR, vol. 30, 1941) using a dimensional argument. Subsequently, starting
with Kolmogorov (J. Fluid Mech., vol. 13, 1962, pp. 82–85), models for the intermittency
of the turbulent energy dissipation have predicted values of ζn that, except for n = 3,
differ from n/3. In order to assess differences between predictions of ζn, we use the
Hölder inequality to derive exact relations, denoted plausibility constraints. We first derive
the constraint ( p3 − p1)ζ2p2 = ( p3 − p2)ζ2p1 + ( p2 − p1)ζ2p3 between the exponents ζ2p,
where p1 ≤ p2 ≤ p3 are any three positive numbers. It is further shown that this relation
leads to ζ2p = pζ2. It is also shown that the relation ζn = n/3, which complies with
ζ2p = pζ2, can be derived from constraints imposed on ζn using the Cauchy–Schwarz
inequality, a special case of the Hölder inequality. These results show that while the
intermittency of ε, which is not ignored in the present analysis, is not incompatible with the
plausible relation ζn = n/3, the prediction ζn = n/3 + αn is not plausible, unless αn = 0.

Key words: isotropic turbulence, turbulence theory

1. Introduction

There is a general consensus that the following power law (or similarity law) holds in the
inertial range of homogeneous isotropic turbulence (HIT), at very, if not infinitely, large
Reynolds numbers:

(δu)n ∼ rζn, (1.1)
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where δu = u(x + r, t)− u(x, t) is the longitudinal velocity increment between two points,
r is the separation between the two points, and t is the time; the overbar represents classical
conventional averaging used regularly in the literature for testing small-scale statistics. The
power-law form (1.1) was first introduced for n = 2 by Kolmogorov (1941a) (hereafter
referred to as K41) on dimensional grounds and written as

(δu)2 = CK(ε̄r)ζ2, (1.2)

where ζ2 = 2/3, CK is supposed to be a universal constant (i.e. independent of the
Reynolds number and the macro flow structure), and ε̄ is the mean turbulent kinetic energy
dissipation rate. To arrive at (1.2), often denoted the 2/3-law, (δu)2 is assumed to depend
only on r and ε̄ in a scaling range, denoted the inertial range, where the effects of viscosity
and the large-scale motion are negligible. This implies that the Reynolds number is infinite
or at least very large. However, acting on a remark made by Landau & Lifshitz (1987),
Kolmogorov (1962) (hereafter referred to as K62) revisited his earlier analysis, and still
based on dimensional grounds, proposed

|(δu)n| = Cn (ε̄r)n/3
(

L
r

)kn(n−3)/2

, (1.3)

where k is a universal constant. The exponent kn(n − 3)/2 is based on the assumption
that the probability density function (p.d.f.) of ε is log-normal; however, this assumption
has been shown to be incorrect and abandoned. Notice the absolute value in (1.3), which
was dropped in the studies that followed. Using the relation ε̄ = Cε(u3

0/L) (where Cε is a
constant), (1.3) is commonly expressed as

(δu)n = Anun
0

( r
L

)ζn
, (1.4)

with ζn = n/3 + αn, where αn is a real number; the scaling set (u0, L) is representative
of the large-scale motion (u0 is often taken as the velocity root mean square (r.m.s.)), and
An is a positive numerical constant that may depend on the flow macrostructure but is
Reynolds-number-independent (see K62). The power law (1.4) (or (1.2) for that matter) is
yet to be derived from the Navier–Stokes equations. Frisch (1995) used this expression for
n = 2p (where p is a positive integer) and applied the Hölder inequality to it to derive his
convexity inequality (see relation (2.2) below). The length scale L was introduced initially
by K62 to account for the intermittency of the turbulent kinetic energy dissipation ε (Frisch
1995) caused by the large-scale motion (Landau & Lifshitz 1987).

In the literature, another scaling set based on the Kolmogorov velocity (vK = (νε̄)1/4)
and Kolmogorov length (η = (ν3/ε̄)1/4) is often used for presenting the data, and we can
use this to rewrite (1.4). Using a simple change of variables where we introduce vK and
η in (1.4), and noting that for HIT, η/L = C−1/4

ε Re−3/4
L and vK/u0 = C1/4

ε Re−1/4
L (we

use the relation ε̄ = Cε(u3
0/L) = v3

K/η, where ReL = u0L/ν is the large-scale Reynolds
number and Cε is a constant), we obtain the trivial relation

Anun
0

(
r
L

)ζn

= Anv
n
K

Re(n−3ζn)/4
L

C(n+ζn)/4
ε

(
r
η

)ζn

, (1.5)
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Scaling of turbulent velocity structure functions

or, following Buaria & Sreenivasan (2022) (see § IV in the supplemental material of Buaria
& Sreenivasan 2022),

Anun
0

(
r
L

)ζn

= Anv
n
K

C−ζn
ε

15(n−3ζn)/4
Re(n−3ζn)/2
λ

(
r
η

)ζn

, (1.6)

since ReL = Cε Re2
λ/15, where Reλ = u0λ/ν is the Taylor microscale Reynolds number.

It is important for the rest of the analysis to stress that relation (1.5) (or (1.6)) is an exact
identity for HIT and, accordingly, both sides of this identity have the exact same range
of r, i.e. η � r � L. The explicit Reynolds number dependence on the right-hand side
of (1.5) and (1.6), which results from the change of variables, warrants a comment. We
observe that when n = 3, the terms Re(n−3ζn)/4

L and Re(n−3ζn)/2
λ disappear, i.e. the explicit

Reynolds number dependence vanishes from the right-hand side of (1.5) and (1.6) because
of the 4/5-law (Kolmogorov 1941b)

(δu)3 = −4
5 ε̄r; (1.7)

that is, ζ3 = 1. Both (1.5) and (1.6) can now be written as

(δu)3 = A3Cε ε̄r. (1.8)

Comparing (1.8) with (1.7) shows that A3 = −(4/5)C−1
ε . Recall that the 4/5-law exists

only when the Reynolds number dependence disappears from the Kármán–Howarth (KH)
equation (Kármán & Howarth 1938) when expressed in terms of (δu)2 and (δu)3. This
means that the effects of viscosity and the large-scale motion, referred to as the finite
Reynolds number (FRN) effect (Antonia & Burattini 2006; Antonia et al. 2019), vanish and
the 4/5-law is verified. Further, there is a strong theoretical basis for the independence of
the Reynolds number in the asymptotic case, ReL → ∞. For example, Djenidi, Antonia &
Tang (2019) showed that as ReL increases, the scaling of the KH equation based on (vK, η)
extends to increasingly larger values of r/η, while the scaling based on (u0, L) extends to
increasingly smaller values of r/L. When ReL → ∞, both scalings hold over a common
range of scales (i.e. the inertial range), and the solutions of the KH equation become
Reynolds-number-independent. It is difficult to imagine that while the FRN effect vanishes
when n = 3, it should persist for all other values of n. The removal of such dependence for
all n requires ζn = n/3, which would lead to the existence of a dual scaling where (δu)n
scales with both (u0, L) and (vK, η) in the inertial range (a plausible derivation of (1.1)
based on this dual scaling is given in Appendix A). However, the multifractal approach
proposes the following model for ζn (Frisch 1995):

ζn = inf
h

[ph + 3 − D(h)], (1.9)

where h is an arbitrary positive scaling exponent, and D(h) is the corresponding
multifractal dimension, assumed to be independent of the way turbulent flows are
generated (Frisch 1995). The model (1.9), which is based on the intermittency of the
velocity and can be related to the multifractal prediction of ζn based on the intermittency
of ε (Meneveau & Sreenivasan 1991; Frisch 1995), was developed to mimic the behaviour
ζn = n/3 + αn of the empirically determined ζn with increasing n, and the constraint
ζ3 = 1.

Clearly, the above discussion illustrates the importance of determining the correct values
of ζn as they will provide a definitive answer to the question: is K62 a more suitable
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descriptor of small-scale turbulence than K41? There are at least two difficulties in relation
to estimating ζn. First, the prospect of determining the power-law form, such (1.1) or
(1.4), from the Navier–Stokes equations is rather grim. That is unfortunate because one
cannot be strictly sure that a power-law formulation for (δu)n is actually consistent with
the Navier–Stokes equations. Indeed, one has to recall that the viscosity is never zero
in these equations, while both K41 and K62 assume that ν has no influence in the inertial
range. This leads to the second difficulty, the empirical estimation of ζn from experimental
and direct numerical simulation data. Such an approach is hindered by the impossibility
of achieving very large Reynolds numbers that would ensure a well-defined inertial range
where the conditions r/η � 1 and r/L � 1 are both satisfied adequately. Nevertheless, it
is generally assumed in theories of steady-state small-scale turbulence that the Reynolds
number is large enough (but not necessarily infinite) so that the small-scale statistics
are Reynolds-number-independent as long as the energy input is balanced by the energy
dissipation. The case ν = 0 (inviscid flow) is actually excluded as it raises the issue of
a singularity or blow-up (see Frisch (1995), who comments on the potential blow-up
at ν = 0); after all, all real flows are viscous. Accordingly, it is in this context that the
power-law form (1.4) is assumed to be Reynolds-number-independent and asymptotically
correct when the Reynolds number is very large. Further, the experimental and direct
numerical simulation data suggest that (δu)n , at least for n = 2, 3 and 4, tends to approach
a power-law behaviour of the form (1.1) as the Reynolds number increases.

It is clear that, at least for a foreseeable future, the ability to reach very large Reynolds
numbers in HIT is quite remote, posing a challenging task for estimating ζn empirically.
Nevertheless, one can still attempt to test the plausibility of ζn predicted by K41, i.e.
ζn = n/3, the models based on the intermittency of ε (i.e. (1.9) or ζn = n/3 + αn), or
indeed any future model for small-scale turbulence in the inertial range, against exact
constraints that have to be satisfied if the predicted values of ζn are to be deemed plausible
(Frisch 1995). One such constraint is given by (1.7) and requires ζ3 to be equal to 1.
In this paper, we follow the approach of Frisch (1995), who proposed a method for
assessing the plausibility of predictions for ζn. Frisch (1995) applied the Hölder inequality
to (1.4), an approach that is independent of any theoretical phenomenology that underpins
(1.4) and yields exact mathematical results. Frisch (1995) considered only (1.4) or the
left-hand side of (1.5). However, since (1.5) is an identity, the same constraints must
be imposed on both sides of this identity. This approach is outlined in § 2 where (1.5)
(or equivalently (1.6)) is treated as a simple ‘mathematical object’ whose theoretical
derivation and physical meaning bear no relevance to the analysis of this section. In § 3, we
discuss the consequences of the mathematical results of § 2 in relation to the predictions
of ζn based on K41 and intermittency models. We then provide concluding remarks in § 4.

2. Plausibility of the exponents ζn

2.1. Plausibility constraints on ζn

In this subsection, we follow K62 and assume that (1.4) – or equivalently, the identity
(1.5) – holds in the inertial range. The method for determining constraints for the
exponents ζn follows that of Frisch (1995), who also assumes that (1.4) holds in the inertial
range, and is based on determining mathematical constraints with which the power-law
exponents must comply. While mathematical constraints, such as those provided by the
Cauchy–Schwarz and Hölder inequalities, bear no relation to the Navier–Stokes equations,
they nevertheless provide rigorous conditions that must be complied with, and thus can be
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Scaling of turbulent velocity structure functions

used as a test for any model that predicts the exponents ζn. Indeed, they provide necessary
(but not sufficient) conditions for assessing the plausibility of the exponents ζn determined
empirically or theoretically (Frisch 1995; Falkovich, Gaweȩdzki & Vergassola 2001; Eling
& Oz 2015). Any value of ζn that fails this plausibility test must be dismissed. It is thus of
interest to apply similar tests to the identities (1.5) and (1.6).

We start by applying the Hölder inequality (Feller 1968) to (δu)2p, and follow Frisch
(1995). Thus we obtain

(
(δu)2p2

)( p3−p1) ≤
(
(δu)2p1

)( p3−p2)
(
(δu)2p3

)( p2−p1)
(2.1)

for any three positive numbers p1 ≤ p2 ≤ p3. When we consider the left-hand side of the
identity (1.5), i.e. (δu)n ∼ (r/L)ζn , we obtain the following constraint imposed on ζ2p:

( p3 − p1)ζ2p2 ≥ ( p3 − p2)ζ2p1 + ( p2 − p1)ζ2p3, (2.2)

since r/L � 1 in the inertial range. This inequality, commonly referred to as the convexity
inequality, is often used to validate or invalidate the exponents ζn obtained empirically or
theoretically (Falkovich et al. 2001; Eling & Oz 2015). However, when we now consider
the right-hand side of (1.5), i.e. (δu)n ∼ (r/η)ζn , (2.1) leads to a new constraint on ζ2p:

( p3 − p1)ζ2p2 ≤ ( p3 − p2)ζ2p1 + ( p2 − p1)ζ2p3, (2.3)

since r/η � 1 in the inertial range. Considering that the inequalities (2.2) and (2.3) result
from (2.1) applied to both sides of the identity (1.5), they are then satisfied simultaneously.
This yields the following relation amongst the exponents ζ2p:

( p3 − p1)ζ2p2 = ( p3 − p2)ζ2p1 + ( p2 − p1)ζ2p3 . (2.4)

Thus for any three positive numbers p1 ≤ p2 ≤ p3, any plausible exponents ζn must obey
relation (2.4), which is a plausibility constraint. This constraint is far more restrictive than
either (2.2) or (2.3). It is important to recall that (1.5), or equivalently (1.6), and (2.1) and
accordingly (2.4) hold only in the inertial range η � r � L when L/η → ∞ as ReL → ∞.
Now, noting that for ζ0 = 0, (δu)0 ∼ rζ0 = 1, we can see that (2.1) holds also when p1 = 0.
Thus taking p1 = 0, p2 = 1 and p3 = n (n ≥ 2) into (2.4) yields

ζ2n = nζ2, (2.5)

which relates ζ2n to ζ2, where the latter remains to be determined. Interestingly, this
relation shows that the power-law exponents of even order increase linearly with n. We also
notice that ζn = n/3 verifies this relation, while ζn = n/3 + αn does not unless αn = 0.
But let us next determine whether a plausible expression for ζn can be derived analytically.

2.2. Determination of plausible ζn

We apply the Cauchy–Schwarz (CS) inequality, which is a particular case of the Hölder
inequality (Feller 1968), to (δu)n. For any arbitrary random variables φ and ψ , the CS
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inequality can be expressed as

|(φψ)|2 ≤ φ2 × ψ2. (2.6)

If we select φ = (δu)n (n ≥ 2) and ψ = 1, then (2.6) leads to

|(δu)n| ≤ (δu)2n1/2
. (2.7)

Applying this relation to the left- and right-hand sides of (1.5) yields

2ζn ≥ ζ2n (2.8)

and
2ζn ≤ ζ2n, (2.9)

respectively. Since these two inequalities are constraints imposed on ζn by applying (2.7)
to both sides of (1.5), they hold simultaneously, which leads to

2ζn = ζ2n. (2.10)

Similarly, selecting now φ = (δu)n−1 and ψ = δu, we have

|(δu)n| = |(δu)(δu)n−1| ≤ (δu)2
1/2
(δu)2n−21/2

(2.11)

which yields
2ζn ≥ ζ2 + ζ2n−2 (2.12)

if one considers the left-hand side of (1.5), and

2ζn ≤ ζ2 + ζ2n−2 (2.13)

if one considers the right-hand side of (1.5). As above, since (2.12) and (2.13) hold
simultaneously, we have

2ζn = ζ2 + ζ2n−2. (2.14)

Using (2.10), we can write (2.14) as

2ζn = ζ2 + 2ζn−1. (2.15)

Applying again the CS inequality to (δu)n−1 = (δu)(δu)n−2 yields

2ζn−1 = ζ2 + ζ2n−4. (2.16)

Combining (2.15) and (2.16), we obtain

2ζn = 2ζ2 + ζ2n−4. (2.17)

Taking n = 3 and noting that ζ3 = 1 (Kolmogorov 1941b), (2.17) leads to

ζ2 = 2
3
. (2.18)

Finally, combining (2.5), (2.10) and (2.18) yields

ζn = n
3
. (2.19)

This result may not be surprising since the CS inequality is a special case of the Hölder
inequality, which led to (2.5) and which is satisfied by ζn = n/3. We can, in fact, expect to
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obtain (2.5) from the CS inequality. This can be shown by applying a recursive process n
times to (2.15) as follows:

2ζn = ζ2 + 2ζn−1 = ζ2 + ζ2 + 2ζn−2 = · · · = nζ2, (2.20)

where we used ζ0 = 0. Now using (2.10) to replace 2ζn by ζ2n, (2.5) is obtained.
It is important to stress that in this section we treat (1.4) as a simple ‘mathematical’

function, regardless of any phenomenology used to derive it, or its physical meaning.
Accordingly, the results of this section are purely mathematical. For example, the results
indicate that the relation (1.9) for ζn fails to comply with the plausibility constraints. It is
only when a physical meaning is attributed to (1.4) that one can draw some conclusions
on the phenomenology used to derive the prediction (1.9). In the present case, the results
show that the relation (1.9) developed under multifractal arguments is not plausible. On
the other hand, the relation ζn = n/3 complies with the plausibility test, suggesting that
the K41 phenomenology is plausible.

3. Discussion

When one attaches a physical meaning to (1.4) and considers the theoretical
phenomenology used to derive it, the result ζn = n/3 obtained in § 2 is somewhat
unexpected and conflicts with the dominant view that ζn = n/3 + αn. Indeed, the starting
point of the determination of ζn is the expression (δu)n ∼ un

0(r/L)
ζn as obtained via K62

or intermittency models, which predict ζn = n/3 + αn. It is important to re-emphasize
that since the analysis in § 2 is purely mathematical, its outcome is independent of the
phenomenology used to derive (1.4). We nevertheless recall that K62 attempts to account
for the effect of the intermittency of ε in the inertial range, and multifractal models have
been proposed to explain the so-called anomalous scaling of ζn, i.e. the deviation of ζn
from n/3 observed in experimental and numerical data (Anselmet et al. 1984; Frisch
1995; Sreenivasan & Antonia 1997; Sreenivasan & Dhruva 1998; Anselmet, Antonia
& Danaila 2001; Chen et al. 2005; Iyer, Sreenivasan & Yeung 2020); the multifractal
prediction (1.9) quantifies this deviation. The anomalous scaling is generally attributed
to the intermittency of ε in the inertial range. The intermittency in the inertial range is
certainly real, as illustrated by the fact that the skewness of δu is not zero, and according
to K62 leads to (1.4), i.e. the starting point of the present analysis. In light of this, the
finding ζn = n/3 would indicate that the intermittency of ε does not necessarily invalidate
the 1941 theory of K41, which is at odds with the arguments that led to the relation (1.9).
We cannot explain why the K62 prediction for ζn and the relation (1.9) do not comply with
the constraints (2.4). We can only provide a few comments. In the multifractal framework,
(1.9) is independent of the way the flow is produced. This requires the Reynolds number to
be large enough for the effect of the large-scale motion to be negligible in the inertial range.
Unless this requirement is truly satisfied, it is difficult to test the multifractal models and
K62 (or K41 for that matter) since both experimental and numerical data will be affected
by the Reynolds number effect (Antonia & Burattini 2006; Antonia et al. 2019). A key
assumption in determining the exponent ζn from experimental and numerical data is that
one can fit a power-law form, such as (1.1), over a range of scales where the effects of
viscosity and the large-scale motion are negligible. This requires a large enough Reynolds
number so that both r/η � 1 and r/L � 1 are satisfied in this range of scales, i.e. the
inertial range; an inertial range where r/L � 1 has yet to be achieved in experiments and
direct numerical simulations. If these conditions are satisfied, then the Kármán–Howarth
equation (Kármán & Howarth 1938) leads to the 4/5-law or (δu)3 = −(4/5)u3

0Cε(r/L),
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as expressed in terms of u0 and L. This means that only when this law is observed can one
expect (δu)n to follow (1.4) in the inertial range. Unfortunately, as noted earlier (Antonia
et al. 2019), this 4/5-law is yet to be observed convincingly in the literature, although
the data indicate that it is approached as the Reynolds number increases. Accordingly, the
determination of ζn from experimental and numerical data is inevitably hindered by the
Reynolds number effect.

Let us now assess the implication of the results of § 2 for the ratio Sn defined as

Sn(r) =
∣∣∣∣∣
(δu)n

(δu)2
n/2

∣∣∣∣∣ . (3.1)

Using (1.5), we then have

Sn(r) ∼
(

r
L

)(ζn−nζ2/2)

∼ Reαλ

(
r
η

)(ζn−nζ2/2)

, (3.2)

where α = 3
2 (nζ2/2 − ζn). When n = 3 and 4, −S3 and S4 are the skewness and flatness

factor of δu, respectively. We have already established relation (2.20) (i.e. 2ζn = nζ2).
Substituting this relation in (3.2) shows that Sn(r) should be independent of both the
Reynolds number and the increment r in the inertial range, leaving Sn as a non-zero
constant. This is at variance with K62. Indeed, for example, when n = 3, K62 predicts
S3(r) ∼ (r/L)−3μ/2, where μ is a small positive number (recall that r � L), implying that
S3(r), and consequently the intermittency, are functions of r in the inertial range. Let us
examine the behaviour of (3.2) in the inertial range. To do that, we arbitrarily set r = λ
(this value of r should adequately satisfy the inertial range requirement – in fact, any value
of r in the inertial range will lead to the same result) in (3.2), and noting that λ/η ∼ Re1/2

λ ,
we obtain

Sn(r = λ) ∼ Re(nζ2/2−ζn)
λ . (3.3)

Unless nζ2/2 − ζn = 0, (3.3) indicates that Sn(r = λ) either increases without bound (if
ζn < nζ2/2) or decreases to zero (if ζn > nζ2/2) with increasing Reλ. However, neither
behaviour seems realistic. Let us take n = 3. It is difficult to imagine that S3(r) can
increase without bound with Reλ in the inertial range, while S3(r) → 0 as r/L → 1. On the
other hand, a decrease of S3(r) as Reλ increases would indicate an unrealistic weakening
of the intermittency with increasing Reλ in the inertial range. The available data for S3
examined by Antonia et al. (2015) (see figure 9 in their paper) indicate that S3(r) slowly
approaches a constant over the range η < r < L as Reλ increases.

In light of the above, it is worthwhile assessing the behaviour of the moments of the
longitudinal velocity gradient, denoted Sn,ux ; the subscript ux stands for the longitudinal
velocity gradient ∂u/∂x. These moments can be obtained by applying the limit r → 0 to
(3.1). Multifractal arguments show that Sn,ux increases with Reλ, that is,

Sn,ux ∼ Reξn
λ , (3.4)

with ξn > 0. Independently of the various arguments used to arrive at (3.4), as well
as of the different expressions for ξn, Sn,ux must be consistent with the Navier–Stokes
equations. To assess this consistency, we once again take n = 3. Starting with the
Kármán–Howarth equation, we can obtain the following expression for S3,ux when r → 0
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(Djenidi et al. 2019):

− S3,ux = 2 × 153/2βK − 60
7

1
Reλ

, (3.5)

where βK = 2G/Reλ; here, G is the destruction coefficient of ε̄ (Batchelor & Townsend
1947). The second term on the right-hand side of (3.5) is associated with the effect of the
large-scale motion. This relation, which must be satisfied in the same way as the 4/5-law is
satisfied in the inertial range, confirms the Reynolds number dependence of S3,ux observed
in experimental and numerical data. However, since Antonia et al. (2015) showed that βK
approaches a constant as Reλ increases, the Reλ dependence of S3,ux gradually vanishes
as the Reynolds number increases, indicating that −S3,ux cannot grow without bound (for
further critical discussion on this issue, see Qian 1994; Antonia et al. 2015; Tang et al.
2019). A similar observation can be made for the flatness factor S4,ux , which can be written
as (Djenidi et al. 2019)

S4,ux = −750
[
γ1,K − 4γ2,K

] − 100
3

S3,ux

Reλ
, (3.6)

where γ1,K and γ2,K are constants when Reλ is sufficiently large; the second term on the
right-hand side of (3.6) is associated with the effect of the large-scale motion. Expressions
(3.5) and (3.6) derived from the Navier–Stokes equations are in conflict with (3.4) unless
ξn = 0.

It is instructive to examine how the multifractal model – or indeed other types of model –
leads to (3.4). Essentially, the restriction that r should be in the inertial range is relaxed, and
the limit r → 0 is allowed. For example, Nelkin (1990) simply extrapolates the multifractal
description of the inertial range down to the dissipative range; Frisch (1995) followed the
same approach. This approach (see also, for example, Wyngaard & Tennekes 1970; Frisch,
Sulem & Nelkin 1978; Van Atta & Antonia 1980; Monin & Yaglom 2007) is inappropriate
since the viscosity, which is a controlling parameter in the dissipative range, is assumed
to have no influence in the inertial range. In fact, Nelkin (1990) acknowledges that this
‘brute-force’ extension of the multifractal picture to the very small scales need not be
correct. In that respect, Nelkin (1990) remarked that Kraichnan (1990) proposed a model in
which nearly exponential tails in the p.d.f. of the velocity derivative exist without recourse
to multifractalisms, and for which S3,ux and S4,ux are independent of the Reynolds number.
One should also point out that using a non-Gaussian p.d.f. of δu with stretched exponential
tails, together with a ‘quasi-closure’ scheme, Qian (1998, 2000, 2001) showed that the
resulting scaling exponents favoured the K41 theory over the K62 theory.

4. Concluding remarks

We have formulated the mathematical constraints on the exponents ζn that have been
predicted by K41 and various intermittency models. In order to do this, the Hölder
inequality has been applied to the identity (1.5). This method is independent of any
phenomenology that underpins (1.4) and yields mathematical conditions, which have been
referred to as plausibility constraints. The latter are independent of the types of arguments
used previously in developing intermittency models that predict ζn. Any plausible
prediction for ζn must comply with these constraints. Thus any prediction for ζn that
fails this plausibility test should result in the abandonment of the corresponding model.
In that regard, we found that predictions for ζn based on K62 or multifractal arguments
and the empirically determined values of ζn reported in the literature are implausible.
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Of course, all models yield the correct value of ζn when n = 3 (i.e. ζ3 = 1) since they
are developed to satisfy the constraint imposed by the 4/5-law. The relation ζn = n/3, as
given by K41, satisfies the plausibility test for all n. It should be stressed that the present
results do not exclude the phenomenon of intermittency since the analysis is performed on
(1.4), whose derivation is based on the phenomenology of the intermittency of small-scale
turbulence. Although relation (1.4) has yet to be derived from the equation of motion and
thus has yet to be validated, its validity has nevertheless been assumed by supporters of
K62. The present analysis assesses the exponents ζn only when (1.4) is assumed to exist and
hold in the inertial range η � r � L when ReL → ∞. In that regard, the results provide
only a set of mathematical constraints for ζn to comply with, and do not offer any direct
insight into the small-scale turbulence phenomenology. For example, they show that while
the intermittency of ε is compatible with the plausible relation ζn = n/3, the prediction
ζn = n/3 + αn is not plausible, unless αn = 0.

We have also derived ζn = n/3 by applying the Cauchy–Schwarz inequality to (1.5),
thus confirming the compliance with the plausibility test. While ζn = n/3 may appear
controversial since it conflicts with the dominant view that ζn is ‘anomalous’, i.e. it
deviates from ζn = n/3 (see Benzi & Biferale (2015) for a relatively short review of work
done in the last decades), it is nevertheless mathematically correct and therefore cannot be
ignored or dismissed, in the same way that the 4/5-law cannot be ignored when models for
ζn are developed. The present results may raise an ‘apparent’ paradox, i.e. ζn = n/3 even
though the phenomenon of intermittency is believed to lead to (1.4) with ζn /= n/3 except
for n = 3. However, the paradox arises only when intermittency models are introduced
to explain ‘pseudo-scaling exponents’ obtained at finite Reynolds numbers. These latter
exponents, if they really exist, are not the exponents that pertain to the inertial range when
Reλ → ∞. It should be recalled that the result ζn = n/3 emerges from the constraints
imposed on (1.4) when Reλ → ∞, the necessary and required condition for both K41 and
K62. Further, when ζn = n/3, (1.4) simply reflects K41; this does not ignore intermittency
since, at least for n = 2 and n = 3, the Kármán–Howarth equation, which does not ignore
intermittency, admits similarity based on either (vK, η) or (u′, L) when Reλ → ∞ (where
u′ is the velocity r.m.s.). In summary, not only is intermittency not excluded from the
present analysis, it is in fact not incompatible with ζn = n/3. Accordingly, while one must
not question the small-scale intermittency, one cannot nevertheless exclude the possibility
that some of the arguments advanced in K62 – which played a major role in guiding
subsequent intermittency models – may be flawed, thus leading to an incorrect prediction
of ζn. For example, a basic assumption of K62 is that the variance of ε increases without
bound with the Reynolds number, while ε̄ remains bounded. This assumption has yet to
be validated. Another critical aspect to be considered when assessing any phenomenology
proposed to describe small-scale turbulence is that the physical results derived from that
phenomenology must be consistent with the Navier–Stokes equations.

The analysis and results reported in the present work apply to values of ζn that pertain to
a well-established inertial range, i.e. when the effect of the Reynolds number and any
influence from the large-scale motion have disappeared. While these results can also
be used for assessing the values of ζn determined empirically from experimental and
numerical simulation data, it should be stressed that the Reynolds number in experiments
and numerical simulations is finite. There is strong evidence that these data are affected by
the finite Reynolds number effect (Qian 1997, 1999, 2000; Moisy, Tabeling & Willaime
1999; Antonia & Burattini 2006; McComb 2014; McComb et al. 2014; Tang et al. 2017;
Antonia et al. 2019). Qian (1997) was first to draw attention to the finite Reynolds number
(FRN) effect. As already mentioned above, Qian (1998) used a non-Gaussian model for the
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p.d.f. of |δu| to show that the anomalous scaling observed in experiments is an FRN effect,
and that normal scaling is valid in the inertial range when Reλ → ∞. This effect has since
been scrutinized fairly comprehensively (e.g. Antonia & Burattini 2006; Tang et al. 2017;
Antonia et al. 2019). The present results vindicate the concerns expressed previously in the
literature with regard to the FRN effect on the magnitude of ‘pseudo-scaling exponents’.
Interestingly, the present results are consistent with Lundgren’s derivation (Lundgren
2002) of (δu)2 ∼ r2/3, which applied a method of matched asymptotic expansions to
the Kármán–Howarth equation (Kármán & Howarth 1938) when Reλ is infinitely large.
His result supports the argument that the departure from K41 or ‘anomalous’ behaviour
observed at finite Reynolds number disappears at infinitely large Reynolds number.

The present results may be perceived to be at odds with those for Burgers turbulence or
for a passive scalar advected by HIT. We note that the present power-law exponent (ζn =
n/3) differs from that in Burgers turbulence i.e. ζn = n for n < 1, and ζn = 1 for n > 1
(Bouchaud, Mézard & Parisi 1995; Frisch 1995; Friedrich et al. 2018). However, caution is
required when comparing Burgers turbulence and three-dimensional HIT. Indeed, it is well
established that the results from the Burgers equation differ from results usually expected
for turbulent flow fields. This may not be too surprising since the Burgers equation not only
does not include a pressure term but lacks an important property attributed to turbulence:
the solutions do not exhibit chaotic features that are sensitive to initial conditions (Bec
& Khanin 2007). Further, it is worth quoting Frisch (1995) in connection to the Burgers
equation: ‘We shall not here open the Pandora’s box of Burgers equation how it does (and
often does not) relate to the turbulence problem’.

Regarding the passive scalar structure functions, if one assumes that (δφ)n ∼ (r/L)αn

holds in the inertial-convective range (Van Atta 1971; Antonia et al. 1984) (as far as we
are aware, a rigorous derivation of the power-law form for (δφ)n that does not introduce
assumptions in the scalar transport equation does not exist), then applying the same
analysis as reported in § 2 would lead to a similar result: α = n/3. To obtain it, all that is
required is to carry out the change of variables L = C1/4

ε Re3/4
L η. This leads to an identity

for (δφ)n similar to the identity (1.5). Also, the transport equation of the turbulent kinetic
energy structure function ((δq2) = (δu)2 + (δv)2 + (δw)2) is similar to that of any scalar
φ (e.g. Djenidi, Antonia & Tang 2022). When the Prandtl number or Schmidt number is
1, there is a ‘perfect’ analogy between (δq2) and (δφ)2. In that case, one should expect
(δφ)2 to behave like (δq2), which according to our results should be (δφ)2 ∼ r2/3 in the
inertial-convective range. The mixed velocity-scalar structure function -δu(δφ)2 behaves
like r, which can be derived easily when the molecular diffusion and the large-scale terms
are dropped from the transport equation of (δφ)2. As in the case of the velocity field,
the intermittency of εφ is not incompatible with this 2/3-law for the passive scalar. The
intermittency of εφ is fully compatible with the 4/3-law (δu)(δφ)2 = −(4/3)εφr derived
from the transport equation for (δφ2) in the inertial-convective range (Yaglom 1949).
Further, Danaila, Antonia & Burattini (2012) presented evidence that suggests that, at the
same Reλ, the scalar variance transfer is closer to the asymptotic value of 4/3 than its
kinetic energy counterpart. On the basis of this evidence and of the relative behaviours of
the u and θ spectra (Danaila & Antonia 2009), one could in fact argue that the scalar field
is ‘less’ anomalous than the velocity field. Such an argument could, however, be fallacious,
partly because the statistics of u and θ are not directly comparable, and also because the
finite Reynolds number effect needs to be fully accounted for.
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Appendix A. Plausible derivation of a power law for (δu)n

We begin our derivation by assuming a dual scaling where (δu)n scales with both (u0, L)
and (vK, η) in the inertial range η � r � L as ReL → ∞, which leads to

(δu)n = un
0 fn(r+) = vn

K gn(r∗), (A1)

where r+ = r/L, r∗ = r/η, and fn and gn are functions independent of the Reynolds
number to be determined. Taking the derivative of (A1) with respect to r yields

∂(δu)n

∂r
= vn

K
∂gn(r∗)
∂r

= un
0
∂fn(r+)
∂r

. (A2)

Using the variable change r = r∗η = r+L, we obtain

vn
K
η

∂gn(r∗)
∂r∗ = un

0
L
∂fn(r+)
∂r+ . (A3)

We now multiply both sides of (A3) by r, and rearrange terms to obtain

r∗ ∂gn(r∗)
∂r∗ = r+ un

0
vn

K

∂fn(r+)
∂r+ . (A4)

Using (A1) in (A4), we arrive at

r∗

gn(r∗)
∂gn(r∗)
∂r∗ = r+

fn(r+)
∂fn(r+)
∂r+ . (A5)

Since in the inertial range η/L → 0, we can treat r∗ and r+ as independent variables, which
implies that each side of (A5) is a constant; we denote that constant by ζn. Integrating each
side of (A5) yields the solutions

gn(r∗) = Bnr∗ζn (A6)

and
fn(r+) = Cnr+ζn, (A7)

where Bn and Cn are constants of integration.
Interestingly, if un

0 fn(r+) and vn
Kgn(r∗) are interpreted as the outer and inner expressions

for (δu)n when r+ → 0 and r∗ → ∞, respectively, then (A1) indicates that there exists a
range of scales, the inertial range, where both solutions overlap. In that respect, the above
derivation of (1.1) is, as already pointed out by Tennekes & Lumley (1972) in the context
of the spectrum of u, akin to the matching method used to derive the log law (or law of
the wall) in a turbulent boundary layer or turbulent channel and pipe flows (Millikan 1939;
Tennekes & Lumley 1972; Barenblatt & Goldenfeld 1995; McKeon & Morrison 2007).
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It is also relevant to point out that Gamard & George (2000) applied a matching method in
the spectral domain using the same two scaling sets as considered here, and recovered, in
the limit of infinitely large Reynolds number, the −5/3-law, i.e. E(k) ∼ k−5/3, where E(k)
is the three-dimensional energy spectrum, and k is the three-dimensional wavenumber.
Lundgren (2002) applied such a method to the Kármán–Howarth equation (Kármán &
Howarth 1938) to derive the 2/3-law (1.2).

Some caution is warranted. The above derivation of (A6) and (A7) is based solely on
the validity of the dual scaling (u0, L) and (vK, η) for (δu)n. We can only note that this
dual scaling is consistent with ζn = n/3.
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