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Abstract

We study the multi-selection version of the so-called odds theorem by Bruss (2000). We
observe a finite number of independent 0/1 (failure/success) random variables sequentially
and want to select the last success. We derive the optimal selection rule when m (≥ 1)
selection chances are given and find that the optimal rule has the form of a combination
of multiple odds-sums. We provide a formula for computing the maximum probability of
selecting the last success when we have m selection chances and also provide closed-form
formulae for m = 2 and 3. For m = 2, we further give the bounds for the maximum
probability of selecting the last success and derive its limit as the number of observations
goes to ∞. An interesting implication of our result is that the limit of the maximum
probability of selecting the last success for m = 2 is consistent with the corresponding
limit for the classical secretary problem with two selection chances.
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1. Introduction

For a positive integer N , let X1, X2, . . . , XN denote independent 0/1 random variables
defined on a probability space (�, F , P). We observe these Xis sequentially and claim that
the ith trial is a success if Xi = 1. The problem lies in finding a rule τ ∈ T to maximize
the probability of selecting the last success, where T is the class of all selection rules such
that {τ = j} ∈ σ(X1, X2, . . . , Xj ), that is, the decision of whether to select the j th success
depends on the information up to j . Let N = {1, 2, . . . , N}, and let pi = P(Xi = 1) and
qi = 1 − pi = P(Xi = 0) for i ∈ N . In addition, let ri, i ∈ N , denote the odds of the ith
trial; that is, ri = pi/qi , where we set ri = +∞ if pi = 1. When exactly one selection chance
was allowed, Bruss [3] solved the problem with elegant simplicity as follows.

Proposition 1.1. (Theorem 1 of [3].) Suppose that exactly one selection chance is given in the
problem above. Then, the optimal selection rule τ

(1)∗ selects the first success after the sum of
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the future odds becomes less than 1; that is

τ (1)∗ = min{i ≥ i(1)∗ : Xi = 1}, (1.1)

i(1)∗ = min

{
i ∈ N :

N∑
j=i+1

rj < 1

}
, (1.2)

where min(∅) = +∞ and
∑b

j=a · = 0 when b < a conventionally. Furthermore, the maximum
probability of ‘win’ (selecting the last success) is given by

P (1)(win) = P
(1)
N (p1, . . . , pN) =

N∏
k=i

(1)∗

qk

N∑
k=i

(1)∗

rk. (1.3)

This result, referred to as the sum-the-odds theorem, or the odds theorem for short, is
attractive because it can be applied to many basic optimal stopping problems, such as betting,
the classical secretary problem (CSP), and the group-interview secretary problem proposed
by Hsiau and Yang [11]. Bruss [3] also proved that P (1)(win) in (1.3) is bounded below by
R(1)e−R(1)

with R(1) = ∑N

j=i
(1)∗

rj . Remarkably, in [4], he found that it is bounded below by
e−1 when

∑N
j=1 rj ≥ 1. These results generalize the known lower bounds for the CSP, where

each pi has the specific value of pi = 1/i for i ∈ N (see, e.g. [10]).
After Bruss [3], which includes the problem with a random number of observations, the odds

theorem has been extended in several directions. Bruss and Paindaveine [5] extended it to the
problem of selecting the last � (> 1) successes. Hsiau and Yang [12] considered the problem
with Markov-dependent trials. Recently, Ferguson [8] extended the odds theorem in several
ways, where an infinite number of trials are allowed, the payoff for not selecting till the end is
different from the payoff for selecting a success that is not the last, and the trials are generally
dependent. Furthermore, he applied his extension to the stopping game of Sakaguchi [14].

In this paper we consider yet another extension of the result by Bruss [3]; that is, we are
interested in the problem with multiple selection chances. In our first main result, we derive
the optimal rule for the problem of selecting the last success with m (∈ N ) selection chances
and express the optimal rule as a combination of multiple odds-sums. Our extension is applied
to the multi-selection versions of the problems to which the odds theorem can be applied (see,
e.g. the CSP with multiple selection chances in [9] and [13]). In our second main result, we
provide a formula for computing the probability of win for the problem with m (∈ N ) selection
chances and provide the closed-form formulae for m = 2 and 3. Furthermore, we give the
lower and upper bounds for the maximum probability of win for m = 2 and derive its limit as
N → ∞ under some condition on pi, i ∈ N . This limit of the maximum probability of win is
consistent with the known limit e−1 + e−3/2 for the CSP with two selection chances (see, e.g.
[1], [2], and [9]).

This paper is organized as follows. In Section 2 we consider the optimal rule for the problem
of selecting the last success with m (∈ N ) selection chances. Our approach is essentially based
on the technique of Ano and Ando [1], in which they studied the condition for the monotone
(equivalent, one-step look-ahead) selection rule to be optimal in multiple selection problems.
For more details on the monotone selection problem, we refer the reader to [6] or [7]. In
Section 3 we derive some formulae for the maximum probability of win. We give the bounds
for the maximum probability of win for m = 2 and derive its limit as N → ∞ under some
condition on pi , i ∈ N . Finally, we conclude the paper by making conjectures on the limits of
the maximum probability of win for m ≥ 3 and on the lower bound for m ≥ 2.
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2. Multiple sum-the-odds theorem

Suppose that we are given m (∈ N ) selection chances in the problem described in the
preceding section. Let V

(m)
i , i ∈ N , denote the conditional maximum probability of win

provided that we observe Xi = 1 and select this success when we have at most m selection
chances left. Let W

(m)
i , i ∈ N , denote the conditional maximum probability of win provided

that we observe Xi = 1 and ignore this success when we have at most m selection chances left.
Furthermore, let M

(m)
i , i ∈ N , denote the conditional maximum probability of win provided

that we observe Xi = 1 and decide whether to select when we have at most m selection chances
left. The optimality equation for each m ∈ N is then given by

M
(m)
i = max{V (m)

i , W
(m)
i }, i ∈ N . (2.1)

Clearly, if m > N − i (the remaining selection chances are more than the remaining observa-
tions) and we observe Xi = 1, then the decision to select results in win with probability 1, so
that M(m)

i = V
(m)
i = 1 for i > N −m. In particular, we have M

(m)
N = V

(m)
N = 1 and W

(m)
N = 0

for any m ∈ N .
We observe that V

(m)
i is represented as the sum of two conditional probabilities: the first is

that no success appears in i + 1, . . . , N provided that Xi = 1 and the second is that we finally
win when starting at i + 1 with m − 1 selection chances provided that Xi = 1. Since the latter
conditional probability is equal to W

(m−1)
i , we have, for each m ∈ N ,

V
(m)
i = P(Xi+1 = Xi+2 = · · · = XN = 0 | Xi = 1) + W

(m−1)
i

=
N∏

j=i+1

qj + W
(m−1)
i , i ∈ N , (2.2)

where we set W
(0)
i := 0 for i ∈ N and

∏b
j=a · = 1 when b < a conventionally. The second

equality above follows from the independence of the Xis. On the other hand, W
(m)
i is given as

the conditional probability with which we finally win when we make the optimal decision at
the first success after i provided that Xi = 1, so that, for each m ∈ N ,

W
(m)
i =

N∑
j=i+1

P(Xi+1 = · · · = Xj−1 = 0, Xj = 1 | Xi = 1) M
(m)
j

=
N∑

j=i+1

( j−1∏
k=i+1

qk

)
pj M

(m)
j , i ∈ N . (2.3)

As a preparatory step in studying the problem with multiple selection chances, we hereby
provide an alternative proof of the odds theorem (Proposition 1.1) using the notion of the
monotone stopping rule in [6].

An alternative proof of Proposition 1.1. We prove only the first part of Proposition 1.1. The
monotone selection region for the single selection problem is given by

B(1) := {i ∈ N : G
(1)
i > 0},

where

G
(1)
i := V

(1)
i −

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj V

(1)
j , i ∈ N . (2.4)
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Note that B(1) is the region of i ∈ N such that the probability of win by selecting Xi = 1 is
greater than that by ignoring Xi = 1 and then selecting the first success after Xi . From (2.2)
we have V

(1)
i = ∏N

j=i+1 qj , and, if there exists j ∈ {i +1, . . . , N} such that qj = 0, then (2.4)

leads to G
(1)
i ≤ 0. On the other hand, if qj > 0 for all j = i + 1, . . . , N then (2.4) is written as

G
(1)
i =

N∏
j=i+1

qj −
N∑

j=i+1

( j−1∏
k=i+1

qk

)
pj

( N∏
k=j+1

qk

)

=
N∏

j=i+1

qj

(
1 −

N∑
j=i+1

rj

)
. (2.5)

Therefore, if G
(1)
i > 0 for some i ∈ N then qj > 0 for all j = i + 1, . . . , N and (2.5)

gives
∑N

j=i+1 rj < 1. Conversely, if
∑N

j=i+1 rj < 1 for some i ∈ N then qj > 0 for all
j = i + 1, . . . , N and (2.5) gives G

(1)
i > 0. Namely, G

(1)
i > 0 is equivalent to

∑N
j=i+1 rj < 1

and B(1) is given by

B(1) =
{
i ∈ N :

N∑
j=i+1

rj < 1

}
.

Since
∑N

j=i+1 rj is clearly nonincreasing in i, B(1) is ‘closed’ in the sense of the monotone
problem in [6]; that is, i ∈ B(1) implies that j ∈ B(1) for all j = i, i + 1, . . . , N . Hence, the
optimal rule for the single selection problem is given by (1.1) and (1.2).

We can now state the optimal rules for the multiple selection problem.

Theorem 2.1. Suppose that we have at most m (∈ N ) selection chances. Then, the optimal
selection rule τ

(m)∗ is given by
τ (m)∗ = min{i ≥ i(m)∗ : Xi = 1}, (2.6)

i(m)∗ = min{i ∈ N : H
(m)
i > 0}, (2.7)

where min(∅) = +∞ and, for each i ∈ N , the H
(m)
i , m ∈ N , are recursively defined by

H
(1)
i := 1 −

N∑
j=i+1

rj , (2.8)

H
(m)
i := H

(1)
i +

N∑
j=(i+1)∨i

(m−1)∗

rj H
(m−1)
j , m = 2, 3, . . . , N, (2.9)

with a ∨ b = max{a, b} for a, b ∈ R. In (2.9), if there exists a j ∈ {i + 1, . . . , N} such that
pj = 1 (that is, rj = +∞), then we set H

(m)
i := −∞. Furthermore, we have

1 = i(N)∗ ≤ i(N−1)∗ ≤ · · · ≤ i(1)∗ ≤ N. (2.10)

Proof. The monotone selection region for the problem with m (∈ N ) selection chances is
defined by B(m) := {i ∈ N : G

(m)
i > 0}, where

G
(m)
i := V

(m)
i −

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj V

(m)
j , i ∈ N . (2.11)
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To derive (2.6) and (2.7), it suffices to show that B(m) is closed and satisfies B(m) = {i ∈
N : H

(m)
i > 0}, which is also deduced by verifying that G

(m)
i > 0 is equivalent to H

(m)
i > 0

for each i ∈ N and that i �→ H
(m)
i changes sign from nonpositive to positive at most once. On

the other hand, to obtain (2.10), it suffices to show that H
(m)
i ≥ H

(m−1)
i for i ∈ N such that

H
(m−1)
i > −∞. We verify them by induction on m.
While proving Proposition 1.1, we have observed that G

(1)
i > 0 is equivalent to H

(1)
i > 0

for i ∈ N . In particular, if qj = 0 for some j ∈ {i + 1, . . . , N} then G
(1)
i ≤ 0, while if qj > 0

for all j = i + 1, . . . , N then it holds that G
(1)
i = (

∏N
j=i+1 qj ) H

(1)
i (refer to (2.5) and (2.8)).

We have also observed that i �→ H
(1)
i changes sign from nonpositive to positive at most once.

The inequality H
(2)
i ≥ H

(1)
i for i ∈ N such that H

(1)
i > −∞ is immediately obtained from

(2.9); that is,

H
(2)
i − H

(1)
i =

N∑
j=(i+1)∨i

(1)∗

rj H
(1)
j ≥ 0,

where the last inequality follows from H
(1)
j > 0 for j ≥ i

(1)∗ .
As we apply the induction hypothesis, for m′ = 1, 2, . . . , m with some fixed m ∈ {1, 2, . . . ,

N − 1}, we now assume the following.

(i) G
(m′)
i > 0 is equivalent to H

(m′)
i > 0 for every i ∈ N . In particular, if qj = 0 for some

j ∈ {i + 1, . . . , N} then G
(m′)
i ≤ 0, and if qj > 0 for all j = i + 1, . . . , N then it holds

that G
(m′)
i = (

∏N
j=i+1 qj )H

(m′)
i .

(ii) i �→ H
(m′)
i changes sign from nonpositive to positive at most once.

(iii) H
(m′+1)
i − H

(m′)
i ≥ 0 for i ∈ N such that H

(m′)
i > −∞.

By the induction hypothesis, H
(m)
i > 0 and, equivalently, G

(m)
i > 0 for i ≥ i

(m)∗ . Thus, by (i),
qj > 0 for all j = i

(m)∗ + 1, . . . , N . Let us prove (i)–(iii) for m′ = m+1. We first examine (i).
From (2.11), the monotone selection region in the case with m + 1 selection chances is given
by B(m+1) = {i ∈ N : G

(m+1)
i > 0}, where

G
(m+1)
i = V

(m+1)
i −

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj V

(m+1)
j , i ∈ N . (2.12)

Since V
(m+1)
j = V

(1)
j + W

(m)
j from (2.2), substituting this into (2.12), we obtain

G
(m+1)
i = V

(1)
i + W

(m)
i −

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj (V

(1)
j + W

(m)
j )

= G
(1)
i +

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj (M

(m)
j − W

(m)
j ), (2.13)

where the first term on the right-hand side is obtained from (2.4) and the second term is obtained
from (2.3). By the induction hypothesis we have M

(m)
j = V

(m)
j for j ≥ i

(m)∗ and M
(m)
j = W

(m)
j

for j < i
(m)∗ in (2.1); that is,

M
(m)
j − W

(m)
j =

{
V

(m)
j − W

(m)
j for j ≥ i

(m)∗ ,

0 for j < i
(m)∗ .
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Furthermore, the induction hypothesis reads (2.3) as

W
(m)
j =

N∑
�=j+1

( �−1∏
k=j+1

qk

)
p� V

(m)
� for j ≥ i(m)∗ .

Therefore, from (2.11), we have

M
(m)
j − W

(m)
j = G

(m)
j for j ≥ i(m)∗ .

Substituting this into (2.13), we have

G
(m+1)
i = G

(1)
i +

N∑
j=(i+1)∨i

(m)∗

( j−1∏
k=i+1

qk

)
pj G

(m)
j , i ∈ N . (2.14)

Here, if j ∈ {i +1, . . . , N} exists such that qj = 0, then this j is less than or equal to i
(m)∗ since

qj > 0 for all j = i
(m)∗ + 1, . . . , N . Namely, this occurs only for the case in which i < i

(m)∗ ,
where the first term on the right-hand side of (2.14) is less than or equal to 0 and the second term
is equal to 0; that is, G

(m+1)
i ≤ 0. Conversely, suppose that qj > 0 for all j = i + 1, . . . , N

and some i ∈ N . Then, by the induction hypothesis, applying G
(m′)
i = (

∏N
j=i+1 qj ) H

(m′)
i for

m′ = 1 and m′ = m to (2.14), we obtain

G
(m+1)
i =

( N∏
j=i+1

qj

)
H

(1)
i +

N∑
j=(i+1)∨i

(m)∗

( j−1∏
k=i+1

qk

)
pj

( N∏
�=j+1

q�

)
H

(m)
j

=
N∏

j=i+1

qj

(
H

(1)
i +

N∑
j=(i+1)∨i

(m)∗

rj H
(m)
j

)
,

so that (2.9) leads to

G
(m+1)
i =

( N∏
j=i+1

qj

)
H

(m+1)
i . (2.15)

From the observation above, if G
(m+1)
i > 0 then qj > 0 for all j = i + 1, . . . , N and (2.15)

leads to H
(m+1)
i > 0. Conversely, if H

(m+1)
i > 0 then (2.9) states that H

(1)
i > −∞; that is,

qj > 0 for all j = i + 1, . . . , N . Thus, (2.15) also leads to G
(m+1)
i > 0. Hence, we have (i)

for m′ = m + 1.

Next we prove (ii). By the induction hypothesis, H
(m+1)
i ≥ H

(m)
i for i ∈ N such that

H
(m)
i > −∞ and H

(m)
i > 0 for i ≥ i

(m)∗ ; that is, H
(m+1)
i > 0 for i ≥ i

(m)∗ . For i < i
(m)∗ , we

have
∑N

j=(i+1)∨i
(m)∗

rj H
(m)
j = ∑N

j=i
(m)∗

rj H
(m)
j , which is invariant to i. Thus, (2.9) states that

H
(m+1)
i (= H

(1)
i + constant) is nondecreasing in i (< i

(m)∗ ). Hence, i �→ H
(m+1)
i changes sign

from nonpositive to positive at most once, and (ii) holds for m′ = m + 1.
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Finally, to prove (iii) for m′ = m + 1, we use (2.9) and take the difference between H
(m+2)
i

and H
(m+1)
i ; that is,

H
(m+2)
i − H

(m+1)
i =

N∑
j=(i+1)∨i

(m+1)∗

rj H
(m+1)
j −

N∑
j=(i+1)∨i

(m)∗

rj H
(m)
j

≥
N∑

j=(i+1)∨i
(m)∗

rj (H
(m+1)
j − H

(m)
j )

≥ 0,

where the first inequality follows from H
(m+1)
j > 0 for j ≥ i

(m+1)∗ and i
(m+1)∗ ≤ i

(m)∗ by the
induction hypothesis. The second inequality also follows from the induction hypothesis. Hence,
the induction is completed and so is the proof.

Let h
(m)
i := 1 − H

(m)
i for i and m ∈ N . From (2.9), the h

(m)
i for m ∈ N are then given by

h
(1)
i =

N∑
j=i+1

rj ,

h
(m)
i =

i
(m−1)∗ −1∑
j=i+1

rj +
N∑

j=(i+1)∨i
(m−1)∗

rj h
(m−1)
j , m = 2, 3, . . . .

We can observe from the above equations that each h
(m)
i is expressed as a combination of

multiple odds-sums. For instance, h
(2)
i and h

(3)
i are calculated as

h
(2)
i =

i
(1)∗ −1∑

j=i+1

rj +
N∑

j=(i+1)∨i
(1)∗

rj

N∑
k=j+1

rk, (2.16)

h
(3)
i =

i
(2)∗ −1∑

j=i+1

rj +
N∑

j=(i+1)∨i
(2)∗

rj

{ i
(1)∗ −1∑

k=j+1

rk +
N∑

k=(j+1)∨i
(1)∗

rk

N∑
�=k+1

r�

}
.

The optimal rule for the problem with m (∈ N ) selection chances then reduces to τ
(m)∗ =

min{i ∈ N : h
(m)
i < 1 and Xi = 1}. Hence, we call Theorem 2.1 the ‘multiple sum-the-odds

theorem’, or the ‘multiple odds theorem’ for short.

3. Maximum probability of win

In this section we first derive a formula for computing the maximum probability of win under
the optimal rule with m (∈ N ) selection chances and then provide closed-form formulae for
m = 2 and 3. Then, we give its lower and upper bounds and the limit as N → ∞ for m = 2.

Theorem 3.1. For the problem with at most m (∈ N ) selection chances, the maximum proba-
bility of win under the optimal rule, P (m)(win) = P

(m)
N (p1, . . . , pN), is given by

P (m)(win) =
N∏

j=i
(m)∗

qj

N∑
j=i

(m)∗

rj +
N∑

j=i
(m)∗

( j∏
k=i

(m)∗

qk

)
rj W

(m−1)
j , (3.1)
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where if p
i
(m)∗

= 1 then P (m)(win) = ∏N

k=i
(m)∗ +1

qk + W
(m−1)

i
(m)∗

(note that pj < 1 for all

j = i
(m)∗ + 1, . . . , N). Specifically, for m = 2 and 3,

P (2)(win) =
N∏

j=i
(2)∗

qj

N∑
j=i

(2)∗

rj

(
1 +

i
(1)∗ −1∏

k=j+1

(1 + rk)

N∑
k=(j+1)∨i

(1)∗

rk

)
, (3.2)

P (3)(win) =
N∏

j=i
(3)∗

qj

N∑
j=i

(3)∗

rj

[
1 +

i
(2)∗ −1∏

k=j+1

(1 + rk)

×
N∑

k=(j+1)∨i
(2)∗

rk

(
1 +

i
(1)∗ −1∏

�=k+1

(1 + r�)

N∑
�=(k+1)∨i

(1)∗

r�

)]
.

(3.3)

Proof. Note that the independence of the Xis leads to P (m)(win) = W
(m)

i
(m)∗ −1

under the
optimal selection rule. Thus, from (2.2) and (2.3), we obtain

P (m)(win) =
N∑

j=i
(m)∗

( j−1∏
k=i

(m)∗

qk

)
pj M

(m)
j

=
N∑

j=i
(m)∗

( j−1∏
k=i

(m)∗

qk

)
pj

( N∏
�=j+1

q� + W
(m−1)
j

)
,

where the second equality follows from M
(m)
j = V

(m)
j for j ≥ i

(m)∗ . Hence, (3.1) is easily
obtained.

The probabilities P (2)(win) and P (3)(win) are derived from straightforward calculations.
Since the optimal rule requires the selection of the first success after i

(1)∗ , we have M
(1)
k =

V
(1)
k = ∏N

�=k+1 qk for k ≥ i
(1)∗ . It then follows from (2.3) that

W
(1)
j =

N∑
k=j+1

( k−1∏
�=j+1

q�

)
pk M

(1)
k =

N∏
�=j+1

q�

N∑
k=j+1

rk for j ≥ i(1)∗ − 1.

On the other hand, for j < i
(1)∗ − 1, we have W

(1)
j = W

(1)

i
(1)∗ −1

= ∏N

�=i
(1)∗

q�

∑N

j=i
(1)∗

rj . There-
fore, for each j ∈ N ,

W
(1)
j =

N∏
�=(j+1)∨i

(1)∗

q�

N∑
k=(j+1)∨i

(1)∗

rk.

Substituting this into (3.1) with m = 2 and using 1/qk = 1 + rk yields (3.2).
Using an approach similar to that used above, we obtain

W
(2)
j =

N∏
�=(j+1)∨i

(2)∗

q�

N∑
k=(j+1)∨i

(2)∗

rk

(
1 +

i
(1)∗ −1∏

�=k+1

(1 + r�)

N∑
�=(k+1)∨i

(1)∗

r�

)
.

Substituting this into (3.1) with m = 3 yields (3.3).
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Next, we consider the lower and upper bounds for the maximum probability of win for
m = 2 and its limit as N → ∞. In the following, to emphasize the dependence on N , we
use the subscript ‘N ’, and write P

(m)
N (win) and i

(m)
∗,N occasionally. Let R

(m)
N = ∑N

j=i
(m)
∗,N

rj and

R
(m,2)
N = ∑N

j=i
(m)
∗,N

r2
j for m ∈ N . Note from (1.1) and (2.10) that 0 < min(1,

∑N
j=1 rj ) ≤

R
(1)
N ≤ R

(2)
N ≤ · · · ≤ R

(N)
N ≤ ∑N

j=1 rj . For the single selection problem, Bruss [3] deduced
that

R
(1)
N e−R

(1)
N < P

(1)
N (win) ≤ R

(1)
N e−R

(1)
N +R

(1,2)
N ,

and further proved that, if R
(1)
N → 1 and R

(1,2)
N → 0 as N → ∞, then

P
(1)
N (win) → e−1 as N → ∞.

For the double selection problem, we give the bounds and the limit as N → ∞ for the maximum
probability of win. We observe that our limit e−1 + e−3/2 is the same as that for the CSP with
two selection chances under a reasonable condition on R

(m)
N and R

(m,2)
N as N → ∞ (see, e.g.

[1], [2], and [9]).

Theorem 3.2. For the maximum probability of win with m = 2, we have

P
(2)
N (win) ≥ R

(1)
N e−R

(1)
N + e−R

(2)
N , (3.4)

P
(2)
N (win) < R

(1)
N e−R

(1)
N +R

(1,2)
N + (1 + r

i
(1)∗

R
(1)
N + r

i
(2)∗

)e−R
(2)
N +R

(2,2)
N , (3.5)

where the inequality in (3.4) becomes strict when there is at least one i ∈ N such that pi > 0.
Furthermore, if R

(1)
N → 1, R

(2)
N → 3

2 , R
(1,2)
N → 0, and R

(2,2)
N → 0 as N → ∞, then

P
(2)
N (win) → e−1 + e−3/2 as N → ∞. (3.6)

Proof. We first derive the lower bound of (3.4). A simple expansion of (3.2) in Theorem 3.1
yields

P (2)(win) = R(2)
N∏

j=i
(2)∗

qj + R(1)

i
(1)∗ −1∑

j=i
(2)∗

( j−1∏
k=i

(2)∗

qk

)
pj

( N∏
k=i

(1)∗

qk

)

+
N∏

j=i
(2)∗

qj

N∑
j=i

(1)∗

rj

N∑
k=j+1

rk, (3.7)

where the subscript ‘N ’ is omitted to simplify the notation. In the second term on the right-hand

side (RHS) above, we note that
∑i

(1)∗ −1

j=i
(2)∗

(∏j−1

k=i
(2)∗

qk

)
pj = 1 − ∏i

(1)∗ −1

j=i
(2)∗

qj since it represents

the probability that at least one success appears from i
(2)∗ to i

(1)∗ − 1 when i
(1)∗ > i

(2)∗ (while it
is equal to 0 when i

(1)∗ = i
(2)∗ ). Thus, we obtain

second term on the RHS of (3.7) = R(1)

(
1 −

i
(1)∗ −1∏

j=i
(2)∗

qj

) N∏
k=i

(1)∗

qk

= R(1)

( N∏
j=i

(1)∗

qj −
N∏

j=i
(2)∗

qj

)
. (3.8)
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Consider the third term on the right-hand side of (3.7). Since h
(2)
i = 1 − H

(2)
i ≥ 1 for i < i

(2)∗ ,

substituting i = i
(2)∗ − 1 into (2.16), we have

∑i
(1)∗ −1

j=i
(2)∗

rj + ∑N

j=i
(1)∗

rj
∑N

k=j+1 rk ≥ 1, which

is equivalent to
N∑

j=i
(1)∗

rj

N∑
k=j+1

rk ≥ 1 + R(1) − R(2).

Therefore, we obtain

third term on the RHS of (3.7) ≥ (1 + R(1) − R(2))

N∏
j=i

(2)∗

qj . (3.9)

Substituting (3.8) and (3.9) into (3.7) yields

P (2)(win) ≥ R(1)
N∏

j=i
(1)∗

qj +
N∏

j=i
(2)∗

qj . (3.10)

Here, noting that 1/qj = 1 + rj and taking the logarithm, we have, for any s ∈ N ,

log
N∏

j=s

qj = −
N∑

j=s

log(1 + rj ) ≥ −
N∑

j=s

rj ,

where the inequality follows since log(1 + x) ≤ x for x ≥ 0; the equality follows only when
x = 0. Hence, we obtain

∏N
j=s qj ≥ e−R with R = ∑N

j=s rj , where the inequality becomes
strict unless rs = rs+1 = · · · = rN = 0. Substituting this into (3.10) with s = i

(1)∗ and s = i
(2)∗

yields (3.4).
Next we derive the upper bound of (3.5). For this, we examine the third term on the right-

hand side of (3.7). Since h
(2)
i < 1 for i ≥ i

(2)∗ , substituting i = i
(2)∗ into (2.16), we obtain∑i

(1)∗ −1

j=i
(2)∗ +1

rj + ∑N

j=(i
(2)∗ +1)∨i

(1)∗
rj

∑N
k=j+1 rk < 1, so that

N∑
j=i

(1)∗

rj

N∑
k=j+1

rk < 1 + (1 + r
i
(1)∗

) R(1) − (R(2) − r
i
(2)∗

).

Therefore, we obtain

third term on the RHS of (3.7) <
(
1 + (1 + r

i
(1)∗

) R(1) − R(2) + r
i
(2)∗

) N∏
j=i

(2)∗

qj . (3.11)

Applying (3.8) and (3.11) to (3.7), we obtain

P (2)(win) < R(1)
N∏

j=i
(1)∗

qj + (1 + r
i
(1)∗

R(1) + r
i
(2)∗

)

N∏
j=i

(1)∗

qj . (3.12)
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Here, since 1/qj = 1 + rj , using log(1 + x) ≥ x − x2 for x ≥ 0, we obtain, for any s ∈ N ,

log
N∏

j=s

qj ≤ −
N∑

j=s

rj +
N∑

j=s

r2
j .

Hence, by assigning
∑N

j=s rj = R and
∑N

j=s r2
j = R′, we obtain

∏N
j=s qj ≤ e−R+R′

. Apply-
ing this in (3.12) with s = i

(1)∗ and s = i
(2)∗ , we obtain (3.5).

Finally, we have r
i
(1)
∗,N

→ 0 and r
i
(2)
∗,N

→ 0 as N → ∞, since R
(1,2)
N → 0 and R

(2,2)
N → 0 as

N → ∞, respectively. Therefore, (3.4) and (3.5) yield (3.6) as N → ∞.

As a final remark, in the multiple selection problem, we make two conjectures on the limits
and lower bounds for the maximum probability of win. First, if we conjecture that R

(m)
N and

R
(m,2)
N , m = 1, 2, . . ., have the same limits as those for the CSP with multiple selection chances,

then the limit of the maximum probability of win is also consistent with that for the CSP; that
is,

lim
N→∞ P

(m)
N (win) = lim

N→∞

m∑
j=1

i
(j)∗
N

for m = 1, 2, . . ..

The case in which m = 1 was solved by Bruss [3] and the case in which m = 2 is solved
above. For instance, for the triple selection problem, our conjecture states that, if R

(1)
N → 1,

R
(2)
N → 3

2 , and R
(3)
N → 47

24 with R
(m,2)
N → 0, m = 1, 2, 3, as N → ∞, then

lim
N→∞ P

(3)
N (win) = e−1 + e−3/2 + e−47/24.

On performing some delicate and complicated calculations, this triple selection case could be
confirmed by an approach similar to that for P

(2)
N (win). However, the problem of general m is

more challenging.
Second, for the lower bounds for the maximum probability of win, our conjecture is stated

as follows: for some reasonable condition on pi, i ∈ N ,

P
(m)
N (win) > lim

N→∞

m∑
j=1

i
(j)∗
N

for m = 1, 2, . . ..

For this problem, the case in which m = 1 was solved by Bruss [4]. However, the case in which
m = 2 is still open.
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