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Abstract

Ad hoc teamwork (AHT) refers to the problem of enabling an agent to collaborate with team-
mates without prior coordination. State of the art methods in AHT are data-driven, using a large
labeled dataset of prior observations to model the behavior of other agent types and to determine
the ad hoc agent’s behavior. These methods are computationally expensive, lack transparency,
and make it difficult to adapt to previously unseen changes. Our recent work introduced an
architecture that determined an ad hoc agent’s behavior based on non-monotonic logical rea-
soning with prior commonsense domain knowledge and models learned from limited examples to
predict the behavior of other agents. This paper describes KAT, a knowledge-driven architecture
for AHT that substantially expands our prior architecture’s capabilities to support: (a) online
selection, adaptation, and learning of the behavior prediction models; and (b) collaboration with
teammates in the presence of partial observability and limited communication. We illustrate and
experimentally evaluate KAT’s capabilities in two simulated benchmark domains for multiagent
collaboration: Fort Attack and Half Field Offense. We show that KAT’s performance is better
than a purely knowledge-driven baseline, and comparable with or better than a state of the art
data-driven baseline, particularly in the presence of limited training data, partial observability,
and changes in team composition.

KEYWORDS: knowledge representation, non-monotonic logical reasoning, ecological rationality,
ad hoc teamwork, applications of logic programming.

1 Introduction

Ad hoc teamwork (AHT) is the challenge of enabling an agent (called the ad hoc agent)

to collaborate with previously unknown teammates toward a shared goal (Stone et al.

2010). As motivating examples, consider the simulated multiagent domain Fort Attack

(FA, Figure 1a), where a team of guards has to protect a fort from a team of attack-

ers (Deka and Sycara 2021), and the Half Field Offense domain (HFO, Figure 1d), where

a team of offense agents has to score a goal against a team of defenders that includes

a goalkeeper (Hausknecht et al. 2016). Agents in these domains have limited knowledge

of each other’s capabilities, no prior experience of working as a team, limited ability to

observe the environment (Figure 1b), and limited bandwidth for communication. Such
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Fig. 1. Screenshots: (a, b) fort attack environment; (c, d) half-field offense environment.

scenarios are representative of multiple practical application domains such as disaster

rescue and surveillance.

The state of the art in AHT has transitioned from the use of predetermined policies

for selecting actions in specific states to the use of a key “data-driven” component. This

component uses probabilistic or deep network methods to model the behavior (i.e., action

choice in specific states) of other agents or agent types, and to optimize the ad hoc agent’s

behavior. These methods use a long history of prior experiences in different scenarios,

and of the interactions with these agent types, as training examples. It is difficult to

obtain such training examples in complex domains, and computationally expensive to

build the necessary models or to revise them in response to new situations. At the same

time, just reasoning with prior knowledge will not allow the ad hoc agent to accurately

anticipate the behavior of other agents and it is not possible to encode comprehensive

knowledge about all possible situations. In a departure from existing work, we pursue

a cognitive systems approach, which recognizes that AHT jointly poses representation,

reasoning, and learning challenges, and seeks to leverage the complementary strengths of

knowledge-based reasoning and data-driven learning from limited examples. Specifically,

our knowledge-driven AHT architecture (KAT) builds on knowledge representation (KR)

tools to support:

1. Non-monotonic logical reasoning with prior commonsense domain knowledge and

rapidly-learned predictive models of other agents’ behaviors;

2. Use of reasoning and observations to trigger the selection and adaptation of relevant

agent behavior models, and the learning of new models as needed; and

3. Use of reasoning to guide collaboration with teammates under partial

observability.

In this paper, we build on and significantly extend our recent work that demonstrated

just the first capability (listed above) in the FA domain (Dodampegama and Sridharan

2023a). We use Answer Set Prolog (ASP) for non-monotonic logical reasoning, and

heuristic methods based on ecological rationality principles (Gigerenzer 2020) for rapidly

learning and revising agents’ behavior models. We evaluate KAT’s capabilities in the FA

domain and the more complex HFO domain. We demonstrate that KAT’s performance

is better than that of just the non-monotonic logical reasoning component, and is

comparable or better than state of the art data-driven methods, particularly in the

presence of partial observability and changes in team composition.
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2 Related work

Methods for AHT have been developed under different names and in different communi-

ties over many years, as described in a recent survey (Mirsky et al. 2022). Early work used

specific protocols (‘plays’) to define how an agent should behave in different scenarios

(states) (Bowling and McCracken 2005). Subsequent work used sample-based methods

such as Upper Confidence bounds for Trees (UCT) (Barrett et al. 2013), or combined

UCT with methods that learned models from historical data for online planning (Wu

et al. 2011). More recent methods have included a key data-driven component, using

probabilistic, deep network, and reinforcement learning (RL)-based methods to learn ac-

tion (behavior) choice policies for different types of agents based on a long history of prior

observations of similar agents or situations (Barrett et al. 2017; Rahman et al. 2021). For

example, RL methods have been used to choose the most useful policy (from a set of

learned policies) to control the ad hoc agent in each situation (Barrett et al. 2017), or

to consider predictions from learned policies when selecting an ad hoc agent’s actions for

different types of agents (Santos et al. 2021). Attention-based deep neural networks have

been used to jointly learn policies for different agent types (Chen et al. 2020) and for

different team compositions (Rahman et al. 2021). Other work has combined sampling

strategies with learning methods to optimize performance (Zand et al. 2022). There has

also been work on using deep networks to learn sequential and hierarchical models that

are combined with approximate belief inference methods to achieve teamwork under ad

hoc settings (Zintgraf et al. 2021).

Researchers have explored different communication strategies for AHT. Examples in-

clude a multiagent, multi-armed bandit formulation to broadcast messages to teammates

at a cost (Barrett et al. 2017), and a heuristic method to assess the cost and value of

different queries to be considered for communication (Macke et al. 2021). These meth-

ods, similar to the data-driven methods for AHT discussed above, require considerable

resources (e.g., computation, training examples), build opaque models, and make it dif-

ficult to adapt to changes in team composition.

There has been considerable research in developing action languages and logics for

single- and multiagent domains. This includes action language A for an agent computing

cooperative actions in multiagent domains (Son and Sakama 2010), and action language

C for modeling benchmark multiagent domains with minimal extensions (Baral et al.

2010). Action language B has also been combined with Prolog and ASP to implement a

distributed multiagent planning system that supports communication in a team of col-

laborative agents (Son et al. 2010). More recent work has used B for planning in single

agents and multiagent teams, including a distributed approach based on negotiations for

noncooperative or partially collaborative agents (Son and Balduccini 2018). To model

realistic interactions and revise the domain knowledge of agents, researchers have in-

troduced specific action types, for example, world altering, sensing, and communication

actions (Baral et al. 2010). Recent work has represented these action types in action lan-

guage mA∗ while also supporting epistemic planning and dynamic awareness of action

occurrences (Baral et al. 2022). These studies have demonstrated the expressive power

and reasoning capabilities that logics in general, and non-monotonic logics such as ASP

in particular, provide in the context of multiagent systems. Our work draws on these

findings to address the reasoning and learning challenges faced by an ad hoc agent that
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Fig. 2. Our KAT architecture combines complementary strengths of knowledge-based and
data-driven heuristic reasoning and learning.

has to collaborate with teammates without any prior coordination, and under conditions

of partial observability and limited communication.

3 Architecture

Figure 2 provides an overview of our KAT architecture. KAT enables an ad hoc agent

to perform non-monotonic logical reasoning with prior commonsense domain knowledge,

and with incrementally learned behavior models of teammate and opponent agents. At

each step, valid observations of the domain state are available to all the agents. Each

agent uses these observations to independently determine and execute its individual

actions in the domain. The components of KAT are described below using the following

two example domains.

Example Domain 1: Fort attack (FA). Three guards are protecting a fort from three

attackers. One guard is the ad hoc agent that can adapt to changes in the domain and

team composition. An episode ends if: (a) guards manage to protect the fort for a period

of time; (b) all members of a team are eliminated; or (c) an attacker reaches the fort.

At each step, each agent can move in one of the four cardinal directions with a particu-

lar velocity, turn clockwise or anticlockwise, do nothing, or shoot to kill any agent of the

opposing team that is within its shooting range. The environment provides four types

of built-in policies for guards and attackers (see Section 4.1). The original FA domain

is fully observable, that is, each agent knows the state of other agents at each step. We

simulate partial observability by creating a “forest” in Figure 1b; any agent in this region

is hidden from others.

Example Domain 2: Half field offense (HFO). This simulated 2D soccer domain is

a complex benchmark for multiagent systems and AHT (Hausknecht et al. 2016). Each

game (i.e., episode) is essentially played in one half of the field. The ad hoc agent is one

of the members of the offense team that seeks to score a goal against agents in the team

defending the goal. An episode ends when the: (a) offense team scores a goal; (b) ball
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leaves field; (c) defense team captures the ball; or (d) maximum episode length (500) is

reached.

There are two versions of the HFO domain: (i) limited : with two offense agents and two

defense agents (including the goalkeeper); and (ii) full : with four offense agents and five

defense agents (including the goalkeeper). Similar to prior AHT methods, agents other

than the ad hoc agent are selected from teams created in the RoboCup 2D simulation

league competitions. Specifically, other offense team agents are based on the binary files

of five teams: helios, gliders, cyrus, axiom, aut. For defenders, we use agent2D agents,

whose policy was derived from helios. The strategies of these agent types were trained

using data-driven (probabilistic, deep, reinforcement) learning methods. HFO supports

two state space abstractions: low and high; we use the high-level features. In addition,

there are three abstractions of the action space: primitive, mid-level, and high-level; we

use a combination of mid-level and high-level actions. This choice of representation was

made to facilitate comparison with existing work.

Prior commonsense knowledge in these two domains includes relational descriptions of

some domain attributes (e.g., safe regions), agent attributes (e.g., location), default state-

ments, and axioms governing change in the domain, for example, an agent can only move

to a location nearby, only shoot others within its range (FA), and only score a goal from

a certain angle (HFO). Specific examples of this knowledge are provided later in this sec-

tion. Although this knowledge may need to be revised over time in response to changes

in the domain, we do not explore knowledge acquisition and revision in this paper; for

related work by others in our group, please see the papers by Sridharan and Mota (2023)

and Sridharan and Meadows (2018).

3.1 Knowledge representation and reasoning

In KAT, the transition diagrams of any domains are described in an extension of the

action language ALd (Gelfond and Inclezan 2013). Action languages are formal models

of parts of natural language that are used to describe the transition diagrams of any

given dynamic domain. The domain representation comprises a system description D,
a collection of statements of ALd, and a history H. D has a sorted signature Σ which

consists of actions, statics, that is, domain attributes whose values cannot be changed,

and fluents, that is, domain attributes whose values can be changed by actions. For ex-

ample, Σ in the HFO domain includes basic sorts such as ad hoc agent, external agent,

agent, offense agent, defense agent, x val, y val, and sort step for temporal reason-

ing. Sorts are organized hierarchically, with some sorts, for example, offense agent and

defense agent, being subsorts of others, for example, external agent. Statics in Σ are

relations such as next to(x val, y val, x val, y val) that encode the relative arrangement

of locations (in the HFO domain). The fluents in Σ include inertial fluents that obey

inertia laws and can be changed by actions, and defined fluents that do not obey inertia

laws and are not changed directly by actions. For example, inertial fluents in the HFO

domain include

loc(ad hoc agent, x val, y val) (1)

ball loc(x val, y val)

has ball(agent),
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which describe the location of the ad hoc agent, location of the ball, and the agent that

has control of the ball; the value of these attributes changes as a direct consequence of

executing specific actions. Defined fluents of the HFO domain include

agent loc(external agent, x val, y val) (2)

defense close(agent, defense agent)

far from goal(ad hoc agent),

which encode the location of the external (i.e., non-ad hoc) agents, and describe whether

a defense agent is too close to another agent, and whether the ad hoc agent is far from the

goal. Note that the ad hoc agent has no control over the value of these fluents, although

the hoc agent’s actions can influence the value of these fluents. Next, actions in the HFO

domain include

move(ad hoc agent, x val, y val) (3)

kick goal(ad hoc agent)

dribble(ad hoc agent, x val, y val)

pass(ad hoc agent, offense agent),

which state the ad hoc agent’s ability to move to a location, kick the ball toward the

goal, dribble the ball to a location, and pass the ball to a teammate. Next, axioms in

D describe domain dynamics using elements in Σ in three types of statements: causal

laws, state constraints, and executability conditions. For the HFO domain, this includes

statements such as:

move(R,X, Y ) causes loc(R,X, Y ), (4a)

dribble(R,X, Y ) causes ball loc(X,Y ), (4b)

¬has ball(A1) if has ball(A2), A1 �= A2, (4c)

impossible shoot(R) if far from goal(R). (4d)

where Statements 4(a-b) are causal laws that specify that moving and dribbling change

the ad hoc agent’s and ball’s location (respectively) to the desired location. State-

ment 4(c) is a state constraint that implies that only one agent can control the ball

at any time. Statement 4(d) is an executability condition that prevents the consider-

ation of a shooting action (during planning) if the ad hoc agent is far from the goal.

Finally, the history H is a record of observations of fluents at particular time steps, that

is, obs(fluent, boolean, step), and of action execution at particular time steps, that is,

hpd(action, step). It also includes initial state defaults, that is, statements in the initial

state that are believed to be true in all but a few exceptional circumstances, for example,

the following ALd statement implies that attackers in the FA domain usually spread and

attack the fort:

initial default spread attack(X) if attacker(X). (5)

To enable an ad hoc agent to reason with prior knowledge, the domain description in ALd

is automatically translated to program Π(D,H) in CR-Prolog (Balduccini and Gelfond

2003), an extension to ASP that supports consistency restoring (CR) rules. ASP is based

on stable model semantics and represents constructs difficult to express in classical logic
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formalisms. It encodes concepts such as default negation and epistemic disjunction, and

supports non-monotonic reasoning; this ability to revise previously held conclusions is

essential in AHT. Π(D,H) incorporates the relation holds(fluent, step) to state that a

particular fluent is true at a given step, and occurs(action, step) to state that a particular

action occurs in a plan at a given step. It includes the signature and axioms of D,
inertia axioms, reality checks, closed world assumptions for defined fluents and actions,

observations, actions, and defaults from H, and a CR rule for every default allowing the

agent to assume that the default’s conclusion is false in order to restore consistency under

exceptional circumstances. For example, the CR-Prolog statement:

¬spread attack(X)
+← attacker(X), (6)

allows the ad hoc agent to consider the rare situation of attackers mounting a frontal

attack. Furthermore, it includes helper axioms, for example, to define goals and drive

diagnosis. Reasoning tasks such as planning, diagnosis, and inference are then reduced

to computing answer sets of Π. The ad hoc agent may need to prioritize different goals

at different times, for example, score a goal when it has control of the ball, and position

itself at a suitable location otherwise:

goal(I)← holds(scored goal, I) (7)

goal(I)← holds(loc(ad hoc agent,X, Y ), I).

A suitable goal is selected and included in Π(D,H) automatically at run-time. In ad-

dition, heuristics are encoded to direct the search for plans, for example, the following

statements:

total(S)← S = sum{C,A : occurs(A, I), cost(A,C)} (8)

#minimize{S@p, S : total(S)}.
encourage the ad hoc agent to select actions that will minimize the total cost when

computing action sequences to achieve a particular goal. We use the SPARC system (Balai

et al. 2013) to write and solve CR-Prolog programs. For computational efficiency, these

examples programs build on a refinement-based architecture that represents and reasons

with knowledge at two tightly coupled resolutions, with a fine-resolution description (DF )

defined as a refinement of a coarse-resolution description (DC). For example, the available

space in the FA domain and HFO domain is organized into abstract regions in DC , with

each region being refined in DF into small grids that are components of this region. DC

and DF are formally coupled through component relations and bridge axioms such as:

loc∗(A,Rg) if loc(R,X, Y ), component(X,Y,Rg)

next to∗(Rg2, Rg1) if next to∗(Rg1, Rg2), (9)

where location (X,Y ) is in region Rg and superscript “*” refers to relations in DC . This

coupling between the descriptions enables the ad hoc agent to automatically choose the

relevant part of the relevant description based on the goal or abstract action, and to

transfer relevant information between the descriptions. Example programs are in our

repository (Dodampegama and Sridharan 2023b); details of the refinement-based archi-

tecture are in the paper by Sridharan et al. (2019).
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Table 1. Attributes considered for models of other agents’ behavior in FA domain. Num-

ber of attributes represent the number of variables in each attribute times the number of

agents

Description of attribute Number

x, y position of agent 12
Distance from agent to center of field 6
Agents’ polar angle with center of field 6
Orientation of the agent 6
Distance from agent to fort 6
Distance to nearest attacker from fort 1
Number of attackers not alive 1
Previous action of the agent 1

Table 2. Attributes for models of teammates and defense agents’ behavior in HFO do-

main. Number of attributes represent the number of variables in each attribute times the

number of agents

Description of attribute Number Description of attribute Number

x position of agent 4 x position of agent 4
y position of agent 4 y position of agent 4
Goal opening angle 2 x position of the ball 1
Proximity to the nearest opponent 2 y position of the ball 1
x position of the ball 1
y position of the ball 1

3.2 Agent models and model selection

Since reasoning with just prior domain knowledge can lead to poor team performance

under AHT settings (see Section 4.2), KAT enables the ad hoc agent to also reason

with models that predict (i.e., anticipate) the action choices of other agents. State of the

methods attempt to optimize performance in different (known or potential) situations by

learning models offline from many (e.g., hundred thousands or millions of) examples. It

is intractable to obtain such labeled examples of different situations in complex domains,

and the learned models are truly useful only if they can be learned and revised rapidly

during run-time to account for previously unknown situations. KAT thus chooses relevant

attributes for models that can be: (a) learned from limited (e.g., 10,000) training examples

acquired from simple hand-crafted policies (e.g., spread and shoot in FA, pass when

possible in HFO); and (b) revised rapidly during run-time to provide reasonable accuracy.

Tables 1 and 2 list the identified attributes in the FA and HFO domain respectively.

Similar to our recent work (Dodampegama and Sridharan 2023a), the attributes are

identified and the predictive models are learned using the Ecological Rationality (ER)

approach, which draws on insights from human cognition, Herb Simon’s definition of

Bounded Rationality, and an algorithmic model of heuristics (Gigerenzer 2020; Gigerenzer

and Gaissmaier 2011). ER focuses on decision making under true uncertainty (e.g., in
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open worlds), characterizes behavior as a joint function of internal (cognitive) processes

and the environment, and focuses on satisficing based on differences between observed

and predicted behavior. Also, heuristic methods are viewed as a strategy to ignore part

of the information in order to make decisions more quickly, frugally, and/or accurately

than complex methods. In addition, it advocates the use of an adaptive toolbox of classes

of heuristics (e.g., one-reason, sequential search, lexicographic), and comparative out-of-

sample testing to identify heuristics that best leverage the target domain’s structure.

This approach has provided good performance in many applications (Gigerenzer 2016).

Specifically, in KAT, ER principles such as abstraction and refinement, and statistical

attribute selection methods, are applied to the set of 10,000 samples to identify the key

attributes and their representation in Tables 1 and 2; these define behavior in the FA

domain and HFO domain respectively. The coarse- and fine-resolution representation

described in Section 3.1 is an example of the principle of refinement. In addition to

the choice of features, the characteristic factors of AHT, for example, the need to make

rapid decisions under resource constraints and respond to dynamic changes with limited

examples, are matched with the toolbox of heuristics to identify and use an ensemble of

“fast and frugal” (FF) decision trees to learn the behavior prediction models for each type

of agent. Each FF tree in an ensemble focuses on one valid action, provides a binary class

label, and has the number of leaves limited by the number of attributes (Katsikopoulos

et al. 2021). Figure 3 shows an example of a FF tree learned (as part of the corresponding

ensemble) for a guard agent (Figure 3a) and an attacker agent (Figure 3b) in the FA

domain.

The ad hoc agent’s teammates and opponents may include different types of agents

whose behavior may change over time. Unlike our prior work that used static prediction

models, we enabled the ad hoc agent to respond to such changes by automatically revising

the current model, switching to a relevant model, or learning new models. Existing models

are revised by changing the parameters of the FF trees, and Algorithm 1 is an example

of our approach for selecting a suitable model in the context of predicting the pose (i.e.,

position and orientation) of agents. Specifically, the ad hoc agent periodically compares

the existing models’ predictions with the observed action choices of each agent (team-

mate, opponent) over a sliding window of domain state and the agents’ action choices;

in Algorithm 1, this window is of size 1 (Lines 4–5). Also, a graded strategy is used to

compute the error, penalizing differences in orientation less than differences in position

(Lines 6–7). The model whose predictions best match the observations is selected for

subsequent use and revision (Line 10, Algorithm 1). Note that if none of the models

provide a good match over multiple steps, this acts as a trigger to learn a new model.

3.3 Partial observability and communication

In practical AHT domains, any single agent cannot observe the entire domain and com-

munication is a scarce resource. To explore the interplay between partial observability

and communication, we modified the original domains. Specifically, in the FA domain,

we introduced a forest region where attackers can hide from the view of the two guards

other than ad hoc agent and secretly approach the fort—see Figure 1b. The ad hoc agent

has visibility of the forest region; it can decide when to communicate with its teammates,

for example, when: (a) one or more attackers are hidden in the forest; and (b) one of the
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One FF tree in the ensemble for a guard in the FA domain.

(a)

(b)

One FF tree in the ensemble for an attacker in the FA domain.

Fig. 3. Examples of FF trees for a guard and an attacker in the FA domain.

other guards is closer to the hidden attacker(s) than it. The associated reasoning can be

encoded using statements such as:

holds(shoots(G,AA), I + 1)←occurs(communicate(AHA,G,AA), I), (10a)

holds(in forest(AA), I)←holds(agent loc(AA,X, Y ), I), forest(X,Y ), (10b)

not holds(shot(AA), I),

−occurs(communicate(AHA,G,AA), I)← not holds(in range(G,AA), I). (10c)

where Statement 10(c) encodes that communication is used only when a hidden attacker

is within the range of a teammate (i.e., guard agent); Statement 10(b) defines when

an attacker is hidden; and Statement 10(a) describes the ad hoc agent’s belief that

a teammate receiving information about a hidden attacker will shoot it, although the

teammate acts independently and may choose to ignore this information. If there are

multiple guards satisfying these conditions, the ad hoc agent may only communicate

with the guard closest to the hidden attacker(s).

In the HFO domain, we represent partial observability in an indirect manner using

the built-in ability to limit each agent’s perception to a specific viewing cone relative to

https://doi.org/10.1017/S1471068423000091 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000091


706 H. Dodampegama and M. Sridharan

Algorithm 1: Model Selection

Input: A: other agents;M: subset of behavior models; {aact}, {apred}: actual and
predicted action choices of each agent in current round of the game; scores:

initial values (100) assigned to each agent-model combination.

Output: model: selected model for each agent.

1 for i = 0 to A do

2 for m = 0 toM do

3 if apred[i,m] �= aact[i] then

4 lact, oact ← actual pose(aact)

5 lpred, opred ← predicted pose(apred)

6 penalty ← abs(lact − lpred) + abs(oact − opred)/10

7 scores[i,m] = scores[i,m]− penalty

8 end

9 end

10 model[i] = select model(M, scores[i, *])

11 end

the agent. Specifically, each agent is only able to sense objects (e.g., other agents, ball)

within its viewing cone; objects outside its viewing cone are not visible. Given this use

of built-in functions, we added some helper axioms to ensure that the ad hoc agent only

reasoned with visible objects; no additional communication action was implemented.

4 Experimental setup and results

We experimentally evaluated three hypotheses about KAT’s capabilities:

H1: KAT’s performance is comparable or better than state of the art baselines in dif-

ferent scenarios while requiring much less training;

H2: KAT enables adaptation to unforeseen changes in the type and number of other

agents (teammates and opponents); and

H3: KAT supports adaptation to partial observability with limited communication ca-

pabilities.

We evaluated aspects of H1 and H2 in both domains (FA, HFO) under full observabil-

ity. For H3, we considered partial observability in both domains, and explored limited

communication in the FA domain. Each game (i.e., episode) in the FA domain had three

guards and three attackers, with our ad hoc agent replacing one of the guards. In HFO

domain, each game (i.e., episode) had two offense and two defense players (including one

goalkeeper) in the limited version; and four offense and five defense players (including one

goalkeeper) in the full version. Our ad hoc agent replaced one of the offense agents in the

HFO domain. In the FA domain, the key performance measure was the win percentage

of the guards team. In the HFO domain, the key performance measure was the fraction

of games in which the offense team scored a goal. In both domains, we also measured the

accuracy of the predictive models. Further details of the experiments and the associated

baselines are provided below.
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4.1 Experimental setup

In the FA domain, we used two kinds of policies for the agents other than our ad hoc

agent: hand-crafted policies and built-in policies. Hand-crafted policies were constructed

as simple strategies that produce basic behavior. Built-in policies were provided with the

domain; they are based on graph neural networks trained using many labeled examples.

Hand-Crafted Policies.

• Policy1: guards stay near the fort and shoot attackers who spread and approach.

• Policy2: guards and attackers spread and shoot their opponents.

Built-in Policies.

• Policy220: guards stay in front of the fort and shoot continuously as attackers

approach.

• Policy650: guards try to block the fort; attackers try to sneak in from all sides.

• Policy1240: guards spread and shoot the attackers; attackers sneak in from all

sides.

• Policy1600: guards are willing to move away from the fort; some attackers ap-

proach the fort and shoot to distract the guards while others try to sneak in.

The ad hoc agent was evaluated in two experiments: Exp1, in which other agents followed

the hand-crafted policies; and Exp2, in which other agents followed the built-in policies.

As stated earlier, the ad hoc agent learned behavior models in the form of FF trees from

10,000 state-action observations obtained by running the hand-crafted policies. It was

not provided any prior experience or models of the built-in policies.

Our previous work documented the accuracy of a basic AHT architecture that rea-

soned with some domain knowledge and static behavior prediction models in the FA

domain (Dodampegama and Sridharan 2023a). In this paper, the focus is on evaluating

the ability to select, revise, and learn the relevant predictive models, and adapt to par-

tial observability. For the former, each agent other than our ad hoc agent was assigned a

policy selected randomly from the available policies (described above). The baselines for

this experiment were:

• Base1: other agents followed a random mix of hand-crafted policies. The ad hoc

agent did not revise the learned behavior models or use the model selection algo-

rithm.

• Base2: other agents followed a random mix of hand-crafted policies. The ad hoc

agent used a model selection algorithm without a graded strategy to compare the

predicted and actual actions, that is, fixed penalty assigned for action mismatch in

Line 6 of Algorithm 1.

• Base3: other agents followed a random mix of built-in policies. The ad hoc agent

did not revise the learned behavior models or use the model selection algorithm.

• Base4: other agents followed a random mix of built-in policies. The ad hoc agent

used the model selection algorithm without a graded strategy to compare predicted

and actual actions, that is, fixed penalty assigned for action mismatch in Line 6 of

Algorithm 1.

The baselines for evaluating partial observability and communication were as follows:
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• Base5: in Exp1, other agents followed hand-crafted policies and ad hoc agent did

not use any communication actions.

• Base6: in Exp2, other agents followed built-in policies and the ad hoc agent did

not use any communication actions.

Recall that KAT allows the use of communication actions (when needed) under conditions

or partial observability. Also, each experiment described above (in FA domain) involved

150 episodes and results were tested for statistical significance.

In the HFO domain, we used six external agent teams from the 2013 RoboCup simula-

tion competition to create the ad hoc agent’s teammates and opponents. Five teams were

used to create offense agents: helios, gliders, cyrus, axiom and aut ; agents of the defense

team were based on the agent2d team. Similar to the initial phase in the FA domain,

we deployed the existing agent teams in the HFO domain and collected observations of

states before and after each transition in the episode. Since the actions of other agents

are not directly observable, they were computed from the observed state transitions. To

evaluate the ability to learn from limited data, we only used data from 300 episodes for

each type of agent to create the tree-based models for behavior prediction, which were

then revised (as needed) and used by the ad hoc agent during reasoning.

We first compared KAT’s performance with a baseline that only used non-monotonic

logical reasoning with prior knowledge but without any behavior prediction models

(Exp3), that is, the ad hoc agent was unable to anticipate the actions of other agents.

Next, we evaluated KAT’s performance with each built-in external team, that is, all of-

fense agents other than the ad hoc agent were based on one randomly selected external

team in each episode. In Exp4, we measured performance in the limited version, that

is, two offense players (including ad hoc agent) against two defense agents (including

goalkeeper). In Exp5, we measured performance in the full version, that is, four offense

players (including ad hoc agent) played against five defense agents (including goalkeeper).

In Exp6 and Exp7, we evaluated performance under partial observability in the limited

and full versions respectively. As the baselines for Exp4-Exp5, we used recent (state of

the art) AHT methods: PPAS (Santos et al. 2021), and PLASTIC (Barrett et al. 2017).

These methods considered the same external agent teams mentioned above, allowing us to

compare our results with the results reported in their papers. For Exp6-Exp7, we used

the external agent teams as baselines. We conducted 1000 episodes for each experiment

described above, and tested the results for statistical significance.

4.2 Experiment results

We begin with the results of experiments in the FA domain. First, Table 3 summarizes

the results of using our model selection algorithm in Exp1. When the other agents

followed the hand-crafted policies and the model selection mechanism was not used by

the ad hoc agent (Base1), the team of guards had the lowest winning percentage. When

the ad hoc agent used the model selection algorithm with a fixed penalty assigned for

any mismatch between predicted and actual actions (Base2), the performance of the

team of guards improved. When the ad hoc agent used KAT’s model selection method

(Algorithm 1), the winning percentage of the team of guards was substantially higher
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Table 3. Wins (%) for guards with hand-crafted policies in FA domain (Exp1). Model

adaptation improves performance

Experiment Win %

Without model selection (Base1) 63
When using direct comparison (Base2) 68
With model selection algorithm (KAT) 73

Table 4. Wins (%) for guards with built-in policies in FA domain (Exp2). Model

adaptation improves performance

Experiment Win %

Without model selection (Base3) 47
When using direct comparison (Base4) 45
With model selection algorithm (KAT) 55

Table 5. Wins (%) for guards with hand-crafted policies in FA domain (Exp1).

Communication addresses partial observability

Policy With Comm. (%) Without Comm. (%, Base5)

Policy1 73 58
Policy2 19 8

than the other two options. These results demonstrated that KAT’s adaptive selection

of the behavior prediction models improved performance.

Next, the results of Exp2 are summarized in Table 4. We observed that KAT enabled

the ad hoc agent to adapt to previously unseen teammates and opponents that used

the FA domain’s built-in policies, based on the model selection algorithm and the online

revision of the behavior models learned from the hand-crafted policies. KAT provided the

best performance compared with not using any model adaptation or selection (Base3),

and when model selection assigned a fixed penalty for action mismatch (Base4). These

results and Table 3 support H1 and H2.

The results from Exp1 under partial observability, with and without communication

(Base5), are summarized in Table 5. Recall that the other agents used the FA domain’s

hand-crafted policies in this experiment. When the communication actions were enabled

for the ad hoc (guard) agent, the winning percentage of the team of guards was sub-

stantially higher than the winning percentage of the team of guards when they could

not use the communication actions. Policy2 was a particularly challenging scenario (be-

cause both guards and attackers can shoot), which justified the lower (overall) winning

percentage.
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Table 6. Wins (%) for guards with built-in policies in FA domain (Exp2).

Communication addresses partial observability

Policy With Comm. (%) Without Comm. (%, Base6)

Policy220 79 85
Policy650 42 41
Policy1240 46 43
Policy1600 18 17

Table 7. Fraction of goals scored (i.e., games won) by the offense team in HFO domain

with and without the learned behavior prediction models (Exp3). Reasoning with prior

domain knowledge but without the behavior prediction models has a negative impact on

performance

Version KAT (%) Logical Reasoner (%)

Limited (2v2) 79 67
Full (4v5) 30 26

Next, the results from Exp2 under partial observability, with and without commu-

nication (Base6), are summarized in Table 6. Recall that the other agents used the

FA domain’s built-in policies. We observed that when the guards (other than the ad

hoc agent) followed policies 650, 1240, or 1600, the winning percentage of the team of

guards was comparable or higher when communication actions were enabled compared

with when these actions were not available (Base6). With Policy 220, the performance

of the team of guards was slightly worse when the communication actions were enabled.

However, unlike the other policies, Policy 220 results in the guards spreading themselves

in-front of the fort and shooting continuously. Under these circumstances, partial ob-

servability and communication strategies were not important factors in determining the

outcome of the corresponding episodes. These results support hypothesis H3.

We next describe the results from the HFO domain. Table 7 summarizes results of

Exp3, which compared KAT’s performance with a baseline that had the ad hoc agent

only reasoning with prior knowledge, that is, without any learned models predicting the

behavior of other agents. With KAT, the fraction of goals scored by the offense team

was significantly higher than with the baseline. These results emphasized the importance

of learning and using the behavior prediction models, and indicated that leveraging the

interplay between representation, reasoning, and learning leads to improved performance,

which supports hypothesis H1.

Next, the prediction accuracy of the learned behavior models created for the lim-

ited version (Exp4) and full version (Exp5) of the HFO domain are summarized in

Tables 8 and 9, respectively. Recall that these behavior models were learned for the

agents other than the ad hoc agent using data from 300 episodes (for each external

agent type). This translated to orders of magnitude fewer training samples than the few
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Table 8. Prediction accuracy of the learned agent behavior models in limited (2v2)

version of the HFO domain (Exp4)

Agent type Accuracy (%)

Helios 78.2
Gliders 83.2
Cyrus 69.5
Aut 72.4
Axiom 76.2
Agent2D 79.8

Table 9. Prediction accuracy of the learned agent behavior models in full (4v5) version

of the HFO domain (Exp5)

Agent type Accuracy (%)

Helios 86.0
Gliders 66.4
Cyrus 77.6
Aut 67.7
Axiom 73.6
Agent2D 71.9

Table 10. Fraction of goals scored (i.e., games won) by the offense team in HFO domain

in the limited version (2v2, Exp4)and full version (4v5, Exp5). KAT’s performance

comparable with the baselines in the limited version and much better than the baselines

in the full version

Version KAT (%) PPAS (%) PLASTIC (%)

Limited (2v2) 79 80 80
Full (4v5) 30 20 20

hundred thousand training samples used by state of the art data-driven methods that

do not reason with domain knowledge. The prediction accuracy varied over a range for

the different agent types. Although the accuracy values were not very high, the models

could be learned and revised quickly during run time; also, these models resulted in good

performance when the ad hoc agent also reasoned with prior knowledge.

The results of Exp4 and Exp5 comparing KAT’s performance with the state of the

art baselines for the HFO domain (PPAS, PLASTIC) are summarized in Table 10. Recall

that these data-driven baselines required orders of magnitude more training examples and

did not support reasoning with prior domain knowledge. The fraction of goals scored (i.e.,

games won) by the team of offense agents including our ad hoc agent was comparable

with the goals scored by the baselines for the limited version, and substantially better
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Table 11. Goals scored (i.e., games won) by offense team in HFO domain under partial

observability (Exp6, Exp7). KAT’s performance comparable with baseline that had no

ad hoc agents in the team but used training datasets that were orders of magnitude larger

Version KAT (%) Original Team (%)

Limited (2v2) 71 76
Full (4v5) 18 20

than goals scored by the baselines for the full version. These results strongly support

hypotheses H1 and H2.

The results of evaluating KAT under partial observability (in HFO domain) are sum-

marized in Table 11 compared with teams of external agent types without any ad hoc

agent. Although the results indicate that KAT’s performance was slightly lower than the

baseline teams without any ad hoc agents, the difference was not significant and mainly

due to noise (e.g., in the perceived angle to the goal during certain episodes). The ability

to provide performance comparable with teams whose training datasets were orders of

magnitude larger strongly supports hypothesis H3.

In addition to the experimental results documented above, videos of experimental tri-

als, including trials involving unexpected changes in the number and type of other agents,

are provided in support of the hypotheses in our open-source repository (Dodampegama

and Sridharan 2023b).

5 Conclusions

Ad hoc teamwork (AHT) refers to the problem of enabling an agent to collaborate with

others without any prior coordination. This problem is representative of many practical

multiagent collaboration applications. State of the art AHT methods are data-driven,

requiring a large labeled dataset of prior observations to learn offline models that predict

the behavior of other agents (or agent types) and determine the ad hoc agent’s behavior.

This paper described KAT, a knowledge-driven AHT architecture that supports non-

monotonic logical reasoning with prior commonsense domain knowledge and predictive

models of other agents’ behaviors that are learned and revised rapidly online using heuris-

tic methods. KAT leverages KR tools and the interplay between reasoning and learning

to automate the online selection and revision of the behavior prediction models, and to

guide collaboration and communication under partial observability and changes in team

composition. Experimental results in two benchmark simulated domains, Fort Attack

and Half Field Offense, demonstrated that KAT’s performance is better than that of

just the non-monotonic logical reasoning component, and is comparable or better than

state of the art data-driven methods that require much larger training datasets, provide

opaque models, and do not support rapid adaptation to previously unseen situations.

Our architecture open up multiple directions for further research. For example, we

will investigate the introduction of multiple ad hoc agents in the benchmark domains

used in this paper and in other complex multiagent collaboration domains. We will also

continue to explore the benefits of leveraging the interplay between reasoning and learn-

ing for AHT in teams of many more agents, including on physical robots collaborating
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with humans. In addition, we will build on other work in our group (Sridharan and

Mota 2023; Sridharan and Meadows 2018) to demonstrate the ad hoc agent’s ability to

learn previously unknown domain knowledge. Furthermore, we will build on our recent

work (Dodampegama and Sridharan 2023a) and the work of others in our group (Mota

et al. 2021) to enable the ad hoc agent to provide relational descriptions as explanations

of its decisions and beliefs in response to different kinds of questions.

Acknowledgments

This work was supported in part by the U.S. Office of Naval Research Award N00014-

20-1-2390. All conclusions are those of the authors alone.

References

Balai, E., Gelfond, M. and Zhang, Y. 2013. Towards answer set programming with sorts.
In International Conference on Logic Programming and Nonmonotonic Reasoning.

Balduccini, M. and Gelfond, M. 2003. Logic programs with consistency-restoring rules. In
AAAI Spring Symposium on Logical Formalization of Commonsense Reasoning.

Baral, C., Gelfond, G., Pontelli, E. and Son, T. C. 2022. An action language for multi-
agent domains. Artificial Intelligence 302, 103601.

Baral, C., Gelfond, G., Son, T. C. and Pontelli, E. 2010. Using answer set program-
ming to model multi-agent scenarios involving agents’ knowledge about other’s knowledge.
In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS, Vol. 1. 259–266.

Baral, C., Son, T. C. and Pontelli, E. 2010. Reasoning about multi-agent domains using
action language C: A preliminary study. In Computational Logic in Multi-Agent Systems,
J. Dix, M. Fisher, and P. Novák, Eds. Springer Berlin Heidelberg, 46–63.

Barrett, S., Rosenfeld, A., Kraus, S. and Stone, P. 2017. Making friends on the fly:
Cooperating with new teammates. Artificial Intelligence 242, 132–171.

Barrett, S., Stone, P., Kraus, S. and Rosenfeld, A. 2013. Teamwork with limited knowl-
edge of teammates. In AAAI Conference on Artificial Intelligence, Vol. 27, 102–108.

Bowling, M. and McCracken, P. 2005. Coordination and adaptation in impromptu teams.
In National Conference on Artificial Intelligence, 53–58.

Chen, S., Andrejczuk, E., Cao, Z. and Zhang, J. 2020. AATEAM: Achieving the ad hoc
teamwork by employing the attention mechanism. In AAAI Conference on Artificial Intelli-
gence, 7095–7102.

Deka, A. and Sycara, K. 2021. Natural emergence of heterogeneous strategies in artificially
intelligent competitive teams. In Advances in Swarm Intelligence, Y. Tan and Y. Shi, Eds.
Springer International Publishing, Cham, 13–25.

Dodampegama, H. and Sridharan, M. 2023a. Back to the future: Toward a hybrid architec-
ture for ad hoc teamwork. In AAAI Conference on Artificial Intelligence.

Dodampegama, H. and Sridharan, M. 2023b. Code. https://github.com/hharithaki/KAT.

Gelfond, M. and Inclezan, D. 2013. Some properties of system descriptions of ALd. Applied
Non-Classical Logics, Special Issue on Equilibrium Logic and ASP 23, 1–2, 105–120.

Gigerenzer, G. 2016. Towards a Rational Theory of Heuristics. Palgrave Macmillan UK,
London, 34–59.

Gigerenzer, G. 2020. What is bounded rationality? In Routledge Handbook of Bounded Ratio-
nality. Routledge.

https://doi.org/10.1017/S1471068423000091 Published online by Cambridge University Press

https://github.com/hharithaki/KAT
https://doi.org/10.1017/S1471068423000091


714 H. Dodampegama and M. Sridharan

Gigerenzer, G. and Gaissmaier, W. 2011. Heuristic decision making. Annual Review of
Psychology 62, 451–482.

Hausknecht, M., Mupparaju, P., Subramanian, S., Kalyanakrishnan, S. and Stone, P.

2016. Half field offense: An environment for multiagent learning and ad hoc teamwork. In
AAMAS Adaptive Learning Agents Workshop.

Katsikopoulos, K., Simsek, O., Buckmann, M. and Gigerenzer, G. 2021. Classification
in the Wild: The Science and Art of Transparent Decision Making. MIT Press.

Macke, W., Mirsky, R. and Stone, P. 2021. Expected value of communication for planning
in ad hoc teamwork. In AAAI Conference on Artificial Intelligence, 11290–11298.

Mirsky, R., Carlucho, I., Rahman, A., Fosong, E., Macke, W., Sridharan, M., Stone,
P. and Albrecht, S. 2022. A survey of ad hoc teamwork: Definitions, methods, and open
problems. In European Conference on Multiagent Systems.

Mota, T., Sridharan, M., and Leonardis, A. 2021. Integrated commonsense reasoning and
deep learning for transparent decision making in robotics. Springer Nature CS 2, 242.

Rahman, M. A., Hopner, N., Christianos, F. and Albrecht, S. V. 2021. Towards open
ad hoc teamwork using graph-based policy learning. In International Conference on Machine
Learning, 8776–8786.

Santos, P. M., Ribeiro, J. G., Sardinha, A. and Melo, F. S. 2021. Ad hoc teamwork in
the presence of non-stationary teammates. In Progress in Artificial Intelligence, G. Marreiros,
F. S. Melo, N. Lau, H. Lopes Cardoso, and L. P. Reis, Eds. Springer International, 648–660.

Son, T. and Balduccini, M. 2018. Answer set planning in single- and multi-agent environ-
ments. Künstliche Intelligenz 32.

Son, T. C., Pontelli, E. and Nguyen, N.-H. 2010. Planning for multiagent using asp-
prolog. In Computational Logic in Multi-Agent Systems, J. Dix, M. Fisher, and P. Novák,
Eds. Springer Berlin Heidelberg, 1–21.

Son, T. C. and Sakama, C. 2010. Reasoning and planning with cooperative actions or multi-
agents using answer set programming. In Declarative Agent Languages and Technologies VII.
Lecture Notes in Computer Science, vol. 5948. Springer Berlin Heidelberg, 208–227.

Sridharan, M., Gelfond, M., Zhang, S. and Wyatt, J. 2019. REBA: A refinement-based
architecture for knowledge representation and reasoning in robotics. Journal of Artificial In-
telligence Research 65, 87–180.

Sridharan, M. and Meadows, B. 2018. Knowledge representation and interactive learning of
domain knowledge for human-robot collaboration. Advances in Cognitive Systems 7, 77–96.

Sridharan, M. and Mota, T. 2023. Towards Combining Commonsense Reasoning and Knowl-
edge Acquisition to Guide Deep Learning. Autonomous Agents and Multi-Agent Systems 37, 4.

Stone, P., Kaminka, G., Kraus, S. and Rosenschein, J. 2010. Ad Hoc Autonomous Agent
Teams: Collaboration without Pre-Coordination. In AAAI Conference on Artificial Intelli-
gence, 1504–1509.

Wu, F., Zilberstein, S. and Chen, X. 2011. Online planning for ad hoc autonomous agent
teams. In International Joint Conference on Artificial Intelligence, 439–445.

Zand, J., Parker-Holder, J. and Roberts, S. J. 2022. On-the-fly strategy adaptation for ad-
hoc agent coordination. In International Conference on Autonomous Agents and Multiagent
Systems, 1771–1773.

Zintgraf, L., Devlin, S., Ciosek, K., Whiteson, S. and Hofmann, K. 2021. Deep in-
teractive Bayesian reinforcement learning via meta-learning. In International Conference on
Autonomous Agents and Multiagent Systems.

https://doi.org/10.1017/S1471068423000091 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000091

	Introduction
	Related work
	Architecture
	Knowledge representation and reasoning
	Agent models and model selection
	Partial observability and communication

	Experimental setup and results
	Experimental setup
	Experiment results

	Conclusions
	References

