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1. Introduction. Let B(X) denote the Banach algebra of all bounded linear operators on
a Banach space X. Let ¢ be an element of B(X), and let e denote the identity operator on X.
Since the earliest days of the theory of Banach algebras, it has been understood that the natural
setting within which to study spectral properties of ¢ is the Banach algebra B(X), or perhaps a
closed subalgebra of B(X) containing ¢ and e. The effective application of this method to a
given class of operators depends upon first translating the data into terms involving only the
Banach algebra structure of B(X) without reference to the underlying space X. In particular,
the appropriate topology is the norm topology in B(X) given by the usual operator norm.
Theorem 1 carries out this translation for the class of compact operators . It is proved that
if ¢ is compact, then multiplication by ¢ is a compact linear operator on the closed subalgebra
of B(X) consisting of operators that commute with .

In §3 we exploit Theorem 1 by showing how the Riesz-Schauder spectral theory for a
compact linear operator ¢ may be obtained by applying the most elementary Banach algebra
techniques to the least closed subalgebra of B(X) containing ¢ and e.

As a second application of Theorem 1, we prove a theorem which contains the Krein-
Rutman theorem [5, Theorem 6.1] on positive compact linear operators. Let ¢ be compact
and have non-zero spectral radius p, and let A* denote the least closed semi-algebra in B(X)
containing ¢ and e. Using entirely elementary arguments together with Theorem 1, we prove
that if A* An(—A") = (0), then there exists a nonzero element u of 4% such that fu = pu.
This result gives the Krein-Rutman theorem at once.

Theorem 1 may be regarded as an analogue of Schauder’s theorem [8) on the compact-
ness of the adjoint of a compact linear operator, and we give in § 5 a theorem which includes
both Theorem 1 and Schauder’s theorem as special cases. As another special case of this
theorem, we see that, if ¢ is compact, the mapping a — tat is a compact linear operator on the
whole of B(X). This result is fundamental for the recent work of J. C. Alexander [1].

2. The compactness of multiplication operators.

THEOREM 1. Let t be a compact linear operator on a Banach space X, and let Y be the
centralizer of t. Then the mapping a — ta (a€ Y) is a compact linear operator on Y.

Proof. By definition, the centralizer Y of t is the set of all bounded linear operators that
commute with ¢, It is clear that Y is a closed subalgebra of B(X) and that the mapping a — ta
is a bounded linear operator on the Banach space Y.

Let X, denote the closed unit ball in X, and let E = tX,. Then E is a compact subset of
X in the norm topology. Givenae Y with | a || < 1, we have atX,; = taX; < tX,; and there-
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fore, by continuity, aE =« E. Leta,e?, |l aq,|| £1(n=12,...). Then, for each xeE, the
set {a,x :n=1,2,...} is contained in the compact subset E of the Banach space X. Also

lax—ax || Sl x=x"| (x,x'€E n=12,..),

which shows that the mappings x - a,x (xe E, n = 1,2,...) form an equicontinuous sequence
of mappings of the compact space E into the Banach space X. By Ascoli’s theorem for Banach
space valued functions, it follows that there exists a subsequence {a,, } such that {a, x} con-
verges uniformly for x in E. Consequently, {a, tx} converges uniformly for x in X;, and so
{a,,t} converges with respect to the operator norm. Since a, t€ Y and Y is closed, this shows
that {a, t} converges in Y. Finally, ta, = a,t.

Counter-example. Let X have infinite dimension, let 4 be a strictly irreducible sub-
algebra of B(X), and let ¢ be a nonzero element of 4. Then the linear mapping a — at (a€ 4)
is not compact on 4. For, since X is an infinite dimensional normed space, there exist elements
x, of X such that | x,| =1 (@®m=1,2,...) and || x,—x; | = 4(k #j). Since ¢ #0, there
exists x, € X with rx, # 0. Then tx, is a strictly cyclic vector, and so (see [4], Proposition 17,
Corollary 1) there exist a constant M and elements a, of 4 such that

la, | £ M, atxo=x, (n=12,..).

If the mapping a — at (a€ A) is compact, there exists a subsequence {a,, } such that {a,t}
converges. But then {x,, } converges, which is absurd.

Similarly, if the algebra A* (the set of adjoints of elements of A) is strictly irreducible
on the dual space X* of X, then the mapping a — ta (a€ A) is not compact. For, by what we
have just proved, the mapping a* — a*t* (a* e A*) is not compact, and the mapping a — a*
is an isometric anti-isomorphism of 4 on to A*.

If A is dually strictly irreducible [4] on the pair of spaces X, X*, then neither of the map-
pings @ - at, a — ta is compact on 4. This is the case in particular for 4 = B(X) or for any
subalgebra 4 of B(X) that contains all operators of finite rank.

3. Riesz-Schauder theory. We need to make use of two elementary propositions from the
usual theory of compact operators [6].

PROPOSITION 1. Let t be a compact linear operator on a Banach space X, and let {1,} be a
sequence of distinct eigenvalues of t. Then

lim 4, = 0.

n=ow

PROPOSITION 2. Let t be a compact linear operator on a Banach space X, A a nonzero
eigenvalue of t, and let

Np={x: (t=A)x =0} (k=1,2,...).

Then each N, has finite dimension, and there exists a positive integer k such that Ny, = N,.
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The well known proofs of both propositions depend on the fact that if X is a proper
closed linear subspace of X, then there exists xe X such that | x| =1and | x—y| = %

(ye Xo).
For Theorems 2 and 3, we shift our attention to an abstract Banach algebra.

Notation. A will denote a commutative Banach algebra with unit element 1. We sup-
pose that A4 contains an element # such that the mapping @ — ta is a compact linear operator
on the Banach space A. We denote the spectrum of an element a of A by Sp ,(a), i.e. Sp.(a)
is the set of complex numbers 4 such that A—g has no inverse in 4.

LeMMA 1. Let 1 be a nonzero frontier point of Sp ,(t). Then there exists ue A such that
u#0andtu=lu.

Proof. t—A is a frontier point of the set of invertible elements of A, and is therefore a
topological divisor of zero [7, Theorem 1.5.4]. Thus there exist elements a, of 4 such that

la, | =1 (@=1,2,...), and lim (¢—A)a, =0. Since the mapping a — ta is compact, there
n—=ao
exists a subsequence {a,,} such that lim ta, = u, say. Since lim (ta, —a,) =0, we have in
k= k=
turn lim Aa, =u, lim Ata, =tu, tu=2u. Also, |ul =Ilimji||a, |l =|A], and so
k= k=0 k— oo
u #0.

THEOREM 2. O is the only possible point of accumulation of Sp ,(t); and if 1eSp 4(t) and
A #0, then there exists ue A such that u #0 and tu = Au.

Proof. Lemma 1 and Proposition 1 show that 0 is the only possible point of accumulation
of the frontier of Sp 4(¢). Since Sp 4(#) is a compact subset of the complex plane, it follows that
0 is the only possible point of accumulation of Sp 4(¢), and so all points of Sp ,(¢) are frontier
points. A second application of Lemma 1 completes the proof,

Notation. For Theorem 3, we suppose that 1eSp,(¢) and that A %0, and we define
Ny, R, by

Ny={acd: 1—Na=0}, R,=({—A)"A.

By Proposition 2, there exists a least positive integer v (the index of 1) such that N,,,=N,.
1t is easly verified that in fact N, = N, (k 2 v).

THEOREM 3. (i) A= N, ® R,.

(ii) 1 = p+gq, where p and q are idempotents that are unit elements for the subalgebras N,
and R, respectively.

(iii) (t—A)q is invertible relative to the subalgebra R,, i.e. there exists ue R, such that
(t—Mgqu=gq.

@iv) t—M)R, = R,.

(v) v is the least positive integer for which (t—2)"* 1A = (t—1)"A.

https://doi.org/10.1017/50017089500000069 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500000069

44 F. F. BONSALL

Proof. (i) By a standard algebraic argument, we have N,n R, = (0). ForifaeN,nR,,
then a = (t—A)"b for some be A. Then (t—2)?*b =0, and so beN,,=N,,a=0.

N, is a closed ideal of 4. Let B denote the difference algebra 4 —N,, the elements of
which are the cosets a’ = a+N,. With the canonical norm || @’ || = inf {| x || : xea'}, Bis a
commutative Banach algebra with unit element 1’. We prove next that the mapping a’ - t'a’
is a compact linear operator on B. In fact, given b,e B with | b, || £ 1 (n=1,2,...), there
exist elements a,€ 4 with || a, || < 2 and a,/ = b,. Then there exists a subsequence {a, } such
that lim ta, = a, say, and therefore lim ¢'b, = lim (ta,)’ = a’. This shows that Theorem 2

k— k- k-
is applicable to Band ¢’ in place of 4 and ¢, and it follows that A ¢ Spg(¢t"). For otherwise there
exists ue 4 such that ¥’ £0 and ¢4’ = Av’. But then (¢t—AueN,, ueN,,., =N, u' =0, a
contradiction. Therefore (t—1)’ has an inverse a’, say, in B, i.e. ((—1)'a’ =1'. But then
(t—2)a’) =1, and so there exists veN, such that 1 =v+(t—1)’a’. This shows that

leN,® R,, and, since N, ® R, is an ideal, we have A = N, ® R,.

(ii) This is clear. We merely decompose 1 into its components p and g in N, and R,
respectively.

(iii) We have seen that (#—1)' is invertible in B = A—N,. However, the canonical
mapping a — a4’ is an isomorphism of R, on to B, and ((t—A)q)’' = (t—A)'. Therefore (¢ —A)g
is invertible relative to the subalgebra R,, 1.e. there exists ue R, such that (t—A)qu =q.

(lV) (t_A)Rv = (t—l)qu = R,.

(v) We have (t—1)"*'4 = (t—2)R, = R, = (t—1)'A. Also, if k is a positive integer for
which (t—A)**'4 = (t—2)*4, then (t—A)*=(—-A**'a for some aecA. Therefore, if
(t—A)*1x =0, we have (t—A)x = t—A)**'ax =0, and so k = v.

We now apply Theorems 2 and 3 to obtain spatial properties of a bounded linear operator
¢ on a Banach space X. We denote the spectrum of ¢ by Sp(z), i.e. Sp(t) = Spp(x)(?)-

THEOREM 4. Let te B(X), let A be the least closed subalgebra of B(X) containing t and e,
and suppose that the mapping a — ta(ae A) is a compact linear operator on A. Then the following
propositions hold.

(1) Sp(t) = Sp ?), and each nonzero point of Sp(t) is an eigenvalue of t.
(i) Let A be a nonzero eigenvalue of t, let p, q be the projections given in Theorem 3, and let
Y=pX,Z=qX. Then Y, Z are closed invariant subspaces for t,
Y={x:(t—le)’x =0}, Z=(-le)'X,
X =Y@®Z, the restriction of t—Ae to Z is invertible in B(Z), and the index of A for the linear
operator t is equal to its index v for t regarded as an element of A.

(iii) Let t* denote the adjoint of t, and A* the least closed subalgebra of B(X*) containing
t* and e*. Then the mapping a* — t*a* (a*€ A*) is a compact linear operator on A*, and
propositions (i) and (ii) hold for t*, A*, X* in place of t, A, X. The index of a nonzero eigenvalue
Jor the linear operator t* is equal to its index for t, and for k =0,1,...,v—1, the ranges of
(t—2e)*p and (t* — Je*)*p* have equal dimension.
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Remarks. (i) Theorem 1 shows that Theorem 4 is applicable in particular to a compact
linear operator ¢ on X.

(i) The spectral projection p is an element of 4. In fact, it belongs to the least closed
subalgebra A4, of B(X) that contains . For we have (t—A1¢e)’p =0, and A # 0, from which
PEtA c A,.

(iii) Theorem 4 is applicable to operators ¢ that are not compact on X; for example the
identity operator e.

Proof. (i) Since A = B(X), it is obvious that Sp(¢t) < Sp,(¢), and since all points of
Sp ((¢) are frontier points, Sp ,(¢) = Sp(¢), [7, Theorem 1.6.12]. It is now clear from Theorem
2 that all nonzero points of Sp(¢) are eigenvalues.

(ii) It is clear that Y and Z are closed invariant subspaces for t and that X = Y@ Z. By
Theorem 3(iii), (¢ — Ae)q is invertible relative to R, and so (t—/le)| z is invertible in B(Z). We
note next that

Y={xeX:(t—2e)'x =0}, Z=(_—1e)'X. M
For, since g4 = R, = (t—Ae)* A, there exist a,be A with
q=a(t—7e)’, (t—4ie)’ =gqb. )

It follows at once from (2) that (t—Ae)'X = ¢ X and that (t— 1e)*x = 0 if and only if gx =0,
which proves (1).
We prove that v is the least positive integer k for which

{xeX: (t—Ae)*'x =0} = {xe X: (t—1e)'x = 0}. 3)

For if k satisfies (3) and (t—1e)** *a = 0 for some a € 4, then we have in turn (¢—1e)**lax =0
(xe X), (t—Ae)*ax = 0 (xe X), (t—Ae)'a = 0; which shows that k = v. On the other hand, if
(t—Ae)** 'x = 0 for some xe X, then (t—2€)**x = 0; and, by (1), (t—2e)’xe YN Z, (t—2e)’x
= 0. Thus v is an integer satisfying (3).

(iii) The mapping @ — a* of @ on to its adjoint a* is an isometric isomorphism between A
and 4*. Thus the properties of (¢*, A*, X*) can be deduced from those of (¢, 4, X). The final
statement is an elementary consequence of the duality between X and X*. Leta = (¢t—1e)*p,
and let x,,..., x, be linearly independent elements of aX. Then there exist f},...,f,€ X* and
V1s.++, Vo€ X such that f(x;) = 6,;; and x; = ay; (i,j = 1,...,n). Then

@)y =flay) =fix) = oy,

showing that a*f},...,a*f, are linearly independent elements of a* X*. Thus the dimension of
aX does not exceed the dimension of a*X*, and similarly for the opposite inequality.

4. The Krein-Rutman theorem. We show how Theorem 1 may be applied to give a new
proof of the following theorem of M. G. Krein and M. A. Rutman [5, Theorem 6.1].
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THEOREM. Let X* be a closed cone in a Banach space X such that X is the closed linear
hull of X*. Let t be a compact linear operator on X such that tX* < X+ and the spectral radius
p of t is not zero. Then there exist xoe X+ and foe X** such that x, #0, fu # 0, tx, = pxo,
t*fo = pfo.

We first prove the following variant of the Krein-Rutman theorem.

THEOREM 5. Let t be a compact linear operator on a Banach space X, and let the spectral
radius p of t be nonzero. Let A* denote the least closed semi-algebra in B(X) containing t and e.
If AT A (—A") = (0), then there exists ue A* such that u # 0 and tu = pu.

Proof. We use elementary techniques introduced in [2], but simplified by the fact that
we are able to work throughout in B(X). Suppose that A* n(—A4*) =(0). We note first
that if u > p, then

1 1 1
r,=(ue—1"t= pe+;2—t+‘?t2+...eA+.

We prove that there exists a sequence {y,} such that

W>p (n=12,..), limy,=p, lim|r, || =oco. @
Suppose that there is no such sequence {y,}. Then there exist positive constants ¢, M such
that || r, | S M (p < u < p+e). We choose A, u such that

O<i<p<u<p+e, pu—A<M™L
Then we have
ri=Qe—"'=r,+(u-Hri+...e 4,

1 1 1 1
and (e_,l"“t”l)r"::1e+Iit+"'+ﬂL““t"'
It follows from this that
1
rn= Ft"'i‘q,,, (5)
with g,eA*.

Let a,=A7"""'{ ¢"||. Since 0 < 1 < p, we have lim a, = 00, and so there exists a

n—w
subsequence {a, } such that
e g Tpe—1 (k = 1,2, L) ')' (6)
Leta, = A"™¢™" 1, Sincea, <A™ '|t].|al,wehave lim | g || = ©. By(S), we have
k-0
-1 1 -1 -1
lall™'r,= zt(ll a ™ a)+lac ™ g, ()

By Theorem 1, there exists a subsequence of {1~ '#(|| g, |~ 'a,)} that converges to be A™.
Since the left-hand side of (7) tends to zero, the corresponding subsequence of {|| 4, |~ g, }
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also converges to ce A*, and b+c=0. Since 4" n(—4*) = (0), we conclude that b = 0.
But this is a contradiction, for (6) gives

1

PR 2lal (k=12..),
andso || b || = 1. This contradiction proves the existence of a sequence {u,} satisfying (4).

Letu,=llr, " 'r,. Thenu,ed*, |u,|| =1, and
(me—Bu, = |1, |7 e @®
By Theorem 1, there exists a subsequence {u, } such that lim tu, =ueA*. Then, by (4)
k-
and (8), lim pu, u, =u. Therefore lim p, tu, = tu, and, since lim p, = p, we have tu = pu.
k=0 k=0 k=0

Proof of the Krein-Rutman theorem. Let X*, ¢ satisfy the conditions in the theorem. Each
element a of A* is positive in the sense that aX* <« X*. Ifae 4" n(—A™"), then

aX*c X*n(-Xx*")=0), ax* =(0).

Since the linear hull of X* is dense in X, this givesa =0, A* n(—4%) = (0). Thus Theorem
5 is applicable, and there exists ue A™ such that u # 0 and fu = pu. Again, since the linear
hull of X* is dense in X, there exists x, € X * such that ux, #0. Let x, =ux,. Then x,e X,
xo #0, and

IXg = tux, = pux, = px,.

Also, xo¢—X*, and — X is a closed positive homogeneous convex set. Therefore there
exists f; € X* such that f,(x,) = 1 and f,(x) £ 0 (xe —X*). This implies that f; e X**. Let
fo=u*f;. ThenfyeX**, and f, # 0, since

Jo(x1) = W)(xy) = fi(uxy) = fi(xo) = 1.
Finally, t*u* = pu* (since ut = pu), and so
t*fo = t*u*fy = pufy = pfo.
Remark. Let ¢ satisfy the conditions of Theorem 5. If A" n(—A™) = (0), then A" is a
locally compact semi-algebra. For, by Theorem 5, the spectral radius of ¢ belongs to the
spectrum of ¢, and so 4™ is locally compact [3, Theorem 5]. Conversely, if A is locally com-

pact, then A* N (—A™) has finite dimension, since it is a normed linear space with a compact
unit ball.

5. A general theorem. Given Banach spaces X, Y, we denote by B(X, Y) the Banach space
of all bounded linear mappings of X into Y with the usual norm.

THEOREM 6. Let X, X;, X3, X4, Y be Banach spaces, let a and d be compact linear map-
pings of Xy into X, and X into X, respectively, let b and ¢ be bounded linear mappings of Y
into B(X,, X4) and B(X,, X,) respectively, and let

Z={yeY:(by)oa=do(cy)}.
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Then the mapping z — (bz) o a is a compact linear mapping of Z into B(X,, X ;).

X, > X2
cyyY by
x3 \d X4

Proof. Let U,V, W be the closed balls given by
U={xeX :|x| 21}, V={zeZ:|z[S1}, W={xeXs:|x|=|cl}

and let E = E, F=dW. Then E and F are compact subsets of X, and X, in their norm
topologies, and we have

(cz)xeW (xeU, zeV),
from which
((b2)oa)x=(do(cz))xedW (xeU, zeV).
Since bz is continuous, it follows that
(bz2)xeF (x€E, zeV).

Thus, for each x€ E, the image of ¥ under the mapping z — (bz)x is contained in a compact
subset of X,. Also, {bz:z€V} is an equicontinuous family of mappings of the compact
space E into the Banach space X,. Therefore, by Ascoli’s theorem for Banach space valued
functions, given z,€ ¥ (n = 1,2,...), there exists a subsequence {z,,} such that {(bz,)x} con-
verges uniformly on E. Since aU < E, it follows that ((bz,,) o a)x converges uniformly on U,
i.e. {(bz,,) o a} converges with respect to the norm in B(X,, X,,).

Example 1. Let t be a compact linear operator on a Banach space X over F, where F is
either Ror C. Take X; =X, =X, X;=X,=F, Y= X*, the dual space of X. Let a=¢,
¢ =t* and let b and d be the identity operators on X* and F respectively. Since

(by)oa=yot=t*y=do(cy) (yeY),

we have Z = Y = X*. Thus the mapping y — t*y is a compact linear mapping of X* into
B(X,,X,) = B(X,F) = X*, This is Schauder’s theorem.

Example 2. Let t be a compact linear operator on a Banach space X, let X, = X, =
X;=X,=X,andlet Y = B(X, X). Leta = d = ¢, and let bothb and ¢ be the identity operator
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on Y. Then
Z={seB(X,X):st=1s},
and s — st is a compact linear mapping of Z into itself. This is Theorem 1.

Example 3. Let X,, X,, X3, X, be Banach spaces, and let Y = B(X,, X3). Leta and d
be compact linear mappings of X, into X, and X, into X, respectively and let b and ¢ be
defined by by =do y,cy=yoa. Then

(by)oa=doyoa=do(cy) (yev).

Therefore Z = Y = B(X,, X;), and the mapping y = d o y o a is a compact linear mapping of
B(X,, X;) into B(X,, X,). This result has been proved by K. Vala [9] as an application of his
formulation of Ascoli’s theorem.
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