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1. Introduction. Let B(X) denote the Banach algebra of all bounded linear operators on
a Banach space X. Let t be an element of B(X), and let e denote the identity operator on X.
Since the earliest days of the theory of Banach algebras, it has been understood that the natural
setting within which to study spectral properties of t is the Banach algebra B(X), or perhaps a
closed subalgebra of B(X) containing t and e. The effective application of this method to a
given class of operators depends upon first translating the data into terms involving only the
Banach algebra structure of B(X) without reference to the underlying space X. In particular,
the appropriate topology is the norm topology in B(X) given by the usual operator norm.
Theorem 1 carries out this translation for the class of compact operators t. It is proved that
if t is compact, then multiplication by t is a compact linear operator on the closed subalgebra
of B(X) consisting of operators that commute with t.

In § 3 we exploit Theorem 1 by showing how the Riesz-Schauder spectral theory for a
compact linear operator t may be obtained by applying the most elementary Banach algebra
techniques to the least closed subalgebra of B[X) containing t and e.

As a second application of Theorem 1, we prove a theorem which contains the Krein-
Rutman theorem [5, Theorem 6.1] on positive compact linear operators. Let t be compact
and have non-zero spectral radius p, and let A+ denote the least closed semi-algebra in B(X)
containing t and e. Using entirely elementary arguments together with Theorem 1, we prove
that if A+ n(—A+) = (0), then there exists a nonzero element u of A+ such that tu = pu.
This result gives the Krein-Rutman theorem at once.

Theorem 1 may be regarded as an analogue of Schauder's theorem [8] on the compact-
ness of the adjoint of a compact linear operator, and we give in § 5 a theorem which includes
both Theorem 1 and Schauder's theorem as special cases. As another special case of this
theorem, we see that, if t is compact, the mapping a -* tat is a compact linear operator on the
whole of B{X). This result is fundamental for the recent work of J. C. Alexander [1].

2. The compactness of multiplication operators.

THEOREM 1. Let t be a compact linear operator on a Banach space X, and let Y be the
centralizer oft. Then the mapping a-*ta(aeY) is a compact linear operator on Y.

Proof. By definition, the centralizer Y of t is the set of all bounded linear operators that
commute with t. It is clear that Y is a closed subalgebra of B{X) and that the mapping a^ta
is a bounded linear operator on the Banach space Y.

Let A'i denote the closed unit ball in X, and let E = tXv Then £ is a compact subset of
X'm the norm topology. Given ae 7 with || a || ^ 1, we have atXv = taXt c tXt; and there-
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fore, by continuity, aE <= E. Let aneY, \\ an\\ ^ 1 (n = 1,2,...). Then, for each xeE, the
set {anx :n= 1,2,...} is contained in the compact subset E of the Banach space X. Also

|| anx-anx' || ^ || x-x' || (*,*'e£, n = 1,2,...),

which shows that the mappings x-* anx (xeE, n = 1,2,...) form an equicontinuous sequence
of mappings of the compact space E into the Banach space X. By Ascoli's theorem for Banach
space valued functions, it follows that there exists a subsequence {ank} such that {ankx} con-
verges uniformly for x in E. Consequently, {anktx} converges uniformly for x in Xu and so
{anj} converges with respect to the operator norm. Since anite Fand Yis closed, this shows
that {anj} converges in Y. Finally, tan = ant.

Counter-example. Let X have infinite dimension, let A be a strictly irreducible sub-
algebra of B(X), and let t be a nonzero element of A. Then the linear mapping a-*at (aeA)
is not compact on A. For, since A'is an infinite dimensional normed space, there exist elements
xn of X such that || xn \\ = 1 (n = 1,2,...) and || xk-Xj || ^ i(fc *j). Since t * 0, there
exists xoeX with tx0 ^ 0. Then tx0 is a strictly cyclic vector, and so (see [4], Proposition 17,
Corollary 1) there exist a constant M and elements an of /4 such that

|| an || ^ M, antx0 = xn (n = 1,2,...).

If the mapping a-»af (a 6/4) is compact, there exists a subsequence {ank} such that {anicf}
converges. But then {xnk} converges, which is absurd.

Similarly, if the algebra A* (the set of adjoints of elements of A) is strictly irreducible
on the dual space X* of X, then the mapping a -* ta (a eA) is not compact. For, by what we
have just proved, the mapping a* -+a*t* (a*eA*) is not compact, and the mapping a-*a*
is an isometric anti-isomorphism of A on to A*.

If A is dually strictly irreducible [4] on the pair of spaces X, X*, then neither of the map-
pings a-*at, a-*ta is compact on A. This is the case in particular for A — B{X) or for any
subalgebra A of B(X) that contains all operators of finite rank.

3. Riesz-Schauder theory. We need to make use of two elementary propositions from the
usual theory of compact operators [6].

PROPOSITION 1. Let t be a compact linear operator on a Banach space X, and let {Xn} be a
sequence of distinct eigenvalues of t. Then

lim Xn = 0.
n-*oo

PROPOSITION 2. Let t be a compact linear operator on a Banach space X, X a nonzero
eigenvalue oft, and let

Nk = {x:(t-Xe)kx = 0} (fe = l,2,...).

Then each Nk has finite dimension, and there exists a positive integer k such that Nk+1 = Nk.
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The well known proofs of both propositions depend on the fact that if Xo is a proper
closed linear subspace of X, then there exists xeX such that || x || = 1 and || jc—_y |[ ^ \
(yexQ).

For Theorems 2 and 3, we shift our attention to an abstract Banach algebra.

Notation. A will denote a commutative Banach algebra with unit element 1. We sup-
pose that A contains an element / such that the mapping a -> ta is a compact linear operator
on the Banach space A. We denote the spectrum of an element a of A by SpA(a), i.e. SpA(a)
is the set of complex numbers X such that X—a has no inverse in A.

LEMMA 1. Let X be a nonzero frontier point ofSpA(t). Then there exists ueA such that
M ^ 0 and tu = Xu.

Proof. t—X is a frontier point of the set of invertible elements of A, and is therefore a
topological divisor of zero [7, Theorem 1.5.4]. Thus there exist elements an of A such that
|| an || = 1 (n = 1,2,...), and lim (t—X)an = 0. Since the mapping a-* ta is compact, there

n-»co

exists a subsequence {ank} such that lim tank = u, say. Since lim (tank—Xank) = 0, we have in
fc-nao fc-*oo

turn lim Xanic = u, lim Xtank = tu, tu = Xu. Also, || u \\ = lim | X \ \\ ank || = | A | , and so
fc-*co Jt-»oo fc-»oo

THEOREM 2. OI'J the only possible point of accumulation of SpA(t); and ifXe SpA(t) and
X / 0, then there exists us A such that u ^ 0 and tu = Xu.

Proof. Lemma 1 and Proposition 1 show that 0 is the only possible point of accumulation
of the frontier of Spx(0. Since Spx(*) is a compact subset of the complex plane, it follows that
0 is the only possible point of accumulation of Spx(f), and so all points of SpA(f) are frontier
points. A second application of Lemma 1 completes the proof.

Notation. For Theorem 3, we suppose that XeSpA(t) and that X ^ 0 , and we define
Nk, Rk by

Nk = {aeA: (f-A)*a = 0}, Rk = {t-X?A.

By Proposition 2, there exists a least positive integer v (the index of X) such that iVv+1=7v*v.
It is easly verified that in fact Nk = Nv (k 5: v).

THEOREM 3. (i) A = NV® Rv.

(ii) 1 = p+q, where p andq are idempotents that are unit elements for the subalgebras Nv

and Rv respectively.

(iii) (t—X)q is invertible relative to the subalgebra Rv, i.e. there exists ueRv such that
(t-X)qu = q.

(v) v is the least positive integer for which (f-A)v+1y4 = (/-A)M.
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Proof, (i) By a standard algebraic argument, we have N,nRv = (0). For if ae Nv n Rv,
then a = (t-X)vb for some be A. Then (f-A)2v b = 0, and so beN2v = Nv, a = 0.

Nv is a closed ideal of ^4. Let B denote the difference algebra A-Nv, the elements of
which are the cosets a' = a+Nv. With the canonical norm || a' || = inf {|| x \\ : xea'}, B is a
commutative Banach algebra with unit element 1'. We prove next that the mapping a' -* t'a'
is a compact linear operator on B. In fact, given bneB with || bn || ^ 1 (n = 1,2,...), there
exist elements ane,4 with || an || g 2 and an' = Z>n. Then there exists a subsequence {aBfc} such
that lim tank = a, say, and therefore lim t'bnk = lim (tank)' = a'. This shows that Theorem 2

fc-*oo fc-*co fc-*co

is applicable to B and / ' in place of A and J, and it follows that X $ SpB(f')• For otherwise there
exists ueA such that u' ^ 0 and t'u' = AM'. But then (t-X)ueNv, ueNv+1 = Nv, u' = 0, a
contradiction. Therefore (/—A)' has an inverse a', say, in 5 , i.e. (t—X)'a' = 1'. But then
( ( f -A)V) ' = 1', and so there exists i;eNv such that 1 =v+(t-X)V. This shows that
1 eiVv © R v , and, since iVv© Rv is an ideal, we have A = Nv® Rv.

(ii) This is clear. We merely decompose 1 into its components p and q in iVv and Rv

respectively.

(iii) We have seen that (t—X)' is invertible in B = A—NV. However, the canonical
mapping a -* a' is an isomorphism of Rv on to B, and ((/—X)q)' = (t—X)'. Therefore (t—X)q
is invertible relative to the subalgebra Rv, i.e. there exists ueRv such that (t—X)qu = q.

(iv) (r-A)i?v = {t-X)qRv = i ? ,

(v) We have (t-X)v+ 1A = (t-X)Rv = RV = {t-XyA. Also, if A: is a positive integer for
which (t-X)k+1A = (t-X)kA, then (t-X)k = (t-X)k+ia for some as A. Therefore, if
(t-X)k+ *x = 0, we have (i-Xfx = (t-X)k+1ax = 0, and so k ^ v.

We now apply Theorems 2 and 3 to obtain spatial properties of a bounded linear operator
/ o n a Banach space X. We denote the spectrum of t by Sp(f), i.e. Sp(f) = SpB(X)(0-

THEOREM 4. Let teB(X), let A be the least closed subalgebra ofB(X) containing t and e,
and suppose that the mapping a-+ta(aeA) is a compact linear operator on A. Then the following
propositions hold.

(i) Sp(f) = SpA(t), and each nonzero point o/Sp(i) is an eigenvalue oft.

(ii) Let Xbea nonzero eigenvalue oft, letp, q be the projections given in Theorem 3, and let
Y = pX, Z = qX. Then Y, Z are closed invariant subspacesfor t,

Y = {x: (t - Xe)vx = 0}, Z = (t - Xe)vX,

X= Y@Z, the restriction oft—XetoZ is invertible in B(Z), and the index of X for the linear
operator t is equal to its index v for t regarded as an element of A.

(iii) Let t* denote the adjoint oft, and A* the least closed subalgebra of B{X*) containing
t* and e*. Then the mapping a*-+t*a* (a*eA*) is a compact linear operator on A*, and
propositions (i) and (ii) hold for t*, A*, X* in place oft, A, X. The index of a nonzero eigenvalue
for the linear operator t* is equal to its index for t, and for k = 0 , 1 , . . . , v— 1, the ranges of
(t—Xe)kp and (t*—Xe*)kp* have equal dimension.
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Remarks, (i) Theorem 1 shows that Theorem 4 is applicable in particular to a compact
linear operator t on X.

(ii) The spectral projection p is an element of A. In fact, it belongs to the least closed
subalgebra Ao of B(X) that contains t. For we have (t—XeYp = 0, and X <£ 0, from which
pet A <= Ao.

(iii) Theorem 4 is applicable to operators t that are not compact on X; for example the
identity operator e.

Proof, (i) Since A <=. B(X), it is obvious that Sp(f) c SpA(f), and since all points of
SpA(f) are frontier points, SpA(0 <= Sp(f), [7, Theorem 1.6.12]. It is now clear from Theorem
2 that all nonzero points of Sp(f) are eigenvalues.

(ii) It is clear that Y and Z are closed invariant subspaces for t and that X'= Y@Z. By
Theorem 3(iii), {t—Xe)q is invertible relative to Rv, and so (t—Xe)\z is invertible in B(Z). We
note next that

(t-Xeyx = 0}, Z = (t-Xeyx. (1)

For, since qA = Rv = (t-Xe)vA, there exist a,beA with

<Z = a(t-Ae)v, (f-Ae)' = 4&. (2)

It follows at once from (2) that (t - Xe)vX = qX and that (t - Xe)vx = 0 if and only if #* = 0,
which proves (1).

We prove that v is the least positive integer k for which

{xeX: (t-Ae)k+1x = 0} = {xeX: {t-kefx = 0}. (3)

For if fc satisfies (3) and (t-Xe)k+ 1a = 0 for some aeA, then we have in turn (t—Xe)k+ 1ax = 0
(x e X), (t - Xefax = 0 (x e X), (t - Xefa = 0; which shows that k ;> v. On the other hand, if
(t-Xe)v+1x = 0 for some xeX, then {t-Xefx = 0; and, by (1), (f-Ae)vjce FnZ , (t-Xe)vx
= 0. Thus v is an integer satisfying (3).

(iii) The mapping a -»• a* of a on to its adjoint a* is an isometric isomorphism between A
and A*. Thus the properties of (t*, A*, X*) can be deduced from those of (/, A, X). The final
statement is an elementary consequence of the duality between Zand X*. Let a = (t—Xe)kp,
and let xt,...,xn be linearly independent elements of aX. Then there exist fu... ,fne X* and
^ . . . . . ^eA ' such that/,(x;) = 8,j and x} = ay} (i,j = l,...,n). Then

showing that a*fu..., a*fn are linearly independent elements of a*X*. Thus the dimension of
aX does not exceed the dimension of a*X*, and similarly for the opposite inequality.

4. The Krein-Rutman theorem. We show how Theorem 1 may be applied to give a new
proof of the following theorem of M. G. Krein and M. A. Rutman [5, Theorem 6.1].
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THEOREM. Let X+ be a closed cone in a Banach space X such that X is the closed linear
hull ofX+. Let t be a compact linear operator on Xsuch that tX+ c: X+ and the spectral radius
p of t is not zero. Then there exist x0e X+ andf0eX*+ such that x0 ¥>0,f0 it 0, tx0 = px0,

t*fo = PU
We first prove the following variant of the Krein-Rutman theorem.

THEOREM 5. Let t be a compact linear operator on a Banach space X, and let the spectral
radius poftbe nonzero. Let A + denote the least closed semi-algebra in B(X) containing t and e.
IfA+n(—A+) = (0), then there exists ueA+ such that u # 0 and tu = pu.

Proof. We use elementary techniques introduced in [2], but simplified by the fact that
we are able to work throughout in B(X). Suppose that A+ n(—A+) = (0). We note first
that if p. > p, then

r =(ne-t)~l = -e+-jt + ^t2 + ...eA+.

We prove that there exists a sequence {nn} such that

Hn> P (n = l ,2 , . . . ) , l i m ^ = p, lim || rPn || = oo. (4)
n-»oo n-*oo

Suppose that there is no such sequence {/*„}. Then there exist positive constants e, M such
that || Tp || ^ M ip < n < p + e). We choose X,n such that

0< k<p<n<p+e, n-X<M~l.
Then we have l l +

and

It follows from this that

with gne/4+.

Let an = A"""1 || f" || . Since 0 < A < p, we have lim <xn = oo, and so there exists a
n-»oo

subsequence {ant} such that

Let ak = A~"kfnfc-x. Since anic g A"x |U II • II o* II , we have lim || ak \\ = oo. By (5), we have
k-»oo

1
llfl*ll~ ^ = ^( l l«* i r fl»)+l|fl*ll 9nk- (7)

By Theorem 1, there exists a subsequence of {A"1^! ak W'1^)} that converges to be A*.
Since the left-hand side of (7) tends to zero, the corresponding subsequence of {|| ak \\~lqnk}
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also converges to ceA+, and b+c = 0. Since A+ n (—A+) = (0), we conclude that b = 0.
But this is a contradiction, for (6) gives

-t
A,

and so || 6 || ^ 1. This contradiction proves the existence of a sequence {/*„} satisfying (4).
Let un = || rfa r*W Then « n e ^ + , || u. || = 1, and

Gv-fK-Kjr1* (8)
By Theorem 1, there exists a subsequence {unk} such that lim fwnfc = ueA+. Then, by (4)

and (8), lim nnkunk = u. Therefore lim finjunk = tu, and, since lim nnk = p, we have tu = pM.
fc-*co fc-»oo fc-»oo

Proof of the Krein-Rutman theorem. Let AT+, f satisfy the conditions in the theorem. Each
element a of A+ is positive in the sense that aX+ <= X+. If a e A+ n(—A+), then

aX+ <=X+n (-X+) = (0), aX* = (0).

Since the linear hull of X+ is dense in X, this gives a = 0, A+ n (-^4+) = (0). Thus Theorem
5 is applicable, and there exists ueA+ such that M # 0 and <« = pu. Again, since the linear
hull of X* is dense in X, there exists xt e X+ such that wxx ^ 0 . Let JC0 =uxl. Then x0e X+,
x0 £ 0, and

tx0 = tuXi = puxt = px0.

Also, xo$ — X+, and —X+ is a closed positive homogeneous convex set. Therefore there
exists fi 6 X* such that / j (*„) = 1 and f^x) ^ 0 (x e - X+). This implies that / t e JT*+. Let
fo = u*fi. Then / 0 6 A-*+, and / 0 * 0, since

Finally, t*u* = pw* (since ut = pw), and so

Remark. Let r satisfy the conditions of Theorem 5. If A+ n(-A+) = (0), then ^ + is a
locally compact semi-algebra. For, by Theorem 5, the spectral radius of t belongs to the
spectrum of /, and so A+ is locally compact [3, Theorem 5]. Conversely, if A is locally com-
pact, then A+ n (—A+) has finite dimension, since it is a normed linear space with a compact
unit ball.

5. A general theorem. Given Banach spaces X, Y, we denote by B(X, Y) the Banach space
of all bounded linear mappings of X into Y with the usual norm.

THEOREM 6. Let Xu X2, X3, XA, Y be Banach spaces, let a and d be compact linear map-
pings of Xx into X2 and X3 into X^ respectively, let b and c be bounded linear mappings of Y
into B(X2, X4) and B(XU X3) respectively, and let

Z={yeY:(.by)oa = d
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Then the mapping z -* (bz) oaisa compact linear mapping ofZ into B(XU X4).

X

Proof. Let U, V, W be the closed balls given by

U={xeX1:\\x\\^l}, V={zeZ:\\z\\ | 1}, W= {x

and let £ = at/, F = rfW. Then is and F are compact subsets of X2 and Jf4 in their norm
topologies, and we have

(cz)xeW (xeU, zeV),

from which

((fa) oa)x = (do (cz))xsdW (xeU, ze V).

Since bz is continuous, it follows that

(bz)xeF (xsE, zeV).

Thus, for each xeE, the image of V under the mapping z ->• (bz)x is contained in a compact
subset of X±. Also, {bz : zeV} is an equicontinuous family of mappings of the compact
space E into the Banach space X4. Therefore, by Ascoli's theorem for Banach space valued
functions, given zne V (« = 1,2,...), there exists a subsequence {znk} such that {(bznk)x) con-
verges uniformly on E. Since all c E, it follows that ((6znt) o a)x converges uniformly on U,
i.e. {(bzni) o a} converges with respect to the norm in B(XU

Example 1. Let t be a compact linear operator on a Banach space X over F, where F is
either R or C. Take Zt = X2 = X, X3 = X4 = F, y = Z*, the dual space of X. Let a = f,
c = t*, and let i and d be the identity operators on X* and F respectively. Since

(by) o a = y o t = t*y = do (cy) (ye Y),

we have Z = Y= X*. Thus the mapping y^t*y is a compact linear mapping of X* into
B(XU Z4) = .B^, F) = X*. This is Schauder's theorem.

Example 2. Let t be a compact linear operator on a Banach space X, let Zx = Z2 =
X3 = Z4 = .Y, and let y = B(X, X). Leta = d=t, and let both* andc be the identity operator
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on Y. Then

Z = {seB(X,X):st = ts},

and s -* st is a compact linear mapping of Z into itself. This is Theorem 1.

Example 3. Let X,,X2, X3, X* be Banach spaces, and let Y = B(X2, X3). Let a and d
be compact linear mappings of Xx into X2 and A"3 into X* respectively and let b and c be
defined by by = </ o j>, cy = j o a. Then

(by) o a = do y o a = */o (cy) (ye Y).

Therefore Z = Y = 27(^2, A^), and the mapping j - » < / o j o a i s a compact linear mapping of
B(X2, X3) into B(XX, XA). This result has been proved by K. Vala [9] as an application of his
formulation of Ascoli's theorem.
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