PROBLEMS FOR SOLUTION

P31. Prove that if $p>3$ is a prime $\equiv 3(\bmod 4)$ and $\zeta=e^{2 \pi i / p}$, then

$$
\Pi_{r}\left(1+\zeta^{r}\right)=\left(\frac{2}{p}\right)
$$

where r runs through the quadratic residues of p, and $\left(\frac{2}{p}\right)$ is the Legerdre symbol of quadratic residuacity.
L.J. Mordell

P32. The equation

$$
\left(1+2 \cos \frac{\pi}{p}\right)\left(1+2 \cos \frac{\pi}{q}\right)=1
$$

is obviously satisfied by $p=q=2$. Are there any other rational solutions with $p \geqslant q \geqslant 1$?
N.W. Johnson

P33. Let

$$
R_{n}=R_{n}(x)=\sum_{r=0}^{n}\binom{n+r}{n-r} x^{r} .
$$

Show that for $n>0$,

$$
R_{n+1} R_{n-1}-R_{n}^{2}=x
$$

L. Lorch and L. Moser

P34. Determine all Riemann surfaces with a transitive group A of automorphisms (conformal self mappings). On these surfaces a not too narrow conformal geometry can be based.
H. Helfenstein

SOLUTIONS

P25. Let H be a complex in a finite additive group and let H contain 0 and at least one other element. Does there

