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The swift deformations of flagella and cilia are crucial for locomotion and fluid transport
on the micron scale. Most hydrodynamic models of flagellar and ciliary flows assume
the zero Reynolds number limit and model the flow using Stokes equations. Recent work
has demonstrated that this quasi-steady approximation breaks down at increasing distances
from the cilia. Here, we use optical tweezer-based velocimetry to measure the flow velocity
with high temporal accuracy, and to reconstruct the entire unsteady flow field around
beating cilia. We report both the steady and the unsteady component of the ciliary flow and
compare them with the solutions to both the Stokes and the Navier–Stokes equations. Our
experimental measurements of the velocity and vorticity fields are in agreement with the
numerical solution to the Navier–Stokes equations and show significant differences with
the solution to the Stokes equations. We characterize the phase difference between the flow
oscillations and the oscillations of the ciliary motion and evidence a significant anisotropic
phase lag. We show that this phase lag presents the spatiotemporal characteristics of the
unsteady Stokes equations and that the flow field around beating cilia is well represented
by the fundamental solution to the unsteady Stokes equations: the oscillet.

Key words: micro-organism dynamics, Navier–Stokes equations

1. Introduction

Cilia and flagella are ubiquitous hair-like structures that are highly-conserved among
eukaryoticorganisms.Theseorganellesare functionallydiverse,and theirproper functioning
is critical for the survival of many living organisms, from small scale micro-organisms
(Ginger, Portman & McKean 2008; Raina et al. 2019) to humans (Fliegauf, Benzing &
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Omran 2007; Satir & Christensen 2007). Flagellar and ciliary functions include: microbial
motility (Lauga & Powers 2009; Elgeti, Winkler & Gompper 2015), cleansing (Tilley et al.
2015), reproduction (Halbert et al. 1997) and sensing (Fliegauf et al. 2007). A fine control
of flagellar and ciliary motility supports the precise navigation of spermatozoa following
chemical gradients during fertilization (Friedrich & Jülicher 2007; Yoshida & Yoshida
2011), the taxis of micro-algae towards desirable environments (Wan & Goldstein 2018;
Wan 2020), feeding of Paramecium (Funfak et al. 2014) and the transport of mucus to clear
airways (Tilley et al. 2015). Most of these functions depend on the generation of flows on
the micron scale. This has led to extensive work to develop theoretical models and design
experiments to characterize the flow around cilia.

The flows generated by cilia and flagella have been modelled for studies of a single
beating cilium or flagellum of microswimmers, for studies of hydrodynamic interactions
between multiple flagella/cilia and for studies of multiple microswimmers in a suspension
(Elgeti et al. 2015). Previous work on a single beating flagellum or on an isolated
microswimmer have included studies of single free-swimming bacteria (Drescher et al.
2011), of single sperm cells swimming away (Ishimoto et al. 2018) and close to surfaces
(Smith et al. 2009; Elgeti, Kaupp & Gompper 2010) and of micro-algae swimming
freely (Drescher et al. 2010; Guasto, Johnson & Gollub 2010) and captured by pipette
suction (Brumley et al. 2014; Quaranta, Aubin-Tam & Tam 2015; Amador et al. 2020).
In these studies, flow fields are often described with reduced hydrodynamic models
such as single or multiple stokeslet singularities (Pepper et al. 2013; Drescher et al.
2010; Lushi, Kantsler & Goldstein 2017; Ishimoto et al. 2018), force dipoles (Drescher
et al. 2011) or multipole expansions (Mathijssen, Pushkin & Yeomans 2015). Studies of
hydrodynamic interactions between two or more beating flagella/cilia have often focused
on synchronization. Such studies require simple and accurate models to represent the flow
fields around cilia. Beating cilia have been represented as rotating spheres (or stokeslets)
with prescribed trajectories (Vilfan & Jülicher 2006; Guirao & Joanny 2007; Niedermayer,
Eckhardt & Lenz 2008; Uchida & Golestanian 2010; Friedrich & Jülicher 2012; Theers &
Winkler 2013; Brumley et al. 2014). A more detailed representation describes a cilium
as undulating filaments with prescribed waveforms discretized into stokelets or spheres
(Geyer et al. 2013; Ding et al. 2014; Guo et al. 2018). Studies of internal dynamics
and kinematics of flagella/cilia (Tam & Hosoi 2007, 2011; Chakrabarti & Saintillan
2019a,b) have made use of non local slender-body theory to model the hydrodynamics
(Keller & Rubinow 1976). Finally, studies of suspensions of microswimmers have focused
on the onset of collective motion and the effect on the rheology of the active suspension
(Saintillan 2018). These efforts also require efficient hydrodynamic models for active
particles (Ishikawa, Simmonds & Pedley 2006; Pooley, Alexander & Yeomans 2007;
Saintillan & Shelley 2007; Lauga & Michelin 2016).

In most of the aforementioned studies, Stokes equations are used to represent the
dynamics of the fluid (Purcell 1977). Stokes equations imply a quasi-steady approximation,
which assumes that the vorticity, created by the no-slip condition at the surface
of a deformable microswimmer, propagates to infinity instantaneously. Thus, Stokes
equations neglect the unsteady effects associated with the small, but finite, time scale
for vorticity diffusion. These unsteady effects have long been suggested to be used by
microswimmers for locomotion (Brennen 1974; Wang & Ardekani 2012; Ishimoto 2013),
sensing (Takagi & Strickler 2020) and interacting with each other in a way that is different
from what predicted by the Stokes equations (Li, Ostace & Ardekani 2016). Additionally,
the unsteadiness alone is also suggested to be sufficient to establish hydrodynamic
synchronization in minimal models (Theers & Winkler 2013).
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Flow velocity fields around beating cilia have been measured experimentally (Drescher
et al. 2010; Guasto et al. 2010; Brumley et al. 2014). However, characterizing the
significance of the unsteady component of ciliary flow is challenging. One major reason
is that the ciliary beating frequency is high (∼10–100 Hz) and hence the time scale for
the unsteadiness is short. Established velocimetry techniques based on measuring the
displacements of passive tracer particles are inaccurate over short time scales, because of
the thermal diffusivity of the tracer particles. Recently, Wei et al. (2019) directly measured
the unsteady flow around beating cilia and measured the asymptotic decay in the velocity
field along two principal directions. These measurements were performed using optical
tweezers velocimetry (OTV) (Dehnavi et al. 2020). The asymptotic behaviour of the
flow was shown to deviate fundamentally from the stokeslet and to have characteristic
features of the fundamental solution to the unsteady Stokes equations – referred to as
the oscillet by Klindt & Friedrich (2015) – namely a higher spatial decay rate and, more
importantly, a spatial phase shifted, at distances smaller than the characteristic length of
vorticity diffusion δ = √

μ/ρf , where μ is the dynamic viscosity of water, ρ the density
and f the ciliary beating frequency. Separate recent experimental work has led to similar
observations (Bruot et al. 2020).

In this study, we use OTV to fully characterize the time resolved flow velocity fields
around beating cilia. Our measurements illustrate the rich spatiotemporal dynamics of
the flow around cilia. We report the asymptotic behaviour of both the steady and the
unsteady flow components along the different principal directions. The spatial and time
resolution allow us to compare our velocity measurements in the entire flow field with
the fundamental solution of the unsteady Stokes equations. We further perform numerical
simulations and compare our experimental velocimetry measurements with the computed
velocity fields. We solve both Stokes equations using the boundary element method (BEM)
and the unsteady Stokes equations using direct numerical simulations. This comparison
shows that the measured flow fields display key features which are direct results of the
unsteady term in the equation and are not accounted for in the Stokes equations.

This paper is organized as follows. Section 2 introduces the theoretical framework,
with § 2.1 introducing the governing equations, and § 2.2 the numerical results showing
the behaviour of an oscillet. Section 3 introduces the experimental and computational
methodology. Section 4 focuses on characterizing the asymptotic behaviours of the ciliary
flow field along different axes. Sections 4.1–4.3 present results of the spatial decay of the
steady flow, the spatial decay of the unsteady flow, and the phase shift of the unsteady flow,
respectively. Lastly, in § 5, we present the time-resolved ciliary flow field over the entire
xy-plane. In § 5.1, we display the flow field consisting of both the steady and the unsteady
components. Then we focus on characterizing the unsteady velocity field over the plane
in §§ 5.2–5.4, where we introduce the direct numerical simulation method, map the phase
shift over the plane, and visualize the vorticity diffusion, respectively.

2. Theoretical background

2.1. Governing equations
The fluid dynamics of an incompressible fluid around beating cilia is governed by the
Navier–Stokes equations:

ρ

(
∂u
∂t

+ (u · ∇)u)

)
= −∇p + μ∇2u + f ,

∇ · u = 0,

⎫⎬
⎭ (2.1)
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where ρ and μ are the density and the dynamic viscosity of the fluid, u(r, t) =
(u, v, w) and p(r, t) the velocity and the pressure fields, and f (r, t) represents the
distribution of body force. We consider a flow with a characteristic time scale of τ = 1/f ,
characteristic velocity U and length scale L. With these scales, we non-dimensionalize
equations (2.1):

Reτ

∂ũ
∂ t̃

+ Re(ũ · ∇)ũ) = −∇p̃ + ∇2ũ + f̃ ,

∇ · ũ = 0.

}
(2.2)

Equations (2.2) depend on two non-dimensional parameters, namely the classical
Reynolds number Re = ρUL/μ and the unsteady Reynolds number Reτ = ρL2/(μτ). The
Reynolds number Re describes the relative magnitude between the nonlinear inertial term
and the viscous term in (2.1). The unsteady Reynolds number Reτ characterizes the relative
magnitude of the transient inertial term and the viscous term. In studies of micro-motility
and flagellar hydrodynamics, both the transient and the nonlinear inertial terms are often
neglected, such that (2.1) simplify to the Stokes equations, which are used to compute the
flow field:

0 = −∇p + μ∇2u + f . (2.3)

For ciliary flows, the Reynolds number Re is very small. For example, for a micro-algae
10 μm long swimming at 100 μm s−1 the Reynolds number is Re ∼ 10−3 and the
nonlinear inertial term is negligible. Next, we consider the unsteady Reynolds number.
Reτ can be interpreted as the ratio of two time scales, Reτ = τdiff /τ , where τdiff = ρL2/μ
is the time scale for the diffusion of vorticity over a length scale L and τ is the relevant
characteristic time scale. Considering the flow field at very short distances L from the
beating flagella/cilia, τdiff is small such that τdiff � τ . In this case, the viscous boundary
layer can be considered to have diffused over a length scale much larger than L and it is
therefore justified to assume a quasi-steady approximation within this boundary layer and
to represent the flow field with the Stokes equations (2.3). On the other hand, if we consider
the flow field at distances L such that τdiff ≥ τ , the quasi-steady approximation does not
hold and the flow should be represented with the unsteady Stokes equations, which retains
the transient term:

ρ
∂u
∂t

= −∇p + μ∇2u + f . (2.4)

In this study, we characterize experimentally the unsteady flow around beating cilia.
For this, it is instructive to decompose the flow velocity into a steady and an unsteady
component: u = ū + u′. The steady component ū of the velocity field corresponds to
the time-average of the ciliary flow, ū = ∫ T

0 u(r, t) dt/T , with T the period of beating.
By definition, this term is time-independent, and therefore it is expected to satisfy the
Stokes equations (2.3). The unsteady component u′ = u − ū corresponds to the oscillatory
component of the ciliary flow whose time average is zero and satisfies the unsteady
Stokes equations (2.4). Solutions to the unsteady Stokes equations (2.4) and to the Stokes
equations (2.3) are fundamentally different, and one therefore expects the steady and
the unsteady flow components to present different characteristics. We illustrate these key
differences by looking at the fundamental solutions to both these equations.
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2.2. Fundamental solutions: the stokeslet and the oscillet
Both the Stokes and the unsteady Stokes equations are linear partial differential equations,
for which general solutions can be constructed by the linear superposition of fundamental
solutions. One of such fundamental solutions to the Stokes equations is the stokeslet,
which corresponds to the Stokes flow created by a point force f = Fδ(r). Here δ(r) is
the Kronecker delta function. The flow field of a stokeslet is (Pozrikidis 2011)

uS(r) = F · G(r)
8πμ

,

Gij(r) = δij

r
+ xixj

r3 .

⎫⎪⎪⎬
⎪⎪⎭ (2.5)

Similarly, the fundamental solution to the unsteady Stokes equations with an oscillating
point force f = Fδ(r) ei·2πft derived by Stokes (1851) can be written (Pozrikidis 2011;
Kim & Karrila 2013):

uO(r) = F ei·2πft · S(r)
8πμ

,

Sij(r) = δij

r
A(R) + xixj

r3 C(R),

A(R) = 2
(

1 + 1
R

+ 1
R2

)
e−R − 2

R2 ,

C(R) = −2
(

1 + 3
R

+ 3
R2

)
e−R + 6

R2 ,

R ≡ √
2π · r

δ
e−i·π/4, δ ≡

√
μ

ρf
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

Following Klindt & Friedrich (2015), we refer to this fundamental solution as an
oscillet. In the near field, where R → 0, one can easily verify that A(R → 0) = 1 and
C(R → 0) = 1, such that S(r) ≈ G(r). Therefore, in the vicinity of the point force, the
oscillet is simply an oscillating stokeslet. In the far field, there are two major differences
between the behaviour of an oscillating stokeslet (2.5) and that of an oscillet (2.6). First,
in the far field, the magnitude of the stokeslet flow uS decays as 1/r, while the amplitude
of the flow oscillations of the oscillet decays as 1/r3. Second, the flow field around an
oscillating stokeslet always oscillates in phase with the point force at the origin of the
flow. This is because of the quasi-steady approximation of (2.3), which assumes that
the flow has instantaneously reached the steady state stokeslet field. For an oscillet, on
the other hand, the oscillations of the flow velocity will be phase delayed with respect
to the oscillations of the forcing. This phase delay is a direct consequence of the finite
diffusion time of vorticity, and the oscillet is analogous to Stokes’ second problem,
corresponding to the unsteady flow created by an oscillating flat surface (Pozrikidis
2011).

We illustrate the important differences between the stokeslet and the oscillet by
representing the velocity fields associated with both singularities. Figure 1 illustrates the
velocity field and streamline pattern for a point force located at the origin and oscillating
along the x-axis. Figure 1(a) corresponds to an oscillating stokeslet, while figure 1(b)
corresponds to an oscillet. For the stokeslet, it is noteworthy that the x-component of the
velocity field u has the same sign in the entire domain and remains always the same as the
sign of the point force F . The oscillet flow, figure 1(b), resembles the stokeslet flow only
in the immediate vicinity of the origin, where the point force is located. The flow field is
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Figure 1. Streamlines deduced from the velocity field of a stokeslet with oscillating force (a) and that of an
oscillet (b). The oscillating force F sin(2πt/T) is represented by the black arrow at the origin. From panel 1 to
8, t/T = 0.03, 0.10, 0.20, 0.28, 0.39, 0.52, 0.60, 0.70. Grey arrows represent the velocity vector field.

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

–0.2 0.20 –0.2 0.20 –0.2 0.20 –0.2 0.20 –0.2 0.20 –0.2 0.20 –0.2 0.20 –0.2 0.20

x/δ (–) x/δ (–) x/δ (–) x/δ (–) x/δ (–) x/δ (–) x/δ (–) x/δ (–)

y/
δ 

(–
)

y/
δ 

(–
)

(a)

(b)

Stokeslet

Oscillet

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

5.8 1.7 0.2 –0.2 –1.7 –5.80
ω (1 s–1)

Figure 2. Vorticity field, ω = ∇ × u, of a stokeslet with oscillating force (a) and that of an oscillet (b).
Panels are taken at the same instants as in figure 1 respectively.
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Figure 3. Phase shift θu between the forcing and the x-component of the velocity, computed with (2.6). The
point force is at the origin and oscillates along the x-axis. (a) Phase shift in xy-plane. (b) Phase shift θu along the
x- (red) and the y-axis (blue), corresponding to the horizontal and the vertical dashed line in (a) respectively.
Axes are scaled by δ = √

μτ/ρ.

characterized by the presence of a stagnation point and that of closed streamlines around
the stagnation point. The flow direction is therefore not uniform in the entire field. Along
the y-axis, the sign of the velocity component u changes beyond the stagnation point, which
corresponds to a flow inversion point. This stagnation point moves away from the origin,
figure 1(b, panels 1 to 5). A new stagnation point is generated at the origin, every time the
point force changes direction, figure 1(b, panel 6). This new stagnation point, then, moves
away from the origin, figure 1(b, panel 6–8). The propagation of the stagnation point is
related to the diffusion of vorticity, which we consider next.

Figure 2 represents the z-component of the vorticity field in the xy-plane at different
instants during a cycle. For a stokeslet, the vorticity field has a uniform sign in the entire
field and is positive (respectively negative) for a positive (respectively negative) point force
F , figure 2(a). The vorticity field of the oscillet does not have a uniform sign. Vorticity
is generated at the origin, figure 2(a, panel 1), and diffuses into the field, see panels
1–5. When the force direction reverses and becomes negative, negative vorticity is then
generated at the point force, figure 2(a, panel 6), but the vorticity remains positive in the
rest of the field.

Finally, in the oscillet flow, there is phase delay between the oscillation of the flow
velocity and the oscillation of the point force. This is not the case for the stokeslet flow.
Figure 3 represents θu, the phase delay between u and the point force. A distinct feature
is that the phase increase is not isotropic. The phase increases slowly along the direction
of the forcing, the x-axis, and significantly faster along directions perpendicular to the
forcing, the y- and z-axis, see figure 3(b). It bears emphasis that the increase in phase
delay occurs already at short distances from the point force, and is not limited to the
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far field. In fact, the phase increases the fastest at distances smaller than the diffusive length
scale δ.

3. Methodology

3.1. Optical tweezers velocimetry (OTV)
We measure the flow field around beating biological cilia. In nature, cilia beat at
frequencies ranging from 10 to 100 Hz and generate flows with rich temporal dynamics.
Resolving such dynamics requires high temporal and spatial accuracy. On these scales,
velocimetry techniques based on passive tracers, such as particle image velocimetry (PIV)
and particle tracking velocimetry (PTV) become inappropriate because the advection of
passive tracers cannot be distinguished from Brownian motion (Meinhart, Wereley &
Santiago 1999). While the displacements due to the advection of the particle by the
flow scale with ∼Uτ , the displacements due to diffusion scale with ∼√

Dτ , where D
is the diffusion coefficient of the tracer particle. The ratio of these length scales defines
the Péclet number Pe ∼ U

√
τ/D, which represents a signal to noise ratio for passive

tracer-based velocimetry. For smaller values of Pe, both PIV and PTV can still be used
to measure the average flow, but they cannot accurately capture the unsteady nature of the
flows. These physical limitations of micro-PIV can be reduced to a certain extend by using
larger tracers, or in case of preknowledge of the periodic character of a flow, by using
correlation averaging within a class of image pairs grouped to correspond to a given phase
of the periodic flow, see Poelma et al. (2008). For unsteady ciliary flows, Pe can be of
order one and even much smaller at increased distances from the cilia. For such flows, the
use of PIV and PTV is extremely difficult. Here, we tackle this challenge by using OTV
(Wei et al. 2019; Dehnavi et al. 2020). Previously, optical tweezers have been employed
to measure velocity of steady flows (Almendarez-Rangel et al. 2018). In this study, we
leverage the high spatial-temporal resolution of the optical tweezers-based measurement
to resolve both the steady and the unsteady component of the ciliary flow. In this technique,
a bead is trapped by a focused laser beam. The local flow velocity directly relates to
the displacement of the bead from the laser focal point. The desired temporal resolution
in measuring the flow (�0.1 ms) is achieved by using back focal plane interferometry
(Gittes & Schmidt 1998; Farré, Marsà & Montes-Usategui 2012) in monitoring the bead
position �x(t).

The OTV experimental setup is presented in figure 4(a,b) and is briefly summarized
hereafter. Two laser beams are aligned and focused by a water immersion objective
(NA = 1.20, 60×). A Nd:YAG (λ = 1064 nm) laser is used to trap spherical polystyrene
beads of radii a = 0.5–2.5 μm at the focal point. Following Dehnavi et al. (2020), we use
larger beads in a weaker trap to measure the small amplitude flows far away from the cell,
and smaller beads with stronger traps to measure, with a higher spatial resolution, the flows
closer to the flagella. As the beads vary in size, even within the same sample, we measure
the size of each bead for each flow measurement. Back focal plane interferometry is
performed with a second detection laser (λ = 880 nm), which is used to detect the position
of the bead with a position sensitive detector (PSD, First Sensor DL100-7) (figure 4a). The
experimentally acquired electrical signal from the PSD is converted into bead position
following the same methodology as Lang et al. (2002). The bead position �x can be
directly related to the local flow velocity u, by considering the force balance between the
force due to the optical tweezers F t = −kΔx, and the hydrodynamic force F h(t) due to
the external flow u, where k is the stiffness of the optical tweezers. The Reynolds number
of the bead, Rea = ρ|u|a/μ, is small Rea ≈ 10−5–10−4, such that the hydrodynamic force
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Figure 4. Optical tweezers velocimetry (OTV) (a) Scheme of OTV. Lasers are used for trapping beads and
detecting the beads’ displacement. Information on the bead’s displacement is obtained by back focal plane
interferometry, which is facilitated by a condenser and a position sensitive detector (PSD). (b) Zoom-in of
the dashed circle in (a). The recovery force F t exerted by the optical tweezers equals the hydrodynamic
force F h(t). (c) Schematics showing how the biological sample is loaded. A customized flow chamber in a
semi-circle shape of 15 mm diameter with a 2 mm thickness is used for experiments. Cells with beating cilia
are captured by suction force applied through a glass micro-pipette. The cell and the pipette are mounted on
a micro-manipulator which controls their relative position with respect to the laser trap. (d) Experimental
configuration. A bead is optically trapped nearby to resolve the local flow velocities u and v. The ciliary shapes
during a typical beat are displayed. The ciliary phase φ ∈ [0, 2π) is used to describe the shapes, with the
most forward-reaching shape defined as φ = 0. Inset shows a light microscope image of the corresponding
experiment, in which the ciliary shapes correspond to approximately φ = 0.

on the bead reduces to the viscous drag only, and the flow velocity can hence be deduced
from the equation

dΔx
dt

+ k
γ

Δx = u(t), (3.1)

where γ = 6πμa is the Stokes drag coefficient. Using (3.1), we deduce the local flow
velocity u(t) from the bead displacements Δx(t) using a Kalman filter, see Dehnavi et al.
(2020) for detail.

3.2. Experimental setup and measurement settings
Wildtype Chlamydomonas reinhardtii cells (cc-125 mt+) cultured in TRIS-minimal
medium (pH = 7.0) are used as biological samples to generate ciliary flows. In the OTV
experiments, cell suspensions (∼2 × 104 cells ml−1) with uncoated polystyrene beads
(∼1 × 105 ml−1) are filled into the custom-made flow chambers, see figure 4(c). The flow
chamber is a semi-circle of 7.5 mm radius in the xy-plane and is 2.0 mm in height in
z. Single cells are captured by suction force applied through custom-made micro-pipettes,
figure 4(c,d). The openings of the pipettes are of 2–5 μm diameter. As shown in figure 4(a),
the pipette is held by a micro-manipulator (SYS-HS6, WPI) and can be moved in x, y, and
z directions with ∼1 μm precision. With this, the cells are placed at different measurement
locations with respect to the trapped bead. Unless otherwise mentioned, the ciliary beating
plane is always aligned with the xy-plane. To record the ciliary beating of the captured
cell, we use bright-field microscopy and high speed videography using an sCMOS camera
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(LaVision PCO.edge) at frame rates of 400–1400 fps. At each location, OTV measurement
was carried out at a sampling frequency of 10 kHz and lasted 5–10 s.

A typical experimental configuration is displayed in figure 4(d), with a light microscope
image from our experiments in the inset at the top right. The captured cells are held at
120 μm above the bottom of the flow chamber. To prevent background flows due to
evaporation during experiments, we seal the flow chamber with a layer of silicone oil.
We record the flow velocity u(r, t) sequentially at a series of locations with respect to the
cell ri (i = 1, 2, 3, . . .). The point where the cilia are anchored to the cell body is taken
as the origin of the Cartesian coordinate system. The asymptotic behaviour of the flow
along different axes, and the flow field over the xy-plane, are studied with different sets of
sampled flow velocity u(ri, t) (i = 1, 2, 3, . . .).

In addition to the OTV measurement, we simultaneously track the shapes of the beating
cilia from the video recordings, figure 4(d). We define the ciliary phase φ ∈ [0, 2π) to
describe the shapes, with the most forward-reaching shape defined as φ = 0 (inset of
figure 4d). For each frame, we determine the phase associated with the ciliary shape.
To do this, we first time stamp the beginnings of each ciliary beat by identifying the
most forward-reaching ciliary shapes (φ = 0) for consecutive beats, based on the video
taken simultaneously with the measurement. Second, the ciliary phase between two
marked instants is linearly interpolated between 0 and 2π. Figure 5(d) displays the ciliary
shapes that are marked by the user as φ = 0, and are considered as φ = 0.5π and π by
interpolation, from left to right, respectively. The point clouds represent the corresponding
shapes from different cycles, and the solid lines represent the median shapes. The narrow
spans of the point clouds confirm the accuracy of the time-stamping.

3.3. Boundary element method (BEM) and slender-body theory
To compute the flow velocity predicted by the Stokes equations (2.3), a hybrid method
combining the BEMand slender-body theory (SBT) (Keller & Rubinow 1976) is employed.
For simplicity, in the following parts, we refer to this method as the BEM, and it will be
later further integrated with direct numerical simulation (DNS) to compute the flow field
(§ 5.2).

In this BEM approach, the cell body and the pipette are represented as one entity, with
a completed double layer boundary integral equation (Power & Miranda 1987). Stresslet
singularities are distributed on the surface of the cell-pipette, while the stokeslet and rotlet
singularities of the completion flow are distributed along the centerline of the cell-pipette
(Keaveny & Shelley 2011). The no-slip boundary condition on the cell-pipette surface
is satisfied at the collocation points. The cilia are represented using slender-body theory
(Keller & Rubinow 1976) with 26 discrete points along each of the cilium’s centerline. The
time-dependent motion of each of the 26 discrete points on a beating cilium are tracked
from video, following a procedure similar to Riedel-Kruse et al. (2007) and Geyer et al.
(2013).

For each computation, we adjust the size of the pipette opening and the cell body shape
according to the corresponding experiment. Realistic ciliary shapes are tracked from the
video frames (figure 4d) and represented using SBT. The flow field corresponding to each
frame is then computed. Figure 5(a) shows the computed flow field in the middle of the
power stroke. Computed velocity uS(t) at the bead’s position (the white circle) is displayed
in figure 5(b,c). The computed signals (red) are overlaid with the OTV results (grey and
blue), showing the great accuracy of the numerical method. Flow velocities are scaled by
U0 = Lf , with L and f the ciliary length and frequency.
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Figure 5. Numerical method and signal post treatment. (a) Flow field is computed numerically with the BEM
using tracked ciliary shapes shown in figure 4(d). (b,c) The axial (x) and the lateral (y) velocity component, u
and v, measured by OTV and computed by BEM. Raw OTV data are presented as grey dots in the background,
while blue lines show the signal after moving window average (MWA). BEM computations are overlaid in red.
A typical beat is shaded, which begins with the most forward-reaching ciliary shapes (φ=0). (d) Accuracy of
the time-stamping method. Grey dots represent the shapes stamped as φ = 0, 0.5π, and π, respectively. Black
lines represent the median shapes. (e, f ) The average cycle of u and v. Solid lines and the shadings represent
the median and the interquartile range for flows sample over ∼40 cycles. All flow velocities are scaled by
U0 = Lf ≈ 600 μm s−1.

Because uS(t) is computed by solving the Stokes equations (2.3), where the entire fluid
domain is in phase with the forcing, in the following sections, uS(t) is regarded as the
reference signal and its phase represents the phase of the forcing (ciliary beating).

4. Asymptotic behaviour of the flow field around beating cilia

We start by investigating the asymptotic behaviour of the flow field around beating cilia,
which includes the rates of spatial decay in the near field and far field of both the steady
and the unsteady component of the ciliary flow, and the rate of spatial phase shift of the
unsteady component. We measure the ciliary flow along the x-, y-, and z-axis, by sampling
flow velocities along (x, 0 ± 5 μm, 0), (0 ± 5 μm, y, 0), and (0 ± 5 μm, 0 ± 5 μm, z),
respectively. The uncertainties of ±5 μm result from aligning the measurement locations
to the origin (the anchor point of cilia, figure 4d). Each dataset presented consists of 8–30
sampled points along a specific axis for a given cell. In total, the present study includes
N = 30 cells and N = 38 datasets. Note that some cells were used to study the flow
behaviour along more than one axis. Each cell is consistently represented by a specific
symbol throughout the figures in this section. Most measurements are performed within a
maximum distance of ∼160 μm and a minimum distance of ∼L + 5 μm from the origin,
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where L is the cilium length of each cell. L varies from 8 to 18 μm over the cells used in
this study, and the average is L̄ = 12 μm. This minimum distance of ∼L + 5 μm is chosen
to avoid interference of the trapping laser and the trapped bead with the ciliary beating.
We present a systematic study of the behaviours of both the axial and the lateral flow
components along different axes. We compare the experimentally observed asymptotic
behaviours to those of the reduced theoretical models of systems of stokeslets and oscillets,
which sheds light on the nature of the ciliary flow. Practically, this knowledge can help
build more accurate models in simulation, and hence potentially help us better understand
ciliary synchronization.

4.1. Amplitude of the steady component
We first discuss the measurements of the steady component, i.e. the average flow. Figure 6
displays the axial average flow ū along the x-, y-, and z-axis, and the lateral average flow v̄

along the y-axis, respectively. Due to the symmetry of the breaststroke, v̄ along the x- and
z-axis are approximately zero and therefore are not presented. The measurement settings
are displayed by the schematics in each panel. Different markers represent different cells.
Flow velocities are scaled by U0 = Lf , with L and f the ciliary length and frequency, as U0
accounts for the different sizes and frequencies over different cells. Distances are scaled
by the characteristic length of vorticity diffusion δ = √

μ/ρf ≈ 140 μm.
We find that both ū and v̄ follow a 1/r decay along the x-, y- and z-axis, figure 6,

in agreement with Drescher et al. (2010) and Guasto et al. (2010). The experimental
velocity measurements can be compared with the solution to the Stokes equations for
a point force in the x-direction and located h = 120 μm ≈ 0.8δ above a no-slip wall,
obtained from the Blake tensor (Blake 1971). The dashed lines in figure 6 represent
the amplitudes of the average flow along the different axes, computed with the Blake
tensor, for a forcing strength of F = 23.3 pN, corresponding to the force exerted by both
flagella. We see that the rates of the spatial decay (1/r) are captured quantitatively for
r < h ≈ 0.8δ. For distances r on the same order of magnitude as h, the spatial decay rate
increases, which is consistent with the presence of the no-slip wall, see Blake’s solution in
figure 6(b). It is worth noticing that the flow amplitudes within the xy-plane are predicted
accurately and simultaneously with the same point force (figure 6a,b,d). This indicates
that the average flow created by captured C. reinhardtii cells within the ciliary beating
plane can be accurately represented by a single stokeslet (Brumley et al. 2014). Lastly,
we find the velocity magnitude to be smaller in the z-direction normal to the beating
xy-plane, compared to the y-direction. This highlights the limitations of representing a
cilium beating in a plane with an axisymmetric stokeslet.

4.2. Amplitude of the unsteady component
We now discuss the unsteady component of ciliary flow, or the oscillatory flow, u′ = u −
ū. By definition, it generates zero net flow per cycle, and we thus report the decay of the
amplitude of the oscillations, δu′ computed as half of the peak-to-peak amplitude of u′.
Figure 7 represents the axial (δu′) and the lateral (δv′) amplitude of the oscillatory flow,
along the x-, y-, and z-axis. Cells are represented by the same symbols as used in figure 6.
The important observation is that the asymptotic behaviour of the unsteady component
differs markedly from that of the corresponding average component. The rates of spatial
decay of the unsteady component are higher, see figure 7. While the amplitude of the
average flow decays in 1/r, the amplitude of the flow oscillations decays at a rate close
to 1/r3. This difference in the asymptotic behaviours between the average (ū, v̄) and the
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Figure 6. (a–c) Axial average flow (ū) measured along the x-, y-, and z-axis. (d) Lateral average flow (v̄)
measured along the (∼2 μm, y, 0), which is close to but slightly deviates from the y-axis. Measurement
configurations are shown by the schematics respectively. Flow velocities are scaled by U0 = Lf ≈ 600 μm s−1.
Distances are scaled by δ ≈ 140 μm. Different markers represent different cells. Dashed lines: flow amplitudes
of Blake’s solution for a forcing strength F = 23.3 pN.

oscillatory (u′, v′) flow suggests that they are not governed by the same equations. A 1/r
rate of decay is consistent with the stokeslet solution to the Stokes equations, while a
higher rate of decay observed is consistent with the oscillet solution to the unsteady Stokes
equations. Further features are reminiscent of the oscillet solution. The spatial decay of δu′
becomes stronger than 1/r at shorter distances along the y- and z-axis, which are normal
to the point force, compared to the x-axis, see figure 7(a–c). This is also the case for the
oscillet (2.6). The decrease of δv′ along the y-axis, figure 7(d), is stronger than that of δu′
along the x-axis, figure 7(a), at short distances from the cilia. This is due to the fact that we
measure the flow generated by two cilia, beating in an antisymmetric breaststroke. In the
x-direction, the cilia beat in the same direction and the flow generated by each cilium in the
x-direction contributes to the velocity u. In the y-direction on the other hand, the cilia beat
in antisymmetric fashion, and the flows generated by each cilium tend to cancel each other
out, leading to the observed faster rate of decay. It is noteworthy that along the y-direction,
δu′ and δv′ are of similar amplitude in the vicinity of the cell, where the measured flow is
predominantly created by the closest cilium figure 7(b,d). This is in contrast to the average
flow, for which ū is significantly larger than v̄, figure 6(b,d). Therefore, the unsteady flow
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Figure 7. (a–c) Amplitude of the axial oscillatory flow (δu′) measured along the x-, y-, and z-axis.
(d) Amplitude of the lateral oscillatory flow (δv′) measured along the y-axis. The symbols for different cells
are consistent with the ones used in figure 6.

created by one beating cilium corresponds to oscillating forces along both the x- and the
y-directions.

4.3. Phase shift of the unsteady component
The higher rate of decay is not the only difference between the fundamental solutions
of the Stokes and the unsteady Stokes equations. A defining feature of solutions to the
unsteady Stokes equation is the phase lag between the oscillations of the flow velocity and
the forcing, which develops at increasing distances from the forcing. This phase lag is a
characteristic of Stokes’ second problem as well as of the oscillet. Here we measure this
phase lag and present its asymptotic behaviour along different axes.

Figure 8 demonstrates the phase shift of the axial flow velocity at two locations
along the y-axis. The OTV measurements, u (grey and blue), are overlaid with the
BEM computations, uS (red), which assume the flow to satisfy the Stokes equations,
figure 8(a,b). Close to the cilia, r = y = 23.0 μm ≈ 0.16δ; the computed flow reproduces
the measured flow accurately: they have the same amplitude and reach maximum and
minimum simultaneously, figure 8(a). Farther away, at r = y = 66.2 μm ≈ 0.47δ, the
amplitude of the measured oscillatory flow velocities is lower, and the oscillations are
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Figure 8. The flow velocity is phase-shifted at increasing distance. (a) Close to the cell on the lateral (y)
side, y = 23.0 μm ≈ 0.16δ, experimental and computational results are in phase. (b) At a larger distance, y =
66.2 μm ≈ 0.47δ, the measured signal is phase-delayed. Inset: OTV raw data (grey), moving-window-averaged
data (blue), and flow computed by BEM (red). (c,d) Using the cross-correlation function C(φ′) = u(φ + φ′) 


uS(φ) to quantify the phase shift between the OTV signal u(φ) and the BEM computation uS(φ). �C(φ′) is the
correlation C(φ′) normalized. (a,b) Reprinted figure with permission from Wei et al. (2019). Copyright (2019)
by the American Physical Society.

phase-shifted compared to the Stokes computations, figure 8(b) and inset. The phase shift
is approximately π/2 and the two signals are in quadrature.

We quantify the spatial phase shift of ciliary flow by computing the cross-correlation
function between the flow measured by OTV and that computed by BEM. For each
recording, we proceed by first determining the ciliary phase φ(t) as described in the
methodology section. This allows us to transform the measured and the computed time
series of flow velocity, u(t) and uS(t), as functions of the ciliary phase φ, or u(φ) and uS(φ).
Then, we compute the cross-correlation function C(φ′) = u(φ + φ′) 
 uS(φ). The phase
shift between the measured velocity and the velocity predicted by the Stokes equations
corresponds to the phase for which the cross-correlation function reaches a maximum,
Cmax = C(φshift). In figure 8(c,d) we plot the normalized cross-correlation function,
C(φ′) = C(φ′)/Cmax, between the signals shown in figures 8(a) and 8(b), respectively.
In the vicinity of the cell, r ≈ 0.16δ, φshift ≈ 0; while at a larger distance, r ≈ 0.47δ,
φshift ≈ π/2.

We further characterize the phase shift of both the axial (u′) and the lateral (v′)
oscillatory flow, along the x-, y-, and z-axis, and over the xy-plane. For consistency and
simplicity, we denote the spatial phase shift φshift of u and v as θu(r) and θv(r) respectively
in the following parts.

In figure 9 we present θu along the x, y, and z-axis, and θv along the y-axis, respectively.
Cells are represented by the same symbols as used in figures 6 and 7. For each case, there
is a clear phase shift between the measured flow and the forcing, which increases with the
distance to the cilia. The increase of this phase-delay is highly dependent on the direction,
as can be seen from the different slopes in figure 9. The phase-delay is 2–3 times stronger
along directions perpendicular to the oscillating velocity, compared to the direction of
the oscillating force. Quantitatively, the slopes for θu along the x-axis and θv along the
y-axis are 0.30π/δ and 0.52π/δ, respectively, figures 9(a) and 9(d); while the slopes for
θu along the y- and the z-axis are 1.08π/δ and 1.16π/δ, respectively, figures 9(b) and 9(c).
The significant difference in the phase-delay along the different directions agrees with
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Figure 9. (a–c) Phase delay of the axial oscillatory flow (θu) along the x-, y-, and z-axis. (d) Phase delay of the
lateral oscillatory flow (θv) along the y-axis. Dashed lines: corresponding phase delay predicted by an oscillet
located at the origin, with oscillating force along the x-axis (a–c) and the y-axis (d), respectively. The symbols
for different cells are consistent with the ones used in figures 6 and 7.

the oscillet solution. The dashed line in each panel represents the corresponding phase
shift predicted by an oscillet located at the origin (figure 3b). Figure 9(a–c) correspond
to an oscillet with oscillating force along the x-axis and figure 9(d) corresponds to an
oscillet with oscillating force along the y-axis. The predictions are in agreement with
the experimental results. Note that the resemblance between θu along y- and z-axis
(figure 9b,c) reflects the axisymmetry of an oscillet (2.6).

5. Unsteady velocity fields in the beating plane of cilia

In the previous section we have systematically studied the asymptotic behaviours of the
flow created by beating cilia and found them to be in qualitative agreement with the
oscillet. We further proceed to resolve the spatiotemporal features of the entire flow field
around beating cilia and perform time-resolved direct numerical simulations (DNS) to
compare with our measurements and the BEM simulations.

5.1. OTV measurements of the entire flow field
The time-resolved flow field over the xy-plane is reconstructed from measurements
performed at points ri on a rectangular grid on one side of a cell. The grid covers the
area where x ∈ [−30, 30] μm and y ∈ [0, 160] μm with a grid size of 10 μm. In total,
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Figure 10. Ciliary flow field measured experimentally. Snapshots of flow field are taken at the time when
the cilia display shown shapes. Vector field: flow velocity; contour: flow speed. Both axes are scaled by δ =√

μ/ρf ≈ 140 μm. Data corresponding to the experimentally measured velocity field are available through the
4TU.center for research data (Tam & Wei 2021).

there are N = 78 sampling points. At each point, OTV measurements were carried out at
10 kHz for 5 s, and high speed videography was performed simultaneously at a frame
rate of 669 Hz. Each recording is time-stamped in order to construct the ciliary phase φ

for ∼40–50 consecutive beats, following the methodology detailed previously (§ 3.2). The
time series of velocity measurements are interpolated at N = 20 equally spaced phases
φj ( j = 1, 2, . . . , 20) between φ = 0 and 2π, and the velocity measurements over the
consecutive beats are binned for each of the phases φj. The flow velocity u(ri, φ) at each
measurement location ri, is calculated as the median of the marked cycles. Figure 5(e, f )
display the median flow velocity cycles and the interquartile ranges that are calculated
based on the signals shown in figure 5(b,c). Snapshots of the flow velocity field on the
xy-plane for each phase φj are obtained through two dimensional linear interpolation of
the velocity between the sampling points ri.

Figure 10 represents the time-resolved flow field around a single captured cell. The
panels show the reconstructed flow field at different instants that correspond approximately
to the shown ciliary phase φ . The vector field represents the velocity field, and the contours
represent the magnitude of the velocity.

5.2. Numerical simulation: DNS-BEM method
We perform direct numerical simulations (DNS), which solves the Navier–Stokes
equations (2.1), in order to compare these with our measurements of the unsteady velocity
field. The DNS solution includes the effects of all terms of Navier–Stokes equations,
including the unsteady and the nonlinear ones, see (2.1). Here, we use a structured
Cartesian grid. The implementation of our numerical approach makes use of the BEM
solution, described earlier in § 3.3, to propagate the no-slip boundary condition to the grid
point immediately surrounding the fluid/solid interface.

We do this by dividing the computational domain into an inner and an outer region. The
inner region corresponds to the flow domain in the direct vicinity of the cilia, the cell body
and the pipette, see region marked pink and grey in figure 11. In this region, the Stokes
equations remain valid, and the solution on the nodes within this region is computed using
the BEM method described in § 3.3, which appropriately imposes the no-slip boundary
condition at the surfaces of the cilia, the cell body and the pipette. This allows the no-slip
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Figure 11. Schematic of the computational domain for the DNS-BEM simulations. The total domain size is
720 μm in the z-direction and 1440 μm in the x- and y-directions, with a grid size of 4 μm. The cell is located
in the center of the computational domain. The red shaded region corresponds to the area where the OTV
experiments are performed. The inset shows the inner and outer regions. Within the inner region (coloured
with grey and pink), the velocity is computed by the BEM method and used as velocity boundary conditions
for the DNS simulations. For the rest of the domain, the velocity is computed with DNS with all boundary
conditions shown.

boundary condition to be transferred to the neighbouring grid nodes. In practice, the inner
region includes the nodes covered by the cell and the pipette, the nodes swiped across
by the cilia during a beat and the nodes within two grid cells outwards from these (pink
region in figure 11).

The outer region corresponds to the rest of the computational domain, which represents
the space between x = 0 and x = 1440 μm, y = 0 and y = 1440 μm, and z = 0 and
z = 720 μm. In the outer region, the Navier–Stokes equations (2.1) are solved using
the finite volume scheme, operator splitting and the solenoidal projection technique
(Pozrikidis 2016), on a staggered grid with discretization size of 4 μm. A second-order
Adams–Bashforth scheme is used for explicit time integrations. Lastly, free slip boundary
conditions are applied on z = 0 and z = 720 μm, and fully developed boundary conditions
on x, y = 0, x, y = 1440 μm, as shown in figure 11. We confirm that the size of the
computational domain is large enough so that the boundary conditions on the edge of the
domain have a negligible effect on the flow velocity within our experimentally measured
region (the red rectangle in figure 11).

5.3. Phase shift over the ciliary beating plane
We have previously highlighted the anisotropy in phase lag along axes parallel and normal
to the force direction (§ 4.3). Here, we consider the axial component of the oscillatory
flow (u′) and present the spatial phase shift (θu(x, y)) between the flow velocity measured
experimentally and computed by the DNS-BEM approach, see figure 12.

From the experimental results shown in figure 12(a), we see that the contours of equal
phase shift are not conspherical, i.e. the increase in phase is not isotropic. They have a
notch shape or a V-shape in the y-direction normal to the force direction. This feature
indicates that the phase shift increases the fastest along the lateral (y) direction and the
slowest along the axial (x) direction, as shown in figure 9(a–c), and that the phase shift
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Figure 12. (a) Experimentally measured phase shift of the axial oscillatory flow over the ciliary beating
plane, or θu(x, y). (b) Same phase shift computed by the DNS-BEM approach.

along x ≈ −0.1δ is the maximum. The phase lag in the velocity field therefore strongly
depends on the relative spatial position. Due to the axisymmetry between the y and z, the
phase shift contour in the xz-plane is expected to be the same as our results for the xy-plane,
while the contours of equal phase over the yz-plane are expected to be concentric circles.

The measured phase lag field (figure 12a) is similar to the one predicted by the oscillet
solution (figure 3a) and in quantitative agreement with the phase lag field computed
from our simulations (figure 12b). For both experiments and simulations, the V-shape
equal phase contours have a maximum phase shift along x ≈ −0.1δ. These results have
implications in studies of hydrodynamic synchronization between cilia. The oscillatory
flow has the strongest contribution to the hydrodynamic interaction and is 2–5 times larger
in amplitude than the average flow, see figures 6 and 7.

5.4. Vorticity diffusion
Finally, we characterize spatiotemporal features of the flow field around beating cilia in
the xy-plane. As discussed in § 2.1, the fundamental difference between the steady and
the unsteady Stokes equations is the quasi-steady assumption, which neglects the time
scale for vorticity (momentum) to diffuse. We deduce the vorticity field from the point
measurements of the velocity (figure 13). Snapshots of the vorticity field at different times
during a ciliary beat are presented for the unsteady velocity fields measured experimentally
and for the fields computed by the DNS and the BEM approach in figures 13(a), 13(b), and
13(c) respectively. From left to right, columns 1–5 are during the power stroke and 6–8 the
recovery stroke.

The computed vorticity field around a beating cilium (figure 13b,c) can be compared
with the those of the stokeslet and the oscillet (figure 2a,b). The no-slip boundary
conditions on beating cilia lead to more complex spatiotemporal patterns than the point
forces. The vorticity fields are not symmetric around the x = 0 axis while the fields
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Figure 13. Vorticity field measured experimentally (a), and computed with the DNS (b) and the BEM (c).
The vorticity ω = ∇ × u at different times during the power stroke and the recovery stroke are displayed.
Corresponding ciliary shape and ciliary phase φ are shown for each panel. Grey arrows: the unsteady velocity
component. Data corresponding to the experimentally measured (a) and computed (b) vorticity fields are
available through the 4TU.center for research data (Tam & Wei 2021).

associated with the point-force are. The sign of vorticity changes in front of the cilia,
at x ≈ −0.1δ, see figure 13, at φ/2π = 0.08 at the beginning of the power stroke and at
φ/2π = 0.58 during the recovery stroke.

The BEM solution (figure 13c) differs from the DNS solution (figure 13b) similarly to
how stokeslets differ from oscillets. This is best seen in the middle of the power stroke
at φ/2π = 0.18 and in the middle of the recovery stroke at φ/2π = 0.68. In both cases,
the vorticity immediately surrounding the cilia has a different sign compared to that far
away from the cilia at y/δ ≥ 0.8. This is due to the finite time required for the vorticity to
diffuse, which is captured by the DNS solution (figure 13b) but not by the BEM solution
solving the Stokes equations (figure 13c).

The vorticity field reconstructed from the OTV measurements (figure 13a) is most
similar to the DNS simulations. The point of sign inversion in the vorticity field can be
seen to diffuse away from the cilia, signifying the importance of taking into account the
unsteady effect.
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Figure 14. Velocity field measured experimentally (a), and computed with the DNS (b) and the BEM (c),
visualized by streamlines. Data corresponding to the streamlines obtained from the measured (a) and computed
(b) velocity fields are available through the 4TU.center for research data (Tam & Wei 2021).

The agreement between the DNS simulations and the experimental measurements can
be clearly seen when considering the director field of the flow velocity. To allow a better
comparison with the oscillet, we represent the director field of the oscillatory component
u′, for which the average flow has been subtracted. Figure 14 represents the streamlines
associated with the u′ field for the same snapshots as in figure 13. The pattern of
streamlines obtained from the experimental data (figure 14a) is in agreement with the DNS
simulations (figure 14b). Both include closed streamlines around a stagnation point, on
each side of which the flow direction changes. These closed streamlines are clearly absent
in the BEM simulations (figure 14c), which assume Stokes flow. The closed streamlines
are created in the vicinity of the cilia at the beginning of both the power and recovery
strokes, and propagate away from the cell along the y-axis, see figure 14. The streamline
pattern has a typical signature, which is also in close agreement with that of the oscillet
and very different from that of a stokeslet, see figure 1.

We quantify the time scale for the propagation of the closed streamlines away from
the cilia. We do this by tracking the stagnation point at the centre of these closed
streamlines (xo, yo), which also corresponds to the flow inversion point. The tracking
of the inversion point is represented in figure 15 for the experimental fields, the DNS
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Figure 15. The propagation of the stagnation point. Inset: two panels from left to right show the creation
of the stagnation point and its propagation after approximately 1/4 cycle. The stagnation point is marked by
the red cross: (xo, yo). Squares and circles: experiments performed with two different cells, with the squares
representing the cell used for § 5. The shaded area marks the power stroke.

solution and the oscillet. The inset demonstrates how we mark the stagnation point, (xo, yo)
(red crosses). During the propagation, xo remains approximately unchanged, and we thus
focus on yo. We report the results for two typical cells presented with different markers.
Our experimental measurements are in striking agreement with the DNS simulations and
the oscillet. In all datasets, the stagnation point propagates to a distance of r = δ after
approximately half a cycle. Thus, for C. reinhardtii, the diffusive time scale of vorticity is
τ ≈ 1/2f ≈ 10 ms.

The measured time scale of vorticity diffusion also provides another way to consider the
spatial phase shift of the unsteady flow. In figure 15, the linear best-fit to the experimental
results gives a speed of vortex propagation of dyo/dt = 2.10δ per cycle (2π). This is equal
to a phase delay of 0.95π/δ, which agrees well with the rate of phase shift θu along the
y-axis reported previously in § 4.3, ∂θu/∂y ≈ 1.08π/δ, see figure 9(b).

6. Conclusion

By exploiting the high spatial and temporal resolution of the OTV technique, we are able
to systematically characterize the steady and unsteady components of the flow created
by beating cilia. We first resolve the flows’ asymptotic behaviours along different axes,
and compare those behaviours with fundamental solutions to the steady and unsteady
Stokes equations. Finally, we characterize the unsteady velocity field over the entire ciliary
beating plane to resolve its spatiotemporal dynamics. Experimental results are compared
again with numerical simulations, and are found to be in agreement with the solution to the
unsteady Stokes equations and to show significant differences with the solution to Stokes
equations.

For the steady component of the ciliary flow, we find that the average velocity field can
be well reproduced by the Stokes equations, in agreement with previous studies (Drescher
et al. 2010; Guasto et al. 2010). Moreover, for a captured C. reinhardtii cell, the average
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flow velocity generated by both flagella along the x and y axes can be quantitatively
reproduced with a single stokeslet of magnitude F = 23.3 ± 8.3 pN (mean ± std) and
its image system due to the no-slip wall (Blake’s solution). For the unsteady component
(the oscillatory flow), we measure the rates of decay and the rates of phase shift along
different axes. We show that they decay faster than the average flow, which indicates that
the governing equations for these two components must be different, and we show that the
decay rates are closer to those predicted by the unsteady Stokes equations.

We present the time-resolved ciliary flow field over the beating plane. Our experimental
results reveal rich spatiotemporal dynamics of the unsteady velocity field. By comparing
the experimental results with the computed flow fields of an oscillet, that from the direct
numerical simulations (DNS) and that computed with the boundary element method
(BEM), we are able to visualize and characterize the finite scale of vorticity diffusion. We
discuss an important consequence of the finite time scale for vorticity diffusion, namely,
the phase-lag between the velocity and the forcing.

In cilia carpets, the synchronization of cilia beating is characterized by metachronal
rhythm, which originates from a spatially organized phase delay, between thousands
of cilia. Our study shows that there is a simple phase delay built into the physics of
hydrodynamic interactions, that could influence metachrony. We measure an increase
in the phase delay due to the unsteady nature of the flow, which reaches 1.16π/δ ≈
0.026 rad μm−1. This value is comparable to the phase delay characterizing the
metachronal wave in Volvox and reported in Brumley et al. (2012), while it is smaller than
those observed in Paramecium (Funfak et al. 2014) or Schmidtea mediterranea (Rompolas,
Patel-King & King 2010). While the origin of metachrony remains unclear, an accurate
representation of the hydrodynamic interactions between the cilia should account, in some
cases, for the unsteady effects and the phase lag characterized here.

For oscillatory flows on the micro-scale, our results highlight the importance of
taking into account unsteady effects, even over length scales which are shorter than the
characteristic diffusive length scale δ = √

μ/ρf . Indeed, the induced phase delays are
already significant, and reaching π/2 at distances r ≈ 0.5δ. One particular example is the
hydrodynamics of sperm cells, for which the beating frequencies range over 10–100 Hz
and the length of the flagellum can reach 100 μm. For such flows, unsteady effects may
already be of importance and, in certain cases, non-local slenderbody theory may require
a correction to take these into account.

Our results confirm the breakdown of the quasi-steady approximation assumed by the
Stokes equations, and reveal the unsteady nature of ciliary flow field. The study highlights
the limit of using stokeslets to represent unsteady flows generated by beating cilia,
microswimmers and more generally oscillatory micro-scale flows. The study highlights
that the fundamental solution to the unsteady Stokes equations, the oscillet (2.6), can be
used to represent such unsteady flows.

Acknowledgements. The authors thank R. Kieffer for technical support.

Funding. The work was supported by the European Research Council (ERC Starting grant no. 716712) and
the Netherlands Organization for Scientific Research (Frontiers of Nanoscience program).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Da Wei http://orcid.org/0000-0002-6226-0639;
Parviz G. Dehnavi http://orcid.org/0000-0001-7531-3675;
Marie-Eve Aubin-Tam https://orcid.org/0000-0001-9995-2623;
Daniel Tam https://orcid.org/0000-0001-5300-0889.

915 A70-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

14
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-6226-0639
http://orcid.org/0000-0002-6226-0639
http://orcid.org/0000-0001-7531-3675
http://orcid.org/0000-0001-7531-3675
https://orcid.org/0000-0001-9995-2623
https://orcid.org/0000-0001-9995-2623
https://orcid.org/0000-0001-5300-0889
https://orcid.org/0000-0001-5300-0889
https://doi.org/10.1017/jfm.2021.149


D. Wei, P.G. Dehnavi, M.-E. Aubin-Tam and D. Tam

Author contributions. D. Wei and P.G. Dehnavi have contributed equally to this work. All authors designed
the research. D. Wei conducted the experiments, analyzed the data, and drafted the manuscript. P.G. Dehnavi
designed and performed the flow field computations. All authors revised the manuscript.

REFERENCES

ALMENDAREZ-RANGEL, P., MORALES-CRUZADO, B., SARMIENTO-GÓMEZ, E., ROMERO-MÉNDEZ, R. &
PÉREZ-GUTIÉRREZ, F.G. 2018 A microflow velocity measurement system based on optical tweezers: a
comparison using particle tracking velocimetry. Eur. J. Mech. (B/Fluids) 72, 561–566.

AMADOR, G.J., WEI, D., TAM, D. & AUBIN-TAM, M.-E. 2020 Fibrous flagellar hairs of Chlamydomonas
reinhardtii do not enhance swimming. Biophys. J. 118 (12), 2914–2925.

BLAKE, J.R. 1971 A note on the image system for a stokeslet in a no-slip boundary. Math. Proc. Cambridge
Philos. Soc. 70 (2), 303–310.

BRENNEN, C. 1974 An oscillating-boundary-layer theory for ciliary propulsion. J. Fluid Mech. 65 (4),
799–824.

BRUMLEY, D.R., POLIN, M., PEDLEY, T.J. & GOLDSTEIN, R.E. 2012 Hydrodynamic synchronization and
metachronal waves on the surface of the colonial alga Volvox carteri. Phys. Rev. Lett. 109, 268102.

BRUMLEY, D.R., WAN, K.Y., POLIN, M. & GOLDSTEIN, R.E. 2014 Flagellar synchronization through direct
hydrodynamic interactions. eLife 3, e02750.

BRUOT, N., CICUTA, P., BLOOMFIELD-GADÊLHA, H., GOLDSTEIN, R.E., KOTAR, J., LAUGA, E. &
NADAL, F. 2020 Direct measurement of unsteady microscale stokes flow using optically driven
microspheres. arXiv:2010.14873

CHAKRABARTI, B. & SAINTILLAN, D. 2019a Hydrodynamic synchronization of spontaneously beating
filaments. Phys. Rev. Lett. 123, 208101.

CHAKRABARTI, B. & SAINTILLAN, D. 2019b Spontaneous oscillations, beating patterns, and hydrodynamics
of active microfilaments. Phys. Rev. Fluids 4, 043102.

DEHNAVI, P.G., WEI, D., AUBIN-TAM, M.-E. & TAM, D.S.W. 2020 Optical tweezers-based velocimetry: a
method to measure microscale unsteady flows. Exp. Fluids 61 (9), 202.

DING, Y., NAWROTH, J.C., MCFALL-NGAI, M.J. & KANSO, E. 2014 Mixing and transport by ciliary
carpets: a numerical study. J. Fluid Mech. 743, 124–140.

DRESCHER, K., DUNKEL, J., CISNEROS, L.H., GANGULY, S. & GOLDSTEIN, R.E. 2011 Fluid dynamics
and noise in bacterial cell–cell and cell–surface scattering. Proc. Natl Acad. Sci. 108 (27), 10940–10945.

DRESCHER, K., GOLDSTEIN, R.E., MICHEL, N., POLIN, M. & TUVAL, I. 2010 Direct measurement of the
flow field around swimming microorganisms. Phys. Rev. Lett. 105 (16), 168101.

ELGETI, J., KAUPP, U.B. & GOMPPER, G. 2010 Hydrodynamics of sperm cells near surfaces. Biophys. J. 99
(4), 1018–1026.

ELGETI, J., WINKLER, R.G. & GOMPPER, G. 2015 Physics of microswimmers—single particle motion and
collective behaviour: a review. Rep. Prog. Phys. 78 (5), 056601.

FARRÉ, A., MARSÀ, F. & MONTES-USATEGUI, M. 2012 Optimized back-focal-plane interferometry directly
measures forces of optically trapped particles. Opt. Express 20 (11), 12270–12291.

FLIEGAUF, M., BENZING, T. & OMRAN, H. 2007 When cilia go bad: cilia defects and ciliopathies. Nat. Rev.
Mol. Cell Biol. 8, 880–893.

FRIEDRICH, B.M. & JÜLICHER, F. 2007 Chemotaxis of sperm cells. Proc. Natl Acad. Sci. 104 (33),
13256–13261.

FRIEDRICH, B.M. & JÜLICHER, F. 2012 Flagellar synchronization independent of hydrodynamic interactions.
Phys. Rev. Lett. 109, 138102.

FUNFAK, A., FISCH, C., ABDEL MOTAAL, H.T., DIENER, J., COMBETTES, L., BAROUD, C.N. &
DUPUIS-WILLIAMS, P. 2014 Paramecium swimming and ciliary beating patterns: a study on four RNA
interference mutations. Integr. Biol. 7 (1), 90–100.

GEYER, V.F., JÜLICHER, F., HOWARD, J. & FRIEDRICH, B.M. 2013 Cell-body rocking is a dominant
mechanism for flagellar synchronization in a swimming alga. Proc. Natl Acad. Sci. USA 110 (45),
18058–18063.

GINGER, M.L., PORTMAN, N. & MCKEAN, P.G. 2008 Swimming with protists: perception, motility and
flagellum assembly. Nat. Rev. Microbiol. 6, 838–850.

GITTES, F. & SCHMIDT, C.F. 1998 Interference model for back-focal-plane displacement detection in optical
tweezers. Opt. Lett. 23 (1), 7–9.

GUASTO, J.S., JOHNSON, K.A. & GOLLUB, J.P. 2010 Oscillatory flows induced by microorganisms
swimming in two dimensions. Phys. Rev. Lett. 105, 168102.

915 A70-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

14
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/2010.14873
https://doi.org/10.1017/jfm.2021.149


Measurements of the unsteady flow field around beating cilia

GUIRAO, B. & JOANNY, J.-F. 2007 Spontaneous creation of macroscopic flow and metachronal waves in an
array of cilia. Biophys. J. 92 (6), 1900–1917.

GUO, H., FAUCI, L., SHELLEY, M. & KANSO, E. 2018 Bistability in the synchronization of actuated
microfilaments. J. Fluid Mech. 836, 304–323.

HALBERT, S.A., PATTON, D.L., ZARUTSKIE, P.W. & SOULES, M.R. 1997 Function and structure of cilia in
the fallopian tube of an infertile woman with Kartagener’s syndrome. Hum. Reprod. 12 (1), 55–58.

ISHIKAWA, T., SIMMONDS, M.P. & PEDLEY, T.J. 2006 Hydrodynamic interaction of two swimming model
micro-organisms. J. Fluid Mech. 568, 119–160.

ISHIMOTO, K. 2013 A spherical squirming swimmer in unsteady stokes flow. J. Fluid Mech. 723, 163–189.
ISHIMOTO, K., GADÊLHA, H., GAFFNEY, E.A., SMITH, D.J. & KIRKMAN-BROWN, J. 2018 Human sperm

swimming in a high viscosity mucus analogue. J. Theor. Biol. 446, 1–10.
KEAVENY, E.E. & SHELLEY, M.J. 2011 Applying a second-kind boundary integral equation for surface

tractions in stokes flow. J. Comput. Phys. 230 (5), 2141–2159.
KELLER, J.B. & RUBINOW, S.I. 1976 Slender-body theory for slow viscous flow. J. Fluid Mech. 75 (4),

705–714.
KIM, S. & KARRILA, S.J. 2013 Microhydrodynamics: Principles and Selected Applications. Dover

Publications.
KLINDT, G.S. & FRIEDRICH, B.M. 2015 Flagellar swimmers oscillate between pusher- and puller-type

swimming. Phys. Rev. E 92, 063019.
LANG, M.J., ASBURY, C.L., SHAEVITZ, J.W. & BLOCK, S.M. 2002 An automated two-dimensional optical

force clamp for single molecule studies. Biophys. J. 83 (1), 491–501.
LAUGA, E. & MICHELIN, S. 2016 Stresslets induced by active swimmers. Phys. Rev. Lett. 117 (14), 148001.
LAUGA, E. & POWERS, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72

(9), 096601.
LI, G., OSTACE, A. & ARDEKANI, A.M. 2016 Hydrodynamic interaction of swimming organisms in an

inertial regime. Phys. Rev. E 94, 053104.
LUSHI, E., KANTSLER, V. & GOLDSTEIN, R.E. 2017 Scattering of biflagellate microswimmers from surfaces.

Phys. Rev. E 96 (2), 023102.
MATHIJSSEN, A.J.T.M., PUSHKIN, D.O. & YEOMANS, J.M. 2015 Tracer trajectories and displacement due

to a micro-swimmer near a surface. J. Fluid Mech. 773, 498–519.
MEINHART, C.D., WERELEY, S.T. & SANTIAGO, J.G. 1999 PIV measurements of a microchannel flow. Exp.

Fluids 27 (5), 414–419.
NIEDERMAYER, T., ECKHARDT, B. & LENZ, P. 2008 Synchronization, phase locking, and metachronal wave

formation in ciliary chains. Chaos 18 (3), 037128.
PEPPER, R.E., ROPER, M., RYU, S., MATSUMOTO, N., NAGAI, M. & STONE, H.A. 2013 A new angle on

microscopic suspension feeders near boundaries. Biophys. J. 105 (8), 1796–1804.
POELMA, C., VENNEMANN, P., LINDKEN, R. & WESTERWEEL, J. 2008 In vivo blood flow and wall shear

stress measurements in the vitelline network. Exp. Fluids 45 (4), 703–713.
POOLEY, C.M., ALEXANDER, G.P. & YEOMANS, J.M. 2007 Hydrodynamic interaction between two

swimmers at low Reynolds number. Phys. Rev. Lett. 99, 228103.
POWER, H. & MIRANDA, G. 1987 Second kind integral equation formulation of stokes’ flows past a particle

of arbitrary shape. SIAM J. Appl. Math. 47 (4), 689–698.
POZRIKIDIS, C. 2011 Introduction to Theoretical and Computational Fluid Dynamics. Oxford University

Press.
POZRIKIDIS, C. 2016 Fluid Dynamics: Theory, Computation, and Numerical Simulation. Springer.
PURCELL, E.M. 1977 Life at low Reynolds number. Am. J. Phys. 45 (1), 3–11.
QUARANTA, G., AUBIN-TAM, M.-E. & TAM, D. 2015 Hydrodynamics versus intracellular coupling in the

synchronization of eukaryotic flagella. Phys. Rev. Lett. 115, 238101.
RAINA, J.-B., FERNANDEZ, V., LAMBERT, B., STOCKER, R. & SEYMOUR, J.R. 2019 The role of microbial

motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17 (5), 284–294.
RIEDEL-KRUSE, I.H., HILFINGER, A., HOWARD, J. & JÜLICHER, F. 2007 How molecular motors shape the

flagellar beat. HFSP J. 1 (3), 192–208.
ROMPOLAS, P., PATEL-KING, R.S. & KING, S.M. 2010 An outer arm Dynein conformational switch is

required for metachronal synchrony of motile cilia in planaria. Mol. Biol. Cell 21 (21), 3669–3679.
SAINTILLAN, D. 2018 Rheology of active fluids. Annu. Rev. Fluid Mech. 50 (1), 563–592.
SAINTILLAN, D. & SHELLEY, M.J. 2007 Orientational order and instabilities in suspensions of

self-locomoting rods. Phys. Rev. Lett 99 (5), 058102.
SATIR, P. & CHRISTENSEN, S.T. 2007 Overview of structure and function of mammalian cilia. Annu. Rev.

Physiol. 69 (1), 377–400.

915 A70-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

14
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.149


D. Wei, P.G. Dehnavi, M.-E. Aubin-Tam and D. Tam

SMITH, D.J., GAFFNEY, E.A., BLAKE, J.R. & KIRKMAN-BROWN, J.C. 2009 Human sperm accumulation
near surfaces: a simulation study. J. Fluid Mech. 621, 289–320.

STOKES, G.G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb.
Phil. Soc. 9 (8), 0–0.

TAKAGI, D. & STRICKLER, J.R. 2020 Active hydrodynamic imaging of a rigid spherical particle. Sci. Rep.
10 (1), 2665.

TAM, D. & HOSOI, A.E. 2007 Optimal stroke patterns for Purcell’s three-link swimmer. Phys. Rev. Lett. 98,
068105.

TAM, D. & HOSOI, A.E. 2011 Optimal feeding and swimming gaits of biflagellated organisms. Proc. Natl
Acad. Sci. USA 108 (3), 1001–1006.

TAM, D. & WEI, D. 2021 Optical tweezers-based velocimetry (OTV) measurements of unsteady flow fields
around cilia. 4TU.ResearchData. Dataset. doi:10.4121/13653233.v1

THEERS, M. & WINKLER, R.G. 2013 Synchronization of rigid microrotors by time-dependent hydrodynamic
interactions. Phys. Rev. E 88, 023012.

TILLEY, A.E., WALTERS, M.S., SHAYKHIEV, R. & CRYSTAL, R.G. 2015 Cilia dysfunction in lung disease.
Annu. Rev. Physiol. 77 (1), 379–406.

UCHIDA, N. & GOLESTANIAN, R. 2010 Synchronization and collective dynamics in a carpet of microfluidic
rotors. Phys. Rev. Lett. 104, 178103.

VILFAN, A. & JÜLICHER, F. 2006 Hydrodynamic flow patterns and synchronization of beating cilia. Phys.
Rev. Lett. 96, 058102.

WAN, K.Y. 2020 Synchrony and symmetry-breaking in active flagellar coordination. Phil. Trans. R. Soc. B
375 (1792), 20190393.

WAN, K.Y. & GOLDSTEIN, R.E. 2018 Time irreversibility and criticality in the motility of a flagellate
microorganism. Phys. Rev. Lett. 121, 058103.

WANG, S. & ARDEKANI, A.M. 2012 Unsteady swimming of small organisms. J. Fluid Mech. 702, 286–297.
WEI, D., DEHNAVI, P.G., AUBIN-TAM, M.-E. & TAM, D. 2019 Is the zero Reynolds number approximation

valid for ciliary flows? Phys. Rev. Lett. 122 (12), 124502.
YOSHIDA, M. & YOSHIDA, K. 2011 Sperm chemotaxis and regulation of flagellar movement by Ca2+. Mol.

Hum. Reprod. 17 (8), 457–465.

915 A70-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

14
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://dx.doi.org/10.4121/13653233.v1
https://doi.org/10.1017/jfm.2021.149

	1 Introduction
	2 Theoretical background
	2.1 Governing equations
	2.2 Fundamental solutions: the stokeslet and the oscillet

	3 Methodology
	3.1 Optical tweezers velocimetry (OTV)
	3.2 Experimental setup and measurement settings
	3.3 Boundary element method (BEM) and slender-body theory

	4 Asymptotic behaviour of the flow field around beating cilia
	4.1 Amplitude of the steady component
	4.2 Amplitude of the unsteady component
	4.3 Phase shift of the unsteady component

	5 Unsteady velocity fields in the beating plane of cilia
	5.1 OTV measurements of the entire flow field
	5.2 Numerical simulation: DNS-BEM method
	5.3 Phase shift over the ciliary beating plane
	5.4 Vorticity diffusion

	6 Conclusion
	References

