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A class of exact solutions of the magnetohydrodynamic quasi-geostrophic equations
(MQG), which result from rotating shallow water magnetohydrodynamics in the limit of
small Rossby and magnetic Rossby numbers is constructed analytically. These solutions
are magnetic modons, steady-moving dipolar vortices, which are generalizations of the
well-known quasi-geostrophic modons. It is shown that various configurations of magnetic
modons are possible: with or without external magnetic field, and with or without internal
magnetic field trapped inside the dipole. By using the modon solutions as initial conditions
for direct numerical simulations of the MQG equations, it is shown that they remain
coherent for a long time, running over about a hundred deformation radii without change
of form, provided the external and internal magnetic fields are not too strong, and even if
a small-amplitude noise is added to initial conditions.
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1. Introductory remarks and description of the model

The magnetohydrodynamic rotating shallow water model (MRSW) was introduced by
Gilman (2000) as a simple model of the solar tachocline. As is the case of usual
shallow water models, it can be obtained by applying vertical averaging and the
mean field hypothesis to the full primitive equations of magnetohydrodynamics in the
(magneto-)hydrostatic approximation (Zeitlin 2013). Again, as in the case of usual shallow
water models, taking an asymptotic limit of small Rossby and magnetic Rossby numbers,
i.e.of strong rotation, results in a self-consistent system of (magneto-)quasi-geostrophic
equations for slow motions, where fast waves are filtered out (Zeitlin 2013).
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The magnetohydrodynamic quasi-geostrophic (MQG) model is of use in studies of (quasi-)
two-dimensional magnetohydrodynamic turbulence, (e.g. Tobias, Diamond & Hughes
2007) still in the context of the solar tachocline. In the present paper we construct exact
solutions of MQG equations, the magnetic modons, which are steady-moving dipoles
of both magnetic field and vorticity. With the help of direct numerical simulations with
the Dedalus code (Burns et al. 2020), which we adapted to the MQG simulations, we
show that these solutions can be stable or unstable, depending on the intensity of the
magnetic field inside and outside the dipole. The construction of the modon solutions
follows the lines of that used recently (Lahaye, Zeitlin & Dubos 2020) to obtain similar
solutions in the quasi-geostrophic limit of the rotating shallow water model with horizontal
density and/or temperature gradients, the so-called thermal rotating shallow water (TRSW,
which becomes TQG in the quasi-geostrophic limit). It is a generalization of the classical
procedure of building the modon solutions of the ‘ordinary’ quasi-geostrophic (QG)
equations, first obtained by Larichev & Reznik (1976) following the idea of construction of
the Lamb’s dipole in two-dimensional (2-D) hydrodynamics. Existence of such solutions
emphasizes a known (Dellar 2003) structural similarity between MRSW and TRSW.

Let us recall the equations of the MRSW model in the rotating (x, y) plane, i.e.

∂tv + v · ∇v + f ẑ ∧ v + g∇h = 1
h
∇ (h b ⊗ b) , (1.1)

∂th + ∇ · (hv) = 0, (1.2)

∇ · (hb) = 0, (1.3)

∂tb + v · ∇b = 1
h
∇ (h v ⊗ b) , (1.4)

where f is the Coriolis parameter and g is the gravity acceleration. The dynamical variables
of the model are the thickness of the layer h, the velocity v = ux̂ + vŷ and the magnetic
field b = ax̂ + bŷ in the plane, where (x̂, ŷ, ẑ) are unit vectors along the respective axes,
∇ = x̂∂x + ŷ∂y. Note that the magnetic field is rescaled with magnetic permeability of
the vacuum and density of the fluid in order to have the dimension of velocity (Alfvèn
velocity corresponding to a given value of the magnetic field). The notation ∇ · (A ⊗ B) is
a shorthand for tensor notation: the ith component of such an expression is given by ∂jAiBj,
with summation over repeated indices from 1 to 3. The Coriolis parameter f is constant in
the f -plane configuration, and is a linear function of y in the beta-plane configuration. In
the following we work with the former, extrapolation of our results to the latter being rather
straightforward. The constraint (1.3) can be resolved by introducing the (scalar) magnetic
potential A,

hb = ẑ ∧ ∇A. (1.5)

Up to a sign A is the vertical component of the standard magnetic potential and is, in fact,
a magnetic streamfunction for the horizontal magnetic field integrated over the vertical
extent of the shallow water layer. In continuity with the previous work (Zeitlin 2013)
we keep calling it magnetic potential. If L is a characteristic scale, U is a characteristic
velocity and B is a characteristic value of the magnetic field, the ‘ordinary’ and magnetic
Rossby numbers, Ro = U/fL and Rom = B/fL, respectively, measure the relative strength
of rotation. For the solar tachocline, Ro ∼ 0.1 is a reasonable assumption, and observations
of magnetic Rossby waves indicate that investigating the weak magnetic Rossby number
limit is relevant (Tobias et al. 2007; Dikpati et al. 2018; Zaqarashvili et al. 2021). If
both Rossby numbers are small, and of the same order, as well as the deviations of the
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Coherent magnetic modon solutions

free surface from its mean (rest) value H, and the characteristic scale L is of the order
of the deformation radius Rd = √

gH/f (i.e.the Burger number Bu = R2
d/L

2 = O(1)),
the velocity in the leading order is divergenceless, and can be expressed in terms of a
streamfunction ψ , which is the leading-order thickness anomaly h − H. In the leading
order of the asymptotic expansion in Ro, Rom, the MQG equations on the f -plane for ψ
and A thus result (e.g. Zeitlin 2013),

∂t

(
∇2ψ − 1

Bu
ψ

)
+ J (ψ,∇2ψ)− J (A,∇2A) = 0, (1.6a)

∂tA + J (ψ,A) = 0. (1.6b)

Here J (a, b) = ∂xa ∂yb − ∂ya ∂xb denotes the Jacobian, and the equations are written
in non-dimensional form. Note that non-dimensional potential vorticity (PV) q in this
approximation is given by the formula

q = ∇2ψ − 1
Bu
ψ. (1.7)

Below we impose Bu = 1 for compactness, i.e. we use Rd as spatial scale. Potential
vorticity is not conserved in the presence of the magnetic field, and the equation (1.6a)
describes its evolution. The energy conservation for the system (1.6) can be written in the
standard form

E = 1
2

∫
dx dy[(∇ψ)2 + ψ2 + (∇A)2] = const. (1.8)

Note, however, that in this form the energy is conserved only for ψ and A decaying at
infinity, which is not the case for A if the system evolves in an external magnetic field B0.
In the latter case A → A + ẑ · (x ∧ B0) in the formula (1.8).

Let us say again that the MQG system (1.6) is a QG limit of the system (1.1)–(1.4) at
(Ro,Rom) → 0. As a consequence, it does not contain fast magneto-inertia-gravity waves,
although it retains long Alfvèn waves, cf. Zeitlin, Lusso & Bouchut (2015) and below.
The MQG is mathematically equivalent to 2-D incompressible magnetohydrodynamics
(2DMHD) with replacement of the vorticity, ∇2ψ + f , in the latter by the PV q in
the former. Like the standard hydrodynamic QG model, which in the limit of infinite
deformation radius, i.e.1/Bu → 0, becomes equivalent to 2-D Euler equations for an
incompressible fluid, the MQG model, in the same limit, becomes equivalent to 2DMHD.

Below we give an analytical derivation of the modon solutions in § 2, and then proceed
in § 3 with numerical simulations initialized with these solutions, which we take either as
are (§ 3.1) or perturbed by a weak noise (§ 3.2), and at different values of parameters. We
then discuss the results in § 4.

2. Derivation of the magnetic modon solutions

We are looking for a localized solution that is stationary in a frame moving with
constant velocity Ux̂ (co-moving frame), so ψ = ψ(x − Ut, y), A = A(x − Ut, y). The
MQG equations (1.6) thus become:
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−U∂xq + J (ψ, q)− J (A,∇2A) = 0, (2.1a)

−U∂xA + J (ψ,A) = 0. (2.1b)

Equation (2.1b) implies J (ψ + Uy,A) = 0; hence, A = F(ψ + Uy), where F is an
arbitrary function. Following Lahaye et al. (2020) we will take it to be linear,

A = κ(ψ + Uy), (2.2)

where κ is a constant measuring the strength of magnetic potential relative to the
streamfunction Ψ in the co-moving frame. Likewise, (2.1a) can be rewritten as

J (ψ + Uy, q)− J (A,∇2A) = 0. (2.3)

Using the expression of A in terms of ψ (2.2) we obtain

J (A,∇2A) = κ2J (ψ + Uy,∇2ψ), (2.4)

and, therefore, the PV evolution equation gives

J
(
ψ + Uy, (1 − κ2)∇2ψ − ψ

)
= 0. (2.5)

This means that
(1 − κ2)∇2ψ − ψ = G(ψ + Uy), (2.6)

where G is another arbitrary function, which we will again choose to be linear: G(x) =
αx, where α is another constant, which measures, like in the classical modon solution of
Larichev & Reznik (1976), the strength of the PV anomaly in terms of the streamfunction
in the co-moving frame.

Following the standard derivation (Larichev & Reznik 1976), we divide the whole
plane into inner (−) and outer (+) regions, with a circular separatrix at some radius
r =

√
x2 + y2 = r0. The parameters α and κ are allowed to take different values in the

outer and inner domains: α± and κ±. We thus have the following equations for the
streamfunctions ψ± in the outer (+) and inner (−) domains, respectively:

(1 − κ2
±)∇2ψ± − ψ± = α±(ψ± + Uy). (2.7)

Their solutions should be matched using the standard boundary conditions of continuity
of velocity and pressure at the separatrix.

Solution in the outer region r � r0: we are looking for a localized, finite-energy, where
the energy is defined in (1.8), solution which should vanish far away from the centre.
Hence, α+ = 0 and the following linear equation results:

(1 − κ2
+)∇2ψ − ψ = 0. (2.8)

A decaying at r → ∞ solution is sought by separation of variables in polar coordinates
(r, θ). Keeping in mind that matching with the inner solution is performed in the
co-moving frame, and that a constant zonal velocity corresponds to a linear in y = r sin θ
streamfunction, we get

ψ+ = C+K1

(
r/

√
1 − κ2+

)
sin θ. (2.9)

Here K1 is the modified Bessel function of the second kind. Note that the decaying solution
is possible only if 1 − κ2+ > 0, and that the particular case κ+ = 0 corresponds to the
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magnetic field being confined in the inner region, while if κ+ /= 0 there is a constant
background zonal magnetic field B = −∂yA = −κ+U everywhere in the plane, cf. (2.2).

Solution in the inner region, r � r0: the linear equation to solve is

(1 − κ2
−)∇2ψ − ψ = α−(ψ + Uy). (2.10)

The solution is represented as a superposition of a solution to the homogeneous problem,
ψh and a particular solution ψp of the inhomogeneous problem,

(1 − κ2
−)∇2ψh − (1 + α−)ψh = 0, (2.11a)

ψp = − α−Uy
1 + α−

. (2.11b)

Anticipating matching with the outer solution, we impose the same angular structure and,
hence, obtain

ψ− =
[

C−J1(λr)− α−Ur
1 + α−

]
sin θ, (2.12)

where J1 is the Bessel function of the first kind, and λ2 = −(1 + α−)/(1 − κ2−). Note a
singularity at κ− = 1.

Matching: following Larichev & Reznik (1976) we impose the condition of continuity
of the co-moving streamfunction, which provides the maximal smoothness of the resulting
solution,

(ψ+ + Uy)|r=r0
= (ψ− + Uy)|r=r0

= 0, (2.13)

which allows us to determine C±,

C+ = − Ur0

K1
(
r0/

√
1 − κ+

) , C− = − Ur0

(1 + α−)J1(λr0)
. (2.14a,b)

The magnitude of the modon (streamfunction) is thus primarily driven by Ur0 and
modulated by α−. However, the latter is not a tunable parameter, but is such that the
matching conditions are satisfied, and drives the radial structure of the streamfunction
(through λ). Continuity of the radial derivative of the streamfunction ∂rψ+ = ∂rψ− at
r = r0 leads to the following transcendental equation for eigenvalues λ at given r0 and κ+,
and, hence, α− at a given κ−:

C+/
√

1 − κ2+ K′
1

(
r0/

√
1 − κ+

)
= C−λJ′

1(λr0)− α−U/(1 + α−), (2.15)

where C± are given in (2.14a,b), and prime denotes differentiation of a function with
respect to its argument. This transcendental equation is solved numerically using standard
routines, e.g. with the fsolve function of the SciPy Python library.

The lowest eigenvalue corresponds to a steadily translating vortex dipole, a magnetic
modon, the higher eigenvalues correspond to multiple changes of the sign of vorticity
inside the separatrix, which are, presumably, less stable and more sensible do dissipation,
with more sheared velocity, and will be discarded as is usually done. We fix r0 = 1 (i.e. the
typical size of the modon is equal to the deformation radius, Bu = 1) and, thus, get the
eigenvalue α− as a function of κ− and κ+. As an example, we present in figure 1 the
dependence α−(κ−) when κ+ = 0. A gap in the curve is visible at κ− = 1. Indeed, for this
value of κ−, the interior equation (2.7) gives Ψ− = −α−(Ψ− + Uy)which is incompatible
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Figure 1. Dependence of the first eigenvalue α− on κ− at κ+ = 0. Curves for other values of κ+ practically
coincide with this one, as variations of α− are dominated by variations of κ− at a given r0. Disruption of the
curve reflects the singularity at κ− = 1.
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Figure 2. Magnetohydrodynamic quasi-geostrophic modon without external magnetic field. From left to
right: streamfunction, vorticity and magnetic potential. Length in units of Rd in this and subsequent figures.

with the boundary condition Ψ− + Uy = 0 at r = r0, meaning that there is no solution. We
should emphasize that qualitatively different modon configurations result from different
choices of the values of parameters κ±: magnetic field confined inside the vortex dipole
at κ+ = 0, κ− /= 0, hollow bubble, in the sense of magnetic field, propagating through the
constant magnetic field at κ− = 0, κ+ /= 0, and a magnetized dipole propagating in the
adverse, or collinear magnetic field, with respect to the magnetic field at the axis of the
dipole, depending on the relative sign of κ± /= 0. Some of these cases are illustrated in
figures 2–3.

Before proceeding with numerical simulations, we should make two important remarks.
First, we should stress that as the streamfunction ψ + Uy in the co-moving frame is
continuous across the separatrix, and takes zero value, cf. (2.13), the magnetic potential
is also continuous, but its derivative is not if κ+ /= κ−, even though the derivative of ψ is
continuous, cf. (2.2). This means that in this case we have a tangential discontinuity of the
magnetic field across the separatrix. Such discontinuities are admissible in non-dissipative
MHD (e.g. Landau & Lifshitz 1984), which is the parent of (1.6), but will be smeared in
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the presence of magnetic viscosity (resistivity). We will come back to this point in the
discussion of numerical experiments below. As a consequence, we will call the modons
with κ+ = κ− regular, and singular otherwise.

Second, as previously mentioned, in the case κ+ /= 0 we have a configuration
with a mean magnetic field which admits (rotational) Alfvèn waves. Unlike
magneto-inertia-gravity waves, Alfvèn waves do not have a spectral gap at low frequencies
in the presence of rotation (cf. Zeitlin et al. 2015) and, thus, slow waves of this kind are not
filtered out in the QG approximation which corresponds to the fast-time (∼1/f ) averaging.
Indeed, by linearizing the system (1.6) about a constant zonal magnetic field B0, that is, by
taking

A(x, y, t) = B0y + A′(x, y, t), (2.16)

where A′ is a small perturbation, in addition to considering a small streamfunction ψ ,
and substituting in the linearized equation (1.6a) the expression of A′ obtained from the
linearized equation (1.6b) reduces the MQG equations to a wave equation for ψ ,

∂2
tt

(
∇2ψ − ψ

)
− B2

0∂
2
xx∇2ψ = 0, (2.17)

which has harmonic wave solutions ∝ ei(ωt−kx−ly) with the dispersion relation

ω2 = B2
0k2 k2 + l2

k2 + l2 + 1
. (2.18)

These solutions are rotational Alfvèn waves. In the absence of rotation the
non-dimensional f (=1) disappears in the denominator of (2.18), and we recover the
classical dispersion relation for Alfvèn waves. What is important in the present context,
is that absolute values of the phase velocity of these waves lie in the interval [0, |B0|].
The non-dimensional velocity of the modon U is always larger than the value of the
non-dimensional magnetic field in the far outer region |B+| = |∂yC+|r→∞ = |κ+U|, as
|κ+| < 1, and, hence, is larger than the maximum phase speed of the Alfvèn waves. This
allows us to anticipate that the modon does not emit Alfvèn waves and can remain coherent
for a long time.

3. Numerical investigation of the stability of magnetic modons

As previously mentioned, the MRSW (respectively MQG) model is structurally close to
TRSW (respectively TQG). Our experience with TRSW and TQG modons (Lahaye et al.
2020) shows that they may be subject to small-scale convective-type instabilities, which
are known for vortex solutions in this model (Gouzien et al. 2017). To check whether
this is also the case with MQG modons, and also to see whether sharp gradients of the
magnetic fields engender new instabilities, we performed a set of numerical simulations
of the MQG equations using a doubly periodic pseudo-spectral code based on the Python
library Dedalus (Burns et al. 2020), with modon solutions as initial conditions. The typical
resolution corresponded to a 512 × 512 grid with a 3/2 dealiasing factor, and we used a
split-explicit fourth-order Runge–Kutta method for temporal integration. Several control
runs with higher resolutions were also performed. As is often done in 2DMHD simulations
(e.g. Tobias et al. 2007), we applied the standard Newtonian viscosity and magnetic
diffusivity to dissipate energy near the grid scale and ensure numerical stability, in the
respective equations of the system (1.6), and with the same coefficient, i.e.we supposed
the magnetic Prandtl number to be one. The viscosity and magnetic diffusivity coefficients
were set to be 5 × 10−4 (i.e. Re = 2000) in most runs. Simulations were run until t = 80,

941 A15-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

28
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.289


N. Lahaye and V. Zeitlin

a non-dimensional unit of time is the time taken by the dipole to travel a distance of
one deformation radius (i.e. U = 1). Notice that with the values of the viscosity which
we used, the time of viscous decay at the grid scale, given by ν/dx2, is about unity.
Tests of the impact of the form of dissipation and of the Prandtl number on the results
are discussed below in § 3.3. To ensure numerical stability and limit aliasing, the initial
profiles of pressure and magnetic potential were smoothed with a Gaussian kernel of width
twice the grid spacing. The main purpose of this operation was to smooth out the initial
discontinuity in the magnetic field that exists when κ− /= κ+. As will be shown below,
in some configurations the modon leaves behind a wake of weak vorticity and magnetic
field anomalies. As boundary conditions are periodic, this wake perturbs the modon as
it re-enters the domain. In order to limit this effect, we repeated the simulations using
a domain that was extended along the x-axis by a factor 11/8, and adding a moving
sponge layer (of width 3L/8, with L the size of the unexpanded domain) with linear
damping to suppress the wake. The boundaries of the sponge layer had a tanh shape with
width 0.2. The maximum amplitude of the damping was 0.5, and its central position and
propagation speed were computed using the x-position of the barycenter of kinetic energy,
updated every 
t = 0.1. To investigate the stability of the modon solutions, and their
sensitivity to the values of dynamical parameters, we conducted a set of experiments
with different values of the magnitude of the magnetic field. Six values of κ− and
seven values of κ+, in all combinations, were used: κ− = 0, 0.02, 0.05, 0.1, 0.2, 0.5 and
κ+ = −0.1,−0.05, 0, 0.02, 0.05, 0.1, 0.2. Note that configurations with large |κ+ − κ−|
(and, thus, in the present context, negative κ+), maximise the inner-outer magnetic field
strength differentials and, therefore, the magnitude of the tangential discontinuity of the
magnetic field at the seperatrix. Sensitivity to initial conditions was further tested by
conducting a second set of experiments with the same values of κ±, adding a small-scale
noise superimposed onto the dipolar solution in the initial conditions. The properties of
the noise are described in Appendix A. Overall, 70 runs are discussed in the following
subsection, and about five times as many were performed in total (see §§ 3.2 and 3.3).

3.1. Initialization with the pure modon solutions
The overall result of these simulations is that in any combination of the values of κ±
each of them should be moderate, typically not exceeding 0.1 in absolute value, for the
modon to keep its form. At higher values the above-mentioned small-scale instabilities
arise, most often after a few tens of time units, and destroy the modon. We will
exaggeratingly call the modons ‘stable’ in the former and ‘unstable’ in the latter cases.
One should keep in mind that these denominations are empirical, being entirely based
on the results of numerical simulations of long, but limited duration (tmax = 80). The
latter is, however, large compared with the typical eddy time scale of the modon (used for
the non-dimensionalisation), which supports the fact that the stable modons are, at least,
long-living coherent structures. We present and discuss below examples of stable versus
unstable modons in several typical configurations. In all of the snapshots only a part of the
domain of the simulations, which extends from −5 to 5 in units of Rd in both directions
(±6.875 along the x-axis for the simulations with a moving sponge layer), is shown, to
make the details of the evolution of the modon clearer. We started by benchmarking the
numerical method with a simulation initialized with a ‘non-magnetic’ modon, with κ± ≡ 0
and no magnetic field whatsoever. The result is that, as expected, this modon keeps moving
without changing its form and is, thus, stable (not shown).

Modons with no external magnetic field (κ+ = 0), such as the one presented in figure 2,
are stable as long as κ− � 0.2, meaning that they exactly conserve their form over the
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Figure 3. Magnetic potential associated with a MQG modon without internal magnetic field (κ− = 0, κ+ =
0.02, (a)), and a regular MQG modon with no tangential discontinuity of the magnetic field at the separatrix
(κ− = κ+ = 0.02, (b)).

duration of the simulation, travelling at a nearly constant speed (progressively decreasing
under the action of energy dissipation). To make the presentation concise, we do not show
their evolution. On the contrary, an instability leading to destruction of the modon takes
place for higher values of κ−, or in the presence of a strong enough external magnetic
field, as shown in figure 4 in the case κ− = κ+ = 0.2 (this simulation was extended in time
compared with other simulations to show the destabilization of the modon). Figure 5 shows
the ‘hollow’ modon (the same type as shown in figure 3a) with κ+ = 0.2, κ− = 0, which
is unstable with a much faster destabilization compared with the previous case (figure 4).

The instability develops as follows: first, vorticity anomalies in the form of narrow
filaments arise in the vicinity of the separatrix and spread along it and beyond, forming a
wake at the lee side of the modon (see, e.g. figure 4 at t = 80 and 90).

The rings of vorticity formed by this process shield the vortices forming the initial
dipole, which leads to their separation and slowing down of the modon. With some delay,
development of vorticity anomalies along the separatrix is accompanied by ejection of any
magnetic field from the core of the vortex pair, still along the separatrix, cf. figure 6. This
perturbation then triggers the instability that develops within the dipole starting from the
vicinity of the saddle points at the front and rear of the dipole – i.e. at the intersection of
the modon axis and outer separatrix. The scales involved in this process are small, as seen
in the vorticity field, and are associated with increasing magnitude of the magnetic field
anomalies manifesting itself in the increasing magnetic energy (spatial mean of |∇A|2).
The evolution of the different components of energy, shown in figure 7, clearly exhibits this
increase of magnetic energy, as well as a decrease of the potential and kinetic energies – the
latter resulting from the enhanced dissipation associated with the production of small-scale
filaments by the instability. This implies that the form of the dissipation implemented in
the numerical scheme can have an impact upon the details of the evolution. We checked
in the cases presented in the paper (corresponding to figures 4, 5, and also figures 11
and 13 discussed below) that numerical convergence is reached by running numerical
simulations with double resolution while keeping all other parameters (including the value
of the viscosity and Prm) constant. In all cases, the scenario of the destabilization, and the
typical scales involved were not changed, while the time scale of destabilization was only
marginally changed (by a few time units at most). These verifications confirm that the
reported small-scale instability and the mechanism of destruction of the modon are not
numerical artifacts. The impact of the form and magnitude of the dissipation is discussed
below in § 3.3.

941 A15-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

28
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.289


N. Lahaye and V. Zeitlin

2

–2

–2 0 2

0

2

–2

0

2

–2

0

2

–2

0

2

–2

0

2

–2

0

2

–2

0

2

–2

0

2

–2

0

2

–2

0

2

–2

0

2

–2

0

–2 0 2 –2 0 2

–1.5 –10 0 10 –0.2 –0.1 0 0.1 0.20 1.5

52 54 56 58 52 54 56 58 52 54 56 58

2 4 6

4 6 8 4 6 8 4 6 8

2 4 6 2 4 6

Ψ ζ A

x x x

y

y

y

y

t = 0

t = 90

t = 80

t = 100

(e)

(b)(a) (c)

(h)(g) (i)

(k)( j) (l)

(d ) ( f )

Figure 4. Evolution of a regular modon with κ± = 0.2. t = 0, 80, 90 and 100 (from top to bottom). (a,d,g,j)
Streamfunction; (b,e,h,k) vorticity and (c, f,i,l) magnetic potential. Colours are saturated (especially for the
vorticity at initial time). Note the evolving labels on the x axes reflecting the propagation of the modon in the
periodic domain (values correspond to the x-distance travelled by the modon, which position is estimated based
on the maximum kinetic energy).
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Figure 5. Evolution of a ‘hollow’ modon with κ+ = 0.2. From top to bottom: t = 0, 40 and 80.

3.2. Empirical condition for modon stability and impact of initial perturbations
To check the robustness of the modon solutions, we repeated the simulations by
superimposing a small-scale noise in the streamfunction and the magnetic potential onto
the analytic modon solutions, and used thus perturbed solutions as initial conditions. The
characteristics of the noise are given in Appendix A. The overall result of these simulations
is that stable regular modons are sufficiently robust to withstand such perturbation and
keep coherence for a long time.

We synthesize the time scales of destabilization of the different modon configurations in
figure 8. The estimate for this time scale was obtained considering the change (increase) of
the slope of kinetic energy dissipation as a function of time, as triggering of the instability
is associated with an enhanced decrease of kinetic (and potential) energy (cf. figures 7
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Figure 6. Destabilization of the modon as seen in the vorticity field and in the anomaly of magnetic potential,
highlighting the formation of a sharp gradient in the azimuthal magnetic field in the vicinity of the separatrix
and the subsequent destabilization of the modon triggered near the saddle points. (a–d) Regular modon
(κ± = 0.2) at intermediate stages compared with figure 4(d–i). (e–h) Hollow modon (κ+ = 0.2, κ− = 0) at
intermediate stages compared with figure 5. Colourbars are identical in both rows.
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Figure 7. Evolution of the total (black), kinetic (blue), potential (orange) and magnetic (green) energy anomaly
(see (1.8)), for two unstable cases (κ+ = κ− = 0.2, dash-dotted, and κ+ = 0.2, κ− = 0, dashed), and one stable
case (κ+ = 0, κ− = 0.2, solid). Note the different ranges of the y-axis in the two frames.

and 9). Corrections were made for cases in which the instability only started developing
at the end of the simulation, setting tinst = tmax = 80 (this concerns the cases with
(κ+, κ−) = (−0.1, 0.1) and (0.2, 0.2)). Hollow modons with κ+ � 0.1, which includes
the one shown in figure 3(a), are stable (not shown). Likewise, regular modons with
κ± � 0.1 are stable (not shown), while they are (weakly) unstable for κ± = 0.2 (as visible
in figure 4).
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function of κ+ (columns) and κ− (rows) for the simulations initialized with modon solution. White: stability.
Colours: instability, with smaller (darker) to larger (lighter) times of development of the instability. Modons
that turn unstable when some noise is superimposed on the initial condition are indicated by ‘P’ labels.
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Figure 9. Same as figure 7 but for modons with κ− = 0.2 and two values of κ+, with and without initial
perturbation. Configuration κ± = 0.2 without perturbation (dashed) corresponds to the dash-dotted lines of
figure 7.

In very few cases, as reported in figure 8, the addition of a perturbation can destabilize
the otherwise stable modons (‘P’ labels in the figure). This occurs for modons with
dynamical parameters (κ+, κ−) in the neighbourhood of cases unstable without initial
perturbation. Time evolution of the energy for the regular modon with κ± = 0.2, which is
unstable without perturbation (see figure 4), and a singular modon with the same κ− but
κ+ = 0.1 – a configuration that turns unstable if initially perturbed – is given in figure 9.
It shows that the initial perturbation tends to accelerate the destabilization of the structure.

We can attempt a general conclusion that the greater the values of κ+ and/or κ− (in
absolute value), the more unstable is the dipole. However, from the simulations with
κ+ = 0.2 we infer that the instability develops faster for hollow modons (without internal
magnetic field) as compared with the regular modons, while modons without an external
magnetic field were found stable for κ− up to 0.20.

We believe this could be associated with the tangential magnetic discontinuity that exists
for κ+ /= κ−, with the amplitude proportional to the difference between the two, since the
initial perturbation seems to develop first in this region. Indeed, in the case of the regular
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modon, the vortex filaments along the separatrix starts developing only after a peak in the
radial direction emerges in the magnetic streamfunction – meaning a sharp gradient of the
magnetic field – at the same location (see figure 6a–d).

Thus, there seems to be a competition between the destabilization effects of the
magnitudes of κ− and κ+ taken separately (for instance, experiments with κ− = 0.5
exhibited instability at very early times), and of their difference. The details of the
underlying mechanisms need further investigation, which is beyond the scope of the
present work.

Interestingly, if we superimpose the initial random magnetic noise onto the
‘non-magnetic’ modon with κ± ≡ 0, this noise aggregates in two magnetic dipoles inside
the vortex dipole before being homogeneized in nearly circular patches within each pole.
This can be understood from the dynamical equations in the limit of a weak magnetic
perturbation A′: its action on the PV evolution (1.6a) becomes negligible and the magnetic
field follows (1.6b), with an additional diffusion term. Magnetic perturbations are then
advected along the streamlines and aggregate and/or get diffused. Then, the modon deflects
slightly from the rectilinear trajectory, although it keeps its coherence, as follows from
figure 10. This deflection is, apparently, due to asymmetry of the ‘insider’ magnetic dipole
with respect to reflexions in y, resulting from asymmetries in the initial noise.

We should emphasize that the deflection of the modon from its initial trajectory by the
residues of the initial perturbation tends to destabilize the modon because its direction
of propagation deviates from that of the ambient magnetic field. This could explain
the differences in behaviour between the modons with and without initial perturbation
reported above, and also that hollow modons are more unstable than their ‘isolated’
counterparts.

3.3. Impact of the form of dissipation and of the Prandtl number
All the results presented above were obtained from numerical simulations using a viscosity
term in the PV equation (1.6a), of the form ν∇2(∇2ψ) and diffusion term in the magnetic
potential equation (1.6b) of the form (ν/Prm)∇2A, with ν = 5 × 10−4 and a magnetic
Prandl number Prm = 1. As can be noticed in the behaviour of the kinetic energy and,
to a lesser extent, in the magnetic energy in the stable cases (see, e.g. figure 7 with
κ− = 0.2, κ+ = 0), the loss of energy is substantial over the duration of the simulation.
Moreover, as stated previously, the destabilisation of the modon leads to formation of
small scales (vorticity filaments and magnetic sheets), meaning that the development
and saturation of the instability are likely to be impacted by the dynamics at small
scales and, therefore, by the dissipation. To the best of our knowledge, there is no
physically based closure scheme for the Reynolds-averaged terms (parametrization) in
2-D or shallow water MHD, which is why we used the simple Newtonian viscosity in
the above simulations. To check how sensitive our results are to the form and magnitude of
the dissipation, we ran several sets of simulations changing the value ν, but also the form
of the viscosity/diffusivity, passing from the standard to hyper-viscosity and changing
the magnetic Prandtl number. Recalling the link between the MQG and MRSW models,
it would be possible to adapt the dissipation parameterizations developed for the RSW
model, (e.g. Gilbert, Riedinger & Thuburn 2014), but we postpone this development to a
future investigation of the modons in the MRSW framework.

Let us first discuss the impact of the value of the viscosity coefficient at fixed Prm = 1.
To this aim, we repeated the whole set of numerical simulations (without sponge layers)
with a smaller value of ν = 2 × 10−4, and made additional runs for several choices
of (κ+, κ−) with even stronger viscosity, ν = 10−3, or weaker viscosity, ν = 10−4.
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Figure 10. Evolution of a non-magnetic modon with κ± = 0 under the influence of initial noise. From top to
bottom: t = 0, 10 and 30. By the end of the simulation, the y-position of the modon is about +1. To mitigate
the impact of diffusivity, as this case is stable, a lower viscosity (ν = 2 × 10−4) is used in this simulation.

The results show that some modons that appeared stable over the duration of the simulation
with ν = 5 × 10−4 turn to be unstable at ν = 2 × 10−4. This concerns one pair of values
of (κ+, κ−) in the case without superimposed noise in the initial condition, and five of
them in the perturbed case. However, in most of thus obtained unstable cases the results of
the simulations do not appear to be well resolved because an aliasing occurs, as revealed
by inspection of the corresponding spectra (not shown). This was also the case in the
simulations with even weaker viscosity ν = 10−4, while the simulations with stronger
viscosity ν = 10−3 were suffering from a too rapid dissipation of the modon, smoothing
out any growing instability in most investigated cases.
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Figure 11. Evolution of the regular modon with κ± = 0.2, similar to the one shown in figure 4 but with initial
noise and hyper-viscosity/diffusivity with ν2 = 10−6. From top to bottom: t = 45, 50 and 55.

This is why we conducted a set of simulations – for all previously exploited values
of κ+ and κ−, and both with perturbed and unperturbed initial conditions – using a
second-order hyper-viscosity (and hyper-diffusivity) instead of the standard viscosity
(terms of the form ν2∇4(∇2Ψ ) and ν2/Prm∇4(A) in the PV and magnetic stream function
equations, respectively). This closure scheme, although not based on physical arguments,
as usual, allows for a sharper cutoff in the wavenumber space and for an extended range
of resolved scales, while preserving numerical stability. We used two different values
of hyper-viscosity/diffusivity: ν2 = 10−6 and 10−7. As with the Newtonian dissipation,
simulations with smaller values (ν2 = 10−8) turned out to be not properly resolved. To
provide some guidelines, we give here the inverse (hyper-)viscous damping time scale and

941 A15-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

28
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.289


Coherent magnetic modon solutions

0.08

0.0175

Et (black) and KE (blue) PE (orange) and ME (green)

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.06

0.04
〈E〉

0.02

0 20 40 60 80
t

0 20 40 60 80

Et

ν = 5 × 104

ν = 1 × 106

ν = 1 × 107

KE
PE
ME

t

(b)(a)

Figure 12. Comparison of the evolution of the total (black), kinetic (blue), potential (orange) energies and
magnetic (green) energy anomaly for the unstable regular modon with κ± = 0.2, and perturbed by the noise, for
different dissipation schemes: standard viscosity with ν1 = 5 × 10−4 (continuous), hyperviscosity ν2 = 10−6

(dashed) and ν2 = 10−7 (dash-dotted).

the cutoff length scale associated with this dissipation. The former is given by νp/dx2p,
where p is the order of (hyper-)viscosity (p = 1 for the standard Laplacian viscosity). The
latter is based on the typical CFL timestep dx/U, and is given by δxc = (ν dx/U)1/2p,
where we take U = 2, the typical non-dimensional value of velocity at the centre axis
of the modon. The regular viscosity ν1 = 5 × 10−4 gives an inverse viscous damping
time scale equal to 1.3, while the hyper-viscosity gives 7 and 0.7 for ν2 = 10−6 and
10−7, respectively. For the cutoff length scale, we have δxc = 2 × 10−3 for ν1 = 5 × 10−4,
against 9 × 10−3 and 5 × 10−3 for ν2 = 10−6 and 10−7, respectively.

These simulations gave qualitatively similar results regarding the range of κ± values for
which the modons are stable or unstable, and a similar scenario of destabilization, although
they produce sharper gradients of vorticity and magnetic field, as could be expected. The
destabilization of the regular modon with κ± = 0.2 with initial perturbation by the noise
is shown in figure 11. In this case, the typical time scale of instability is slightly larger
compared with the simulation with standard viscosity. It gets shorter with ν2 = 10−7, as
shown in figure 12. As visible in this figure, the instability has a more rapid development
(sharper decrease of the kinetic and potential energies, and increase of magnetic energy
anomaly) once initiated, as compared with the standard viscosity case, favoured by a very
small energy dissipation before the onset of the instability, especially for ν2 = 10−7. The
development of the instability is associated with a deviation of the modon from the axis
y = 0. This deviation is already present in some of the simulations with standard viscosity
and diffusion, but is greatly enhanced when an initial noise is present – as mentioned
above. Our understanding is that this deviation follows from the onset of the instability (as
shown in figure 5), which is asymmetric. (The symmetry breakdown in the configuration
initialized without noise is ‘enabled’ by discretization errors. In the real world, it could be
triggered by a small-scale noise.)

A global comparison of the typical time scales of destabilization of the modons is given
in Appendix B. A few more configurations turned to destabilize if this form of dissipation
is used, compared with the standard viscosity with ν1 = 5 × 10−4: κ+, κ− = (0.05, 0.2)
and (0.1, 0.1) for ν2 = 10−6 and six more for ν2 = 10−7 (see Appendix B). Surprisingly,
and related to our previous discussion about the criteria for instability, it appears that the
absolute value of κ± seems to be more important than the magnitude of the discontinuity:
for instance, the regular modons with κ± = 0.1 and 0.2 are more unstable than their
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Figure 13. Evolution of the regular modon with κ± = 0.2, similar to the one shown in figure 11 but with
Prm = 10. From top to bottom: t = 30 and 35.

singular counterparts with κ∓ < κ± (except for negative κ+). This highlights the impact
of small-scale dynamics near the viscous dissipation scale on the development of the
instability. Its detailed investigation is, again, out of the scope of the present paper. In
all configurations, modons with κ− = 0.5 were destabilizing on a very short time scale, as
in the simulations with standard viscosity (performed only in the unextended domain and
without a moving sponge layer).

To investigate the impact of the magnetic Prandtl number, we ran additional simulations
with Prm = 0.1 and Prm = 10 and compared them to the reference simulations with
Prm = 1. We investigated configurations with κ± = 0 and 0.2 (all four cases), both with
the standard Laplacian viscosity ν1 = 5 × 10−4 and the second-order hyper-viscosity
ν2 = 10−6. Random perturbations were superimposed on the initial condition. In general,
we observed a destabilizing influence of Prm > 1 (and vice versa). Indeed, the case
with κ− = 0.2, κ+ = 0, which is stable for Prm = 1, is unstable for Prm = 10 with the
standard viscosity and magnetic diffusivity. Likewise, with order 2 viscosity/diffusivity,
the modons with κ+ = 0.2 are unstable for Prm � 1 and stable for Prm = 0.1, with faster
destabilization for Prm = 10 compared with Prm = 1. Figure 13 shows the destabilization
of the regular modon with κ± = 0.2 and Prm = 10 (and ν2 = 10−6) for comparison with
figure 11, where Prm = 1. It exhibits finer patterns (in particular in the magnetic field)
and a more rapid development of the instability: all fields are shown at earlier times
in the simulation, while the stages of destabilization are similar to the those shown in
figure 11(d–i).
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Coherent magnetic modon solutions

4. Discussion

We thus demonstrated the existence of magnetic modons – localized vortex dipoles
associated with magnetic dipoles – which are steadily moving with or without an external
magnetic field and are exact solutions of the MQG equations. The intensities of internal
and external magnetic fields in such configurations are free parameters, and configurations
without an external, or without an internal magnetic field are realizable. The modons with
a disparity between internal and external magnetic fields are, however, singular, in a sense
that they contain a tangential discontinuity of the magnetic field at their inner-outer region
separatrix. By direct numerical simulations initialized with analytical modon solutions,
we found that both regular and singular modons keep their coherence for a very long time
running without change of form for about a hundred deformation radii if the intensity of
the magnetic field is sufficiently small (‘stable’ modons), and are subject to small-scale
instabilities manifesting themselves in the vorticity and magnetic fields, which lead to a
destruction of the modons, if the magnetic fields inside and/or outside are sufficiently
strong (‘unstable’ modons). It is worth emphasizing that although the mechanism of
destruction is qualitatively consistent with the flux expulsion mechanism advanced by
Weiss (1966), the latter appears as a consequence of the vorticity perturbation which arises
in the vicinity of the separatrix, and looks very similar to the saddle-point instability,
which is well known in the theory of dynamical systems. If a noise is superimposed
onto the initial modon, ‘stable’ configurations keep their coherence for long times, but
their trajectories may be deflected. The stable/unstable nature of the modons exhibit some
sensitivity to the nature and strength of the dissipation used. Although it is difficult to
extrapolate our numerical results to the inviscid limit nor to some more realistic dissipation
regime, which would require a knowledge of the impact of the small-scale structure on the
resolved flow, our results show that the magnetic modons can be stable for a long duration
(tens of typical time units) even in weakly viscous/diffusive regimes, for small but finite
values of κ± (typically ≈0.1). As we know, the modon solutions in ‘ordinary’ QG and
in TQG, which are, respectively, the asymptotic limits of RSW and TRSW equations,
survive, albeit slightly distorted, if considered within the parent models (RSW and TRSW,
correspondingly, cf.Ribstein, Gula & Zeitlin 2010; Lahaye et al. 2020). To check if this is
the case with MQG, numerical simulations with the full MRSW, which would accurately
resolve both inertia-gravity and Alfvèn waves, as well as discontinuities of the magnetic
field and eventual sharp fronts (shocks), are needed. One-dimensional numerical schemes
capable to do this exist (Zeitlin et al. 2015; Bouchut & Lhebrard 2016, 2017), but
2-D schemes appeared only recently, cf.Duang & Tang (2021) and references therein.
However, they lack rotation and are not sufficiently well tested. Work on the well-balanced
finite-volume scheme for 2-D MRSW is in progress.

Let us comment on the f -plane approximation used above. Switching to the beta-plane
approximation, that is, to f = f0 + βy, would introduce a left–right asymmetry, but
construction of the corresponding modon solutions is rather straightforward, following
the classical algorithm which was developed by Larichev & Reznik (1976), precisely, for
the beta-plane configuration. The beta effect will restrict possible values of the modon
velocity, in order to avoid resonances with magneto-Rossby waves, but we can expect that
the structure of the magnetic modon solutions would remain qualitatively the same. In
this context it is worth mentioning that we expect that magnetic modons would arise as
solutions in the certain regimes of parameters of the MRSW equations on the equatorial
beta-plane, where f0 ≡ 0, like this is the case with ‘ordinary modons’ (Rostami & Zeitlin
2019).
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The modons in plasma physics are usually considered in the framework of the
Hasegawa–Mima equation for drift waves (cf. e.g. Horton & Hasegawa 1994), which
is equivalent to the ordinary QG equation on the beta-plane. To our knowledge, the
only construction close to ours, as well as the term ‘magnetic modon’, was used in the
framework of 2-D incompressible magnetohydrodynamics by Chui & Moffatt (1996),
where a magnetic potential in a configuration corresponding to the streamfunction of the
‘hydrodynamical’ modon in this case, the Lamb–Batchelor dipole but without vorticity
anomaly, was taken as an initial condition for the magnetic relaxation process (cf. Moffatt
1986), in order to obtain the vorticity modon as the end state.

Concerning the physical significance of the obtained modon solutions, they are
obviously important for tracer transport, as they capture fluid, and also the magnetic field,
in their cores. The domain of validity of our solutions covers quasi-bidimensional flows
at weak (typically �0.1) Rossby and magnetic Rossby numbers, and order one Burger
number, i.e.structures of the size of the deformation radius (which is not well quantified in
the solar tachocline). Extension to larger Burger numbers (smaller structures) is obvious,
as the MQG model tends to 2DMHD as Bu → ∞. As their standard, ‘hydrodynamical,’
counterparts do in the process of geostrophic adjustment Ribstein et al. (2010) in RSW,
the magnetic modons would also change the fundamental process of magneto-geostrophic
adjustment in MRSW (Zeitlin et al. 2015), if their persistence is confirmed in the MRSW
model, as discussed above. Namely, in the case of initial dipolar perturbation of vorticity
we expect that together with emission of fast magneto-inertia-gravity and Alfvèn waves,
as described in Zeitlin et al. (2015), a part of the initial perturbation, if it is dipolar in
vorticity and strong enough, will form a modon which will slowly, compared with the
fast waves, drift away carrying with it vorticity and magnetic field anomalies. Moreover,
at the stellar equator, where the MRSW predicts a specific spectrum of equatorial waves
(Zaqarashvil 2018), the above-mentioned possibility to generate equatorial modons could
completely change the scenario of relaxation of localized perturbations, as it is the case
with standard RSW (Rostami & Zeitlin 2019). Let us finally mention that thermal effects
can be included in MRSW along the same lines as in passing from RSW to TRSW. Modons
with both magnetic field and temperature/density anomalies can be obtained using the
same construction as above in such thermal MRSW models (TMRSW). We plan to check
these scenarios in future work.
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Appendix A. Properties of the noise used in the perturbed initial conditions

In the section we give the properties of the noise superimposed to the analytical modon
solution in the initial conditions. We used a power spectral distribution with a shape of a
bump, given by

ka

(k + k0)b
(A1)
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ν1 = 5 × 10−4
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Figure 14. Typical instability time scales of magnetic modons. Simulations with κ− = 0.5 and second-order
hyper dissipation were not run with this configuration (initial perturbation and moving sponge layer).

with a = 8, b = 22, k0 = 256/4/π/L, where L is the size of the domain and k is the
modulus of wavenumber. Here, k0 roughly corresponds to the wavenumber of maximum
energy. We used random phases and different realizations of the random process for
the streamfunction and the magnetic potential. The noise thus constructed for the
streamfunction has an equivalent mean kinetic energy equal to one, while the noise for
the magnetic potential has unit variance. Finally, these perturbations are multiplied by a
small-amplitude parameter (chosen to be 10−4), multiplied by the modon streamfunction
to keep a localized perturbation, and added to the initial streamfunction and magnetic
potential.

Appendix B. Time scale of modon destabilization

We provide in figure 14 the same kind of estimate of the modon destabilization time scale
as previously shown in figure 8, for the second-order hyperviscous simulations with both
values of ν2, and with a perturbation of the initial condition by the noise. The criterion
used here is the location of maximum relative kinetic energy dissipation, as dissipation is
particularly pronounced during the instability stage when this form of dissipation is used,
as discussed in the main text. It is compared with the same estimate as in figure 8 for the
simulations with standard viscosity and ν1 = 5 × 10−4 but with random noise added in the
initial condition. Comparison between the simulations with hyper and regular viscosity is
only qualitative, since the criterion used is not the same, but using different criteria was the
only way to obtain meaningful estimates for each type of simulation taken independently.

REFERENCES

BOUCHUT, F. & LHEBRARD, X. 2016 A 5-wave relaxation solver multi for the shallow water MHD system
with topography. J. Sci. Comput. 68, 92–115.

BOUCHUT, F. & LHEBRARD, X. 2017 A multi well-balanced scheme for the shallow water MHD system with
topography. Numer. Math. 136, 875–905.

BURNS, K.J., VASIL, G.M., OISHI, J.S., LECOANET, D. & BROWN, B.P. 2020 Dedalus: a flexible
framework for numerical simulations with spectral methods. Phys. Rev. Res. 2, 023068.

CHUI, A.Y.K. & MOFFATT, H.K. 1996 Instability of magnetic modons and analogous Euler flows. J. Plasma
Phys. 56, 677–691.

DELLAR, P. 2003 Common Hamiltonian structure of the shallow water equations with horizontal temperature
gradients and magnetic fields. Phys. Fluids 15, 292.

DIKPATI, M., BELUCZ, B., GILMAN, P.A. & MCINTOSH, S.W. 2018 Phase speed of magnetized Rossby
waves that cause solar seasons. Astrophys. J. 862 (2), 159.

941 A15-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

28
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.289


N. Lahaye and V. Zeitlin

DUANG, J. & TANG, H. 2021 High-order accurate entropy stable finite difference schemes for the shallow
water magnetohydrodynamics. J. Comput. Phys. 431, 110136.

GILBERT, A.D., RIEDINGER, X. & THUBURN, J. 2014 On the form of the viscous term for two dimensional
Navier–Stokes flows. Q. J. Mech. Appl. Maths 67, 205–228.

GILMAN, P.A. 2000 Magnetohydrodynamic shallow-water equations for the solar tachocline. Astrophys.
J. Lett. 544, L79–L82.

GOUZIEN, E., LAHAYE, N., ZEITLIN, V. & DUBOS, T. 2017 Thermal instability in rotating shallow water
with horizontal temperature/density gradients. Phys. Fluids 29, 101702.

HORTON, W. & HASEGAWA, A. 1994 Quasi-two-dimensional dynamics of plasmas and fluids. Chaos 4,
227–251.

LAHAYE, N., ZEITLIN, V. & DUBOS, T. 2020 Coherent dipoles in a mixed layer with variable buoyancy:
theory compared to observations. Ocean Model. 153, 101673.

LANDAU, L.D. & LIFSHITZ, E.M. 1984 Electrodynamics of Continuous Media. Pergamon.
LARICHEV, V.D. & REZNIK, G.M. 1976 Two-dimensional solitary Rossby waves. Dokl. Akad. Nauk. SSSR

231, 1077–1080.
MOFFATT, H.K. 1986 On the existence of localized rotational disturbances which propagate without change

of structure in the inviscid fluid. J. Fluid Mech. 173, 289–302.
RIBSTEIN, B., GULA, J. & ZEITLIN, V. 2010 (A)geostrophic adjustment of dipolar perturbations, formation

of coherent structures and their properties, as follows from high-resolution numerical simulations with
rotating shallow water model. Phys. Fluids 22, 116603.

ROSTAMI, M. & ZEITLIN, V. 2019 Eastward-moving convection-enhanced modons in shallow water in the
equatorial tangent plane. Phys. Fluids 31, 027101.

TOBIAS, S.M., DIAMOND, P.H. & HUGHES, D.W. 2007 Beta-plane magnetohydrodynamic turbulence in the
solar tachocline. Astrophys. J. Lett. 667, L113–L116.

WEISS, N.O. 1966 The expulsion of magnetic flux by eddies. Proc. R. Soc. Lond. A 293, 310–328.
ZAQARASHVIL, T. 2018 Equatorial magnetohydrodynamic shallow-water waves in the solar tachocline.

Astrophys. J. 856, 32.
ZAQARASHVILI, T.V., et al. 2021 Rossby waves in astrophysics. Space Sci. Rev. 217 (1), 15.
ZEITLIN, V. 2013 Remarks on rotating shallow-water magnetohydrodynamics. Nonlinear Process. Geophys.

20, 893.
ZEITLIN, V., LUSSO, C. & BOUCHUT, F. 2015 Geostrophic vs magneto-geostrophic adjustment and nonlinear

magneto-inertia-gravity waves in rotating shallow water magnetohydrodynamics. Geophys. Astrophys.
Fluid Dyn. 109, 497.

941 A15-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

28
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.289

	1 Introductory remarks and description of the model
	2 Derivation of the magnetic modon solutions
	3 Numerical investigation of the stability of magnetic modons
	3.1 Initialization with the pure modon solutions
	3.2 Empirical condition for modon stability and impact of initial perturbations
	3.3 Impact of the form of dissipation and of the Prandtl number

	4 Discussion
	A Appendix A. Properties of the noise used in the perturbed initial conditions
	B Appendix B. Time scale of modon destabilization
	References

