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Abstract. In this paper we present a new discreteness criterion for a non-
elementary subgroup G of SL(2, �) containing elliptic elements by using a loxodromic
(resp. an elliptic) transformation as a test map that need not be in G.
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1. Introduction. The discreteness of Möbius groups is a fundamental problem,
which has been discussed by many authors. In 1976, Jørgensen [4] established
the following discreteness criterion: A non-elementary subgroup G of Möbius
transformations acting on �2 is discrete if and only if for each f and g in G, the group
〈f, g〉 is discrete. This important result has become standard in literature and shows
that the discreteness of a non-elementary Möbius group depends on the information
of all its subgroups of rank two. There are many discussions in this direction. Among
them, Chen [2] proposed to use a fixed Möbius transformation as a test map to test
the discreteness of a given Möbius group. More precisely, let G be a non-elementary
group and let f be a non-trivial Möbius map. If each group generated by f and an
element in G are discrete, then G is discrete. A novelty of this discreteness criterion is
that the test map f need not be in G, which suggests that the discreteness is not a totally
interior affair of the involved group. Following Chen’s idea, Yang in [7] becomes the
first author to generalise the results of [6] by using test maps. There are altogether nine
cases and the only case left to be solved is the following problem (Conjecture 2.8 in
[7]).

CONJECTURE 1.1. Let G be a non-elementary subgroup of SL(2, �) containing elliptic
elements and f a loxodromic (resp. an elliptic) transformation. If for each elliptic element
g ∈ G the group 〈f, g〉 is discrete, then G is discrete.

2. Main results. We begin with some elementary notations about Möbius groups.
The reader is referred to [1] for more information.

Denote by Möb(2) the group of all (orientation-preserving) Möbius
transformations of the extended complex plane � = �2 ∪ ∞. Recall that any matrix
A ∈ SL(2, �) as the form ( a b

c d ) induces a Möbius transformation fA(z) = (az +
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b)/(cz + d). Then Möb(2) is isomorphic to SL(2, �)/{±I}, where I is the identity
matrix. Let tr2(fA) = tr2(A), where tr denotes the trace of A. It is easy to see
tr2(fn) → tr2(f ) when fn converges to f in SL(2, �). Non-trivial elements of SL(2, �),
or equivalently of Möb(2), can be classified into three types considering the Jordan
normal forms.

(i) Elliptic elements are diagonalizable and have two distinct eigenvalues with
absolute value 1, that is, these are conjugated to ( r 0

0 1/r ) with |r| = 1. In this

case tr2(f ) is real and 0 ≤ tr2(f ) < 4.
(ii) Loxodromic elements are diagonalizable and the eigenvalues do not have

absolute value 1, that is, these are conjugated to ( r 0
0 1/r ) with |r| > 1. If tr2(f ) is

real and tr2(f ) > 4, then f is called hyperbolic, and if tr2(f ) is not in the interval
[0,+∞), then f is termed as strictly loxodromic. We use the term loxodromic to
include both hyperbolic and strictly loxodromic elements.

(iii) Parabolic elements are not diagonalizable. They are conjugated to ( 1 1
0 1 ). Then

tr2(f ) = 4 if f is parabolic.

Recall that Möbius transformations are a finite composition of inversions in
spheres and planes of the extended complex plane. Through Poincaré’s extension,
the action of f = ( a b

c d ) can be extended to an action on the hyperbolic 3-space

�3 = {ω = z + tj|z ∈ �, t > 0} by the formula f (ω) = (aω + b)/(cω + d).
A subgroup G of Möb(2) is called elementary if there exists a finite G-orbit in the

closure of �3 in Euclidean 3-space. In particular, G is referred to be an elementary
group of elliptic type if G contains only elliptic elements and the identity. It is well
known that the elements of an elementary group of elliptic type have a common fixed
point in �3 (cf. Theorem 4.3.7 in [1]).

For each f and g in Möb(2), let [f, g] denote the commutator fgf −1g−1. In their
series of important papers, Gehring and Martin [3] introduced the following three
parameters for the two generator subgroup 〈f, g〉:

β(f ) = tr2(f ) − 4, β(g) = tr2(g) − 4,

γ (f, g) = tr(fgf −1g−1) − 2.

In terms of these parameters, the well-known Jørgensen’s inequality gives a sharp lower
bound for |γ (f, g)| when |β(f )| < 1 or |β(g)| < 1. In [3], Gehring and Martin sharpen
Jørgensen’s inequality to the following form.

LEMMA 2.1. Let 〈f, g〉 be a discrete and non-elementary group of SL(2, �) with
β(f ) = β(g). Then |γ (f, g)| > 0.193.

We also need the following.

LEMMA 2.2. Let 〈f, g〉 be an elementary group of elliptic type in SL(2, �). Then
γ (f, g) < 0.

Proof. We may assume, up to conjugation, that f = ( r 0
0 1/r ) and g fixes the point

(0, 0, 1) in the upper half-space model of �3. Hence, g has the matrix form as ( a b
−b a )

with |a|2 + |b|2 = 1 (cf. Theorem 2.5.1 in [1]).
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Recall that r = eiθ0 for some θ0 
= 0 (mod 2π ), it follows that

β(f ) =
(

r + 1
r

)2

− 4 = e2iθ0 + e−2iθ0 − 2 = 2[cos(2θ0) − 1] < 0.

Therefore, we have γ (f, g) = tr(fgf −1g−1) − 2 = |b|2β(f ) < 0. �

THEOREM 2.3. Let G be a non-elementary subgroup of SL(2, �) containing elliptic
elements and f be a loxodromic (resp. an elliptic) transformation. If for each elliptic
element g ∈ G the group 〈f, g〉 is discrete, then G is discrete.

Proof. Suppose on the contrary that G is not discrete. We only need to consider
the case that G is dense in SL(2, �) by Section 1 of [5] and Theorem 2.9 of [7].

Let f be represented by the matrix ( r 0
0 1/r ) and g = ( a b

c d ) ∈ G with b 
= 0 
= c.

This is possible since G is non-elementary. Setting h = ( 1 t
0 1 ), then we get hgh−1 =

( a + ct −ct2 + (d − a)t + b
c d − ct ). Since G is dense in SL(2, �), there exists a sequence {hn} in G

which converges to h.
We denote hngh−1

n by ( an bn
cn dn

) and ln = hngh−1
n f hng−1h−1

n . By a calculation, we
explicitly obtain

ln =
(

an bn

cn dn

) (
r 0
0 1/r

) (
dn −bn

−cn an

)

=

⎛
⎜⎜⎝

randn − 1
r

bncn −anbn

(
r − 1

r

)

cndn

(
r − 1

r

)
1
r

andn − rbncn

⎞
⎟⎟⎠ .

By the assumption, it follows from hngh−1
n ∈ G being elliptic that the groups 〈f, ln〉 ⊂

〈f, hngh−1
n 〉 are discrete for all n.

We complete the proof by dividing into two cases:
� f is loxodromic.

We take t to be the root of the quadratic equation cx2 + (a − d)x − b = 0 satisfying
d − ct 
= 0. This will lead to limn→∞ bn = 0. It follows that

lim
n→∞ |γ (f, ln)| = lim

n→∞ |tr([f, ln]) − 2| = lim
n→∞ |anbncndn|

∣∣∣∣r − 1
r

∣∣∣∣
4

= 0.

Therefore, the groups 〈f, ln〉 are discrete and elementary groups for sufficiently large
n by Lemma 2.1.

On the other hand, the loxodromic ln does not fix infinity since the limit as
n approaches infinity of cndn(r − 1

r ) does not equal to 0. This is the desired
contradiction.

� f is elliptic.
From the above, we obtain γ (f, ln) = anbncndn|r − 1

r |4, which converges to
|r − 1

r |4c(ct + a)(ct − d)[ct2 + (a − d)t − b] as n → ∞. Thanks to the fundamental
theorem of algebra, we can take the value of t such that |r − 1

r |4c(ct + a)
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(ct − d)[ct2 + (a − d)t − b] is sufficiently small and positive, say,

∣∣∣∣r − 1
r

∣∣∣∣
4

c(ct + a)(ct − d)[ct2 + (a − d)t − b] = 0.1.

By Lemma 2.1, we see that the discrete groups 〈f, ln〉 must be elementary for sufficient
large n, which is a contradiction with Lemma 2.2.

�
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