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Let s = s(a,, a3, .. .,a,) denote the number of integer solutions of the equation

u1+u2+...+u,=|} Z ai]:

subject to the conditions
Oéuiéai (i=1""’r)9

the g; being given positive integers, and square brackets denoting the integral part., Clearly
s(ay,...,a,)is also the number s = s(m) of divisors of m = pj'p3*... p? which contain exactly 4
prime factors counted according to multiplicity, and is therefore, as is proved in [1], the
cardinality of the largest possible set of divisors of m, no one of which divides another.

In an earlier paper [2] we proved by means of contour integration that, under fairly

general conditions,
2\ w(m)
s~ | (E>JA(m>

as ) a;—o0, where t(m) = [] (1+a;) denotes the total number of divisors of m, and where
i=1 i=1
r

1 .
A(m) = 3 Y. afa;+2). In the squarefree case, when m = p, p, ...p,, this becomes

([ﬁ:]) ” \/ <2>«2_ ’

a result which checks with Stirling’s formula. We now prove

THEOREM 1. There exist constants C; > 0, C, > 0 such that
(m) t(m)

Jaem) = E 2 Tt
Jor all m.

If we define the degree n of an integer m to be the number of prime factors of m counted
according to muitiplicity, and let N, = N(m) denote the number of divisors of m of degree /,
we then have s = N,, where A = [4n]. Also let t = t(m).

Let

2 A 2 1 A
;Z, ("‘l) Nt"'— Z (n—20)°N, (1)
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denote the variance of the distribution of degrees among the divisors of m. Since the variance
of {0,1,2,...,a} is {za(a+2), and since the variance of a sum of independent distributions is
equal to the sum of the variances, we have

=Y frafa;+2) =L A(m).
i=1

To prove Theorem 1, it therefore suffices to prove

THEOREM 2. With the above notation, there exist constants C; > 0, C, > 0 such that

T
C3-=0=C,
s

2. The lower bound. Since
x+1 x—1 2
(5)-(5) =

2
20t = Y (n—21)’N,> Z (n—21—-1)N,

§{<n+1 21) <n—;—21>}Nl
§<n+1 21>(N1_N’_1)+<n;—1>'

Now de Bruijn, Tengbergen and Kruyswijk [1] have shown that the divisors of m can be put
into s disjoint chains ordered by divisibility, the number of chains containing n+ 1 — 2/ elements
being precisely N;—N;_,. (Incidentally, the result

N,<N,, if 1< ®

is implicit in this.) Thus 2702 is essentially just the number of ways of selecting three divisors
of m from the same chain.

we have

-
(=]

s

If the s chains contain x,, x,,..., x, elements, where ) x; = 7, we have

i=1
2 1e
2t0% > Z Y xi(x;—1)(x;—2).
i=1
This has a minimum if all the x; are equal, when x; = 7/s. Thus, for sufficiently large n,
3

2t6% 2 (é—s)T—Z,
s

since s = o(t) (see [2]; alternatively, this follows from the second half of this theorem).
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3. The upper bound. In view of (1), we have to estimate ) (n—2/)’N,. To do this, we
=0

make use of the following lemmas, the first of which is proved by an elementary argument in

[3].
Lemma 1. If0<l<k <n, then NN, < Ny Ny g

LEMMA 2. (Reduction Formula)

A-r A=-r=1 A-r-1

N2, ¥ (n—2)N,<Ni,., ¥ (n—20°N+8Ni,_, ¥ (n—2DN,
=0 1=0 1=0
A-r—1

+16Nj_,—y Y N;+3Q2r+5)°N;_,.
=0

Proof. Throughout, we shall make repeated use of (2).

A-r A=r—2
N, Y (n=20°N,SNi., ) (n—20’N+2Q2r+1)°N3_,,

i=0 1=0
where the first term on the right is, by two applications of Lemma 1,

A-r-2

SNi--1 X (n=2D)7Nyy,
1=0
A-r

SNi -1 ) (n=214+4)’N,
1=0

A=r—1
éNi-r—l Z (n_21+4)2N1+(2r+5)2N)3.—r
=0
A=-r-1 A-r=1 A-r—1
éNi—r-l Z (n_2l)2Nl+8N§—r—l Z (n_21)Nl+16N§.—r—1 Z Nl+(2r+5)2Ni—r'
=0 1=0 =

=0

The lemma now follows.
Starting with r = 0, we apply this reduction formula repeatedly to obtain

A
2ts%6%2 = N2 Y (n—21)°N,
1=0

I=0 =0

i-1 A-t i-1 A-t A
<8y Ni-,(z (n—2l)N,>+16 y Nf_,(z N,)+3 Y (21+5)2N3_,.
1=0 i=0 t=0
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But
2 A
Y, (2+5)N3_, < Y, Naof(tN,_,)?
=0 1=0
i
<Y NN+ N, )
t=0
<(* 2 T g
Sl )] "=
2) 25"
and

A

A=1 At T -1 T Ai-1 2
Z N%—l(Z Nl)§:2' Z Ni—t éi( Z NA—!) <13'
t=0 I=0 t=0 t=0
Further, a reduction argument similar to the above [3] shows that
A
N, Y (n=2D)N, < 7%
=0

Thus the remaining term in (3) is

Ai-1
<t Y N,_, <.
=0
Thus finally
215202 < 13,
whence
T
c<L-.

N

This completes the proof of Theorem 2, We remark, however, that a more careful estimation
gives the result

<\/11‘r
o<y "

= 25
provided the degree of m is big enough. Whereas the lower bound is the best possible, being
attained when m is a prime power, our upper bound can certainly be improved upon. Perhaps
its value in the case of m squarefree, namely 1 /\/ (27), is the true value.
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