A VARIANCE METHOD IN COMBINATORIAL NUMBER THEORY

by IAN ANDERSON
(Received 30 April, 1968)
Let $s=s\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ denote the number of integer solutions of the equation

$$
u_{1}+u_{2}+\ldots+u_{r}=\left[\frac{1}{2} \sum_{i=1}^{r} a_{i}\right]=\lambda
$$

subject to the conditions

$$
0 \leqq u_{i} \leqq a_{i} \quad(i=1, \ldots, r)
$$

the a_{i} being given positive integers, and square brackets denoting the integral part. Clearly $s\left(a_{1}, \ldots, a_{r}\right)$ is also the number $s=s(m)$ of divisors of $m=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}$ which contain exactly λ prime factors counted according to multiplicity, and is therefore, as is proved in [1], the cardinality of the largest possible set of divisors of m, no one of which divides another.

In an earlier paper [2] we proved by means of contour integration that, under fairly general conditions,

$$
s(m) \sim \sqrt{ }\left(\frac{2}{\pi}\right) \frac{\tau(m)}{\sqrt{A(m)}}
$$

as $\sum_{i=1}^{r} a_{i} \rightarrow \infty$, where $\tau(m)=\prod_{i=1}^{r}\left(1+a_{i}\right)$ denotes the total number of divisors of m, and where $A(m)=\frac{1}{3} \sum_{i=1}^{r} a_{i}\left(a_{i}+2\right)$. In the squarefree case, when $m=p_{1} p_{2} \ldots p_{n}$, this becomes

$$
\left.\binom{n}{\left[\frac{1}{2} n\right]} \sim \sqrt{\left(\frac{2}{\pi}\right.}\right) \frac{2^{n}}{\sqrt{ } n},
$$

a result which checks with Stirling's formula. We now prove
Theorem 1. There exist constants $C_{1}>0, C_{2}>0$ such that

$$
C_{1} \frac{\tau(m)}{\sqrt{A(m)}} \leqq s(m) \leqq C_{2} \frac{\tau(m)}{\sqrt{A(m)}}
$$

for all m.
If we define the degree n of an integer m to be the number of prime factors of m counted according to multiplicity, and let $N_{l}=N_{l}(m)$ denote the number of divisors of m of degree l, we then have $s=N_{\lambda}$, where $\lambda=\left[\frac{1}{2} n\right]$. Also let $\tau=\tau(m)$.

Let

$$
\begin{equation*}
\sigma^{2}=\frac{2}{\tau_{l}} \sum_{l=0}^{\lambda}\left(\frac{n}{2}-l\right)^{2} N_{l}=\frac{1}{2 \tau_{l}} \sum_{l=0}^{\lambda}(n-2 l)^{2} N_{l} \tag{1}
\end{equation*}
$$

denote the variance of the distribution of degrees among the divisors of m. Since the variance of $\{0,1,2, \ldots, a\}$ is $\frac{1}{12} a(a+2)$, and since the variance of a sum of independent distributions is equal to the sum of the variances, we have

$$
\sigma^{2}=\sum_{i=1}^{r} \frac{1}{12} a_{i}\left(a_{i}+2\right)=\frac{1}{4} A(m)
$$

To prove Theorem 1, it therefore suffices to prove
Theorem 2. With the above notation, there exist constants $C_{3}>0, C_{4}>0$ such that

$$
C_{3} \frac{\tau}{s} \leqq \sigma \leqq C_{4} \frac{\tau}{s}
$$

2. The lower bound. Since

$$
\binom{x+1}{3}-\binom{x-1}{3}=(x-1)^{2}
$$

we have

$$
\begin{aligned}
2 \tau \sigma^{2} & =\sum_{l=0}^{\lambda}(n-2 l)^{2} N_{l}>\sum_{l=0}^{\lambda}(n-2 l-1)^{2} N_{l} \\
& =\sum_{l=0}^{\lambda}\left\{\binom{n+1-2 l}{3}-\binom{n-1-2 l}{3}\right\} N_{l} \\
& =\sum_{l=1}^{\lambda}\binom{n+1-2 l}{3}\left(N_{l}-N_{l-1}\right)+\binom{n+1}{3}
\end{aligned}
$$

Now de Bruijn, Tengbergen and Kruyswijk [1] have shown that the divisors of m can be put into s disjoint chains ordered by divisibility, the number of chains containing $n+1-2 l$ elements being precisely $N_{l}-N_{l-1}$. (Incidentally, the result

$$
\begin{equation*}
N_{l} \leqq N_{t+1} \quad \text { if } \quad l<\lambda \tag{2}
\end{equation*}
$$

is implicit in this.) Thus $2 \tau \sigma^{2}$ is essentially just the number of ways of selecting three divisors of m from the same chain.

If the s chains contain $x_{1}, x_{2}, \ldots, x_{s}$ elements, where $\sum_{i=1}^{s} x_{i}=\tau$, we have

$$
2 \tau \sigma^{2}>\frac{1}{6} \sum_{i=1}^{s} x_{i}\left(x_{i}-1\right)\left(x_{i}-2\right)
$$

This has a minimum if all the x_{i} are equal, when $x_{i}=\tau / s$. Thus, for sufficiently large n,

$$
2 \tau \sigma^{2} \geqq\left(\frac{1}{6}-\varepsilon\right) \frac{\tau^{3}}{s^{2}}
$$

since $s=o(\tau)$ (see [2]; alternatively, this follows from the second half of this theorem).

Thus

$$
\sigma \geqq\left(\frac{1}{2 \sqrt{3}}-\varepsilon\right) \frac{\tau}{s}
$$

3. The upper bound. In view of (1), we have to estimate $\sum_{l=0}^{2}(n-2 l)^{2} N_{l}$. To do this, we make use of the following lemmas, the first of which is proved by an elementary argument in [3].

Lemma 1. If $0<l<k<n$, then $N_{l} N_{k} \leqq N_{l+1} N_{k-1}$.

Lemma 2. (Reduction Formula)

$$
\begin{aligned}
N_{\lambda-r}^{2} \sum_{l=0}^{\lambda-r}(n-2 l)^{2} N_{l} \leqq N_{\lambda-r-1}^{2} & \sum_{l=0}^{\lambda-r-1}(n-2 l)^{2} N_{l}+8 N_{\lambda-r-1}^{2}
\end{aligned} \sum_{l=0}^{\lambda-r-1}(n-2 l) N_{l} .
$$

Proof. Throughout, we shall make repeated use of (2).

$$
N_{\lambda-r}^{2} \sum_{l=0}^{\lambda-r}(n-2 l)^{2} N_{l} \leqq N_{\lambda-r}^{2} \sum_{l=0}^{\lambda-r-2}(n-2 l)^{2} N_{l}+2(2 r+1)^{2} N_{\lambda-r}^{3},
$$

where the first term on the right is, by two applications of Lemma 1,

$$
\begin{aligned}
& \leqq N_{\lambda-r-1}^{2} \sum_{l=0}^{\lambda-r-2}(n-2 l)^{2} N_{l+2} \\
& \leqq N_{\lambda-r-1}^{2} \sum_{l=0}^{\lambda-r}(n-2 l+4)^{2} N_{l} \\
& \leqq N_{\lambda-r-1}^{2} \sum_{l=0}^{\lambda-r-1}(n-2 l+4)^{2} N_{l}+(2 r+5)^{2} N_{\lambda-r}^{3} \\
& \leqq N_{\lambda-r-1}^{2} \sum_{l=0}^{\lambda-r-1}(n-2 l)^{2} N_{l}+8 N_{\lambda-r-1}^{2} \sum_{l=0}^{\lambda-r-1}(n-2 l) N_{l}+16 N_{\lambda-r-1}^{2} \sum_{l=0}^{\lambda-r-1} N_{l}+(2 r+5)^{2} N_{\lambda-r}^{3}
\end{aligned}
$$

The lemma now follows.
Starting with $r=0$, we apply this reduction formula repeatedly to obtain

$$
\begin{aligned}
2 \tau s^{2} \sigma^{2} & =N_{\lambda}^{2} \sum_{l=0}^{\lambda}(n-2 l)^{2} N_{l} \\
& \leqq 8 \sum_{t=0}^{\lambda-1} N_{\lambda-t}^{2}\left(\sum_{l=0}^{\lambda-t}(n-2 l) N_{l}\right)+16 \sum_{t=0}^{\lambda-1} N_{\lambda-t}^{2}\left(\sum_{l=0}^{\lambda-t} N_{l}\right)+3 \sum_{t=0}^{\lambda}(2 t+5)^{2} N_{\lambda-t}^{3} .
\end{aligned}
$$

But

$$
\begin{aligned}
\sum_{t=0}^{\lambda}(2 t+5)^{2} N_{\lambda-t}^{3} & \ll \sum_{t=0}^{\lambda} N_{\lambda-t}\left(t N_{\lambda-t}\right)^{2} \\
& \ll \sum_{t=0}^{\lambda} N_{\lambda-t}\left(N_{\lambda-t}+\ldots+N_{\lambda-1}\right)^{2} \\
& \ll\left(\frac{\tau}{2}\right)^{2} \cdot \frac{\tau}{2} \ll \tau^{3}
\end{aligned}
$$

and

$$
\sum_{t=0}^{\lambda-1} N_{\lambda-t}^{2}\left(\sum_{l=0}^{\lambda-t} N_{l}\right) \leqq \frac{\tau}{2} \sum_{t=0}^{\lambda-1} N_{\lambda-t}^{2} \leqq \frac{\tau}{2}\left(\sum_{t=0}^{\lambda-1} N_{\lambda-t}\right)^{2} \ll \tau^{3}
$$

Further, a reduction argument similar to the above [3] shows that

$$
N_{\lambda} \sum_{l=0}^{\lambda}(n-2 l) N_{l} \ll \tau^{2}
$$

Thus the remaining term in (3) is

$$
\ll \tau^{2} \sum_{t=0}^{\lambda-1} N_{\lambda-t} \ll \tau^{3} .
$$

Thus finally

$$
2 \tau s^{2} \sigma^{2} \ll \tau^{3}
$$

whence

$$
\sigma \ll \frac{\tau}{s}
$$

This completes the proof of Theorem 2. We remark, however, that a more careful estimation gives the result

$$
\sigma \leqq \frac{\sqrt{ } 11 \tau}{2} \frac{\tau}{s}
$$

provided the degree of m is big enough. Whereas the lower bound is the best possible, being attained when m is a prime power, our upper bound can certainly be improved upon. Perhaps its value in the case of m squarefree, namely $1 / \sqrt{ }(2 \pi)$, is the true value.

REFERENCES

1. N. G. de Bruijn, C. van E. Tengbergen and D. Kruyswijk, On the set of divisors of a number Nieuw' Arch. Wiskunde (2) 23 (1951), 191-193.
2. I. Anderson, On primitive sequences, J. London Math. Soc. 42 (1967), 137-148.
3. I. Anderson, On the divisors of a number, J. London Math. Soc. 43 (1968), 410-418.

University of Glascow

