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Abstract

Let Xn(�) be the number of nonoverlapping occurrences of a simple pattern � in a
sequence of independent and identically distributed (i.i.d.) multistate trials. For fixed k,
the exact tail probability P{Xn(�) < k} is difficult to compute and tends to 0 exponentially
asn → ∞. In this paper we use the finite Markov chain imbedding technique and standard
matrix theory results to obtain an approximation for this tail probability. The result is
extended to compound patterns, Markov-dependent multistate trials, and overlapping
occurrences of �. Numerical comparisons with Poisson and normal approximations are
provided. Results indicate that the proposed approximations perform very well and do
significantly better than the Poisson and normal approximations in many cases.

Keywords: Finite Markov chain imbedding; rate functions; multistate trial

2000 Mathematics Subject Classification: Primary 60E05
Secondary 60J10

1. Introduction

The distribution theory of runs and patterns has been successfully applied to various areas of
science, for example, statistics, reliability, quality control, genomic studies, bioinformatics, and
social science. It has a long history which dates back to at least the sixteenth century. There was
a considerable amount of research at the end of the nineteenth century and the early twentieth
century; see, for example, Wishart and Hirschfeld (1936), Mood (1940), Wald and Wolfowitz
(1940), and Wolfowitz (1943). Traditionally, the exact distribution of runs and patterns were
studied via combinatorial analysis. The book by Riordan (1958) provides an excellent review
of early developments in this area. Recently, Fu and Koutras (1994) developed the finite
Markov chain imbedding (FMCI) technique which provided an alternative way to study the
exact distributions for runs and patterns. The method is rather simple, especially for finding
distributions of runs and patterns in sequences of non-i.i.d. or Markov-dependent multistate
trials or random permutations.

Let A = {α1, α2, . . . , αm} be a set of m symbols, and let {Xi} be a sequence of i.i.d. trials
taking values in A with corresponding probabilities pi, i = 1, . . . , m. To avoid trivialities, we
assume that m ≥ 2 and that pi > 0 for i = 1, . . . , m. We say that � is a simple pattern (or
word) of length � defined on A if � = αi1 · · ·αi� , where αij ∈ A. The length � of the pattern
is a fixed positive integer and the symbols αij are allowed to repeat. Let Xn(�) denote the
number of nonoverlapping occurrences of the simple pattern � in X1, . . . , Xn. To fix these
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ideas, suppose that A = {S, F } and � = SS. Then the realization

X1X2 · · ·X14 = S S F S S S F S S S S S F S (1.1)

has X14(�) = 4 nonoverlapping occurrences of � (which are underlined). We also define the
waiting time until the kth occurrence of � as

W(k,�) = min{n : Xn(�) = k}.
For brevity, we denote W(1,�) simply by W(�). A realization of {Xi} starting as in (1.1)
yields, for example,

W(�) = W(1,�) = 2, W(2,�) = 5, W(3,�) = 9, and W(4,�) = 11.

Let �1 and �2 be two distinct simple patterns (i.e. neither �1 nor �2 is a sub-pattern of
the other). We define the union of �1 and �2, � = �1 ∪ �2, as the occurrence of either �1
or �2. A pattern � is called a compound pattern if it is a union of r distinct simple patterns
�1, . . . , �r , i.e. � = ⋃r

i=1�i . It follows that if � is a compound pattern then the waiting
time W(�) is defined as

W(�) = min
1≤i≤r{W(�1), . . . ,W(�r)}.

Given n, the probability that the number of occurrences of � in n multistate trials is less
than k,

αn(k,�) = P{Xn(�) < k},
is often very hard to compute numerically, especially when the exact formula is expressed in
terms of complex combinatorics and � and n are large. For large n, there are mainly three ways
to approximate the tail probabilities αn(k,�). First, these probabilities can be approximated by
a Poisson distribution P (λn) or a compound Poisson distribution Pc(λn, µn) in the sense that,
provided certain conditions are satisfied, the total variation distance between the distribution of
Xn(�) and P (λn) (or Pc(λn, µn)) tends to 0 as n → ∞ and, hence, the Poisson (or compound
Poisson) distribution provides a good approximation for the tail probabilities. See, for example,
Arratia et al. (1990), Godbole (1991), Godbole and Schaffner (1993), and Barbour et al. (1996).

The tail probability αn(k,�) can also be approximated by a normal distribution. If we
consider the occurrences of� in {Xi} as a renewal process (which is always possible since the
Xi are i.i.d. and we are considering nonoverlapping counting), then Xn(�) is the number of
renewals by time n and the central limit theorem for renewal processes yields

Xn(�)− n/µW√
nσ 2

W/µ
3
W

L→ N(0, 1) as n → ∞, (1.2)

whereµW and σ 2
W are respectively the mean and variance of the interarrival times of� in {Xi},

which can easily be obtained via FMCI (see Fu and Lou (2003, p. 73) for the details). For
Markov-dependent trials and/or overlapping counting, we have a delayed renewal process and
similar results hold.

It is well known (see Fu and Lou (2003, pp. 49–96)) that the random variables Xn(�) and
W(�) can be imbedded in a finite Markov chain. The transition probability matrix for the
imbedding of W(�) has the form

P =
[

N c�
0 1

]
,
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where N is the d × d essential transition probability matrix (the substochastic matrix corre-
sponding to the transient states only), 0 represents a matrix, row vector, or column vector of 0s
depending on the context, and ‘�’ denotes the transpose. The essential transition probability
matrix for determining P{Xn(�) < k} depends on k and has the form

Nk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N C 0 · · · 0

0 N C
. . .

...

0 0
. . .

. . .
...

...
...

. . .
. . . C

0 0 · · · 0 N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
dk×dk

,

where there are k copies of N on the diagonal and C = [c� | 0] is the ‘continuation’ matrix.
Note that C may take a different form for Markov-dependent trials and/or overlapping counting.

Given the matrices N and Nk , we have

P{W(�) > n} = ξ0N
n1� (1.3)

and
P{Xn(�) < k} = ξ0N

n
k 1�, (1.4)

where ξ0 = (1, 0, . . . , 0) and 1 = (1, . . . , 1) are row vectors of appropriate length. For fixed k,
these probabilities tend to 0 exponentially as n → ∞ and, for large � and very large n, the
computation of P{Xn(�) < k} by (1.4) can be problematic, and, hence, approximations are of
general interest. In this paper, our main goal is to develop a large deviation type approximation
for the tail probabilities in (1.4) by making use of (1.3) and its approximation.

The remainder of this paper is organized as follows. In Section 2 we give the main results
under some specific assumptions about the structure of N . We then extend these results to more
general cases. Section 3 provides some numerical results and comparisons with the Poisson
and normal approximations. Numerically, the approximations developed work very well for
tail probabilities less than 0.05, a critical probability for hypothesis testing.

2. Main results

Here and throughout, we make use of the following notation.

(i) {Yn : n ≥ 0} will denote the Markov chain induced by � with transition probability
matrix P and d × d essential transition probability matrix N .

(ii) The eigenvalues forN will be denoted byλ1, . . . , λd , repeated according to their algebraic
multiplicities and ordered such that 1 > λ1 ≥ |λ2| ≥ · · · ≥ |λd | ≥ 0 (such an ordering is
possible by the Perron–Frobenius theorem for nonnegative matrices). For simple patterns
of length �, we have d = �.

(iii) The right eigenvectors of N associated with λ1, . . . , λd will be denoted by η1, . . . , ηd .
If the geometric multiplicity of an eigenvalue is less than its algebraic multiplicity, we
use vectors of 0s for the unspecified eigenvectors. We also take η1 to be an eigenvector
associated with λ1 with nonnegative entries (Perron–Frobenius again).

(iv) The linear space spanned by {η1, . . . , ηd} will be denoted by EN and its orthogonal
complement will be denoted by E⊥

N .
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(v) For f (n) and g(n), n ∈ N, we say that f (n) = o(g(n)) if |f (n)/g(n)| → 0 as n → ∞,
f (n) = O(g(n)) if there exists a constant C > 0 such that |f (n)| ≤ C|g(n)| for all
n > 0, and f (n) ∼ g(n) if f (n)/g(n) → 1 as n → ∞.

Before stating and proving the main result, we introduce some notation and prove a lemma.
Let n and k be positive integers with n ≥ k, let Cn,k denote the nonnegative integer solutions
to n1 + · · · + nk = n, and recall (cf. Riordan (1958, p. 124)) that

|Cn,k| =
(
n+ k − 1

k − 1

)
,

where, for sets, | · | denotes cardinality. Furthermore, for � = (�1, . . . , �k), let Cn,k(�) denote
the nonnegative integer solutions to n1 + · · · + nk = n such that ni ≥ �i for each i = 1, . . . , k,
and note that

|Cn,k(�)| =
(
n− ∑k

i=1 �i + k − 1

k − 1

)
.

Lastly, we define the complement of Cn,k(�) by Cn,k(�) = Cn,k \ Cn,k(�).

Lemma 2.1. Let {fn} be a sequence of positive integers such that fn → ∞ and fn/n → 0,
and let g : Cn,k → (K1,K2) for some positive constants 0 < K1 ≤ K2 < ∞. Then, for any
fixed k,

lim
n→∞

∑
n∈Cn,k(fn)

g(n)∑
n∈Cn,k(fn)

g(n)
= 0.

Proof. Clearly, we have

K1|Cn,k(fn)|
K2|Cn,k(fn)| ≤

∑
n∈Cn,k(fn)

g(n)∑
n∈Cn,k(fn)

g(n)
≤ K2|Cn,k(fn)|
K1|Cn,k(fn)| .

However,

|Cn,k|
|Cn,k(fn)| =

(
n+ k − 1

n− kfn + k − 1

)(
n+ k − 2

n− kfn + k − 2

)
· · ·

(
n

n− kfn

)
→ 1 as n → ∞,

and the result now follows from the definition of Cn,k(�).

Theorem 2.1. LetX1, X2, . . . be a sequence of i.i.d. trials taking values in A, let� be a simple
pattern of length � with d × d essential transition probability matrix N , and let Xn(�) be the
number of nonoverlapping occurrences of � in X1, . . . , Xn. If

(i) λ1 has algebraic multiplicity m and λ1 > |λj | for all j > m, and

(ii) there exist constants a1, . . . , ad such that 1� = ∑d
j=1 ajη

�
j and a1(ξ0η

�
1 ) > 0,

then, for any fixed k ≥ 0,

P{Xn(�) = k} ∼ ak+1
(
n− k(�− 1)

k

)
(1 − λ1)

kλn−k1 , (2.1)

where a = ∑m
j=1 aj (ξ0η

�
j ). If m = 1, as is usually the case, then a = a1(ξ0η

�
1 ).
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Proof. Let Wi denote the waiting time (or interarrival time) between the (i − 1)th and the
ith occurrence of � in X1, X2, . . . so that

P{Xn(�) = k − 1} = P{W1 + · · · +Wk−1 ≤ n, W1 + · · · +Wk > n}.
Summing over all possible values ofW1, . . . ,Wk (i.e. over all n = (n1, . . . , nk) ∈ Cn,k(�)with
� = (�, . . . , �, 0)) and noting that, with nonoverlapping counting, these Wi are i.i.d., yields

P{Xn(�) = k − 1} =
∑

n∈Cn,k(�)

P{W1 = n1, . . . ,Wk−1 = nk−1, Wk > nk}

=
∑

n∈Cn,k(�)

(k−1∏
i=1

P{Wi = ni}
)

P{Wk > nk}. (2.2)

Now, since λ1 = · · · = λm by assumption, we have, letting a = ∑m
j=1 aj (ξ0η

�
j ),

P{W(�) > n} = ξ0N
n1� = ξ0N

n
d∑
j=1

ajη
�
j = aλn1

(
1 +

d∑
j=m+1

aj (ξ0η
�
j )

a

(
λj

λ1

)n)

and
P{W(�) = n} = P{W(�) > n− 1} − P{W(�) > n}

= ξ0N
n−1(I − N)1�

=
d∑
j=1

aj (1 − λj )(ξ0η
�
j )λ

n−1
j

= a(1 − λ1)λ
n−1
1

(
1 +

d∑
j=m+1

aj (1 − λj )(ξ0η
�
j )

a(1 − λ1)

(
λj

λ1

)n−1)
.

Substituting these into (2.2) yields

P{Xn(�) = k − 1}

=
∑

n∈Cn,k(�)

(k−1∏
i=1

a(1 − λ1)λ
ni−1
1

[
1 +

d∑
j=m+1

aj (1 − λj )(ξ0η
�
j )

a(1 − λ1)

(
λj

λ1

)ni−1])

× aλ
nk
1

(
1 +

d∑
j=m+1

aj (ξ0η
�
j )

a

(
λj

λ1

)nk)

= ak(1 − λ1)
k−1λn−k+1

1

∑
n∈Cn,k(�)

ψ(n, �),

where

ψ(n, �) =
(

1 +
d∑

j=m+1

aj (ξ0η
�
j )

a

(
λj

λ1

)nk) k−1∏
i=1

(
1 +

d∑
j=m+1

aj (1 − λj )(ξ0η
�
j )

a(1 − λ1)

(
λj

λ1

)ni−1)
.

https://doi.org/10.1239/aap/1240319586 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1240319586


Approximate probabilities for runs and patterns 297

Now, for any sequence of integers {fn} such that f1 > �, fn → ∞, and fn/n → 0 as n → ∞,
we have

lim
n→∞ inf

n∈Cn,k(fn)
ψ(n, �) = lim

n→∞ sup
n∈Cn,k(fn)

ψ(n, �) = 1.

Furthermore, ∑
n∈Cn,k(fn)

ψ(n, �) ≤
∑

n∈Cn,k(�)

ψ(n, �) ≤
∑

n∈Cn,k

ψ(n, �),

and, since

∑
n∈Cn,k

ψ(n, �),=
∑

n∈Cn,k(fn)

ψ(n, �)

(
1 +

∑
n∈Cn,k(fn)

ψ(n, �)∑
n∈Cn,k(fn)

ψ(n, �)

)
,

we have, by Lemma 2.1,

∑
n∈Cn,k(�)

ψ(n, �) ∼
(
n− (k − 1)(�− 1)

k − 1

)
. (2.3)

Combining this with the above, we have

P{Xn(�) = k − 1} ∼ ak
(
n− (k − 1)(�− 1)

k − 1

)
(1 − λ1)

k−1λn−k+1
1 .

Replacing k − 1 with k completes the proof.

The accuracy of the approximation in (2.1) depends primarily on the approximation in (2.3),
which performs well when n/�(k+ 1) is relatively large and λm+1/|λ1| is not too close to 1. It
also depends indirectly on � in a more complicated way. An alternate way of writing (2.1) is,
for fixed k ≥ 0,

lim
n→∞

[
P{Xn(�) = k}

/
ak+1

(
1 − λ1

λ1

)k(
n− k(�− 1)

k

)
exp{n log λ1}

]
= 1. (2.4)

This shows that (a) for fixed k, P{Xn(�) = k} → 0 exponentially with rate − log λ1 as
n → ∞, and (b) for fixed but large n, our approximation resembles a Poisson probability with
an adjustment constant that is independent of n. This follows from the fact that, for large n,

ak+1
(

1 − λ1

λ1

)k(
n− k(�− 1)

k

)
exp{n log λ1} ∼ ck

(−n log λ1)
k

k! exp{n log λ1},

where

ck = ak+1
(

1 − λ1

λ1 log 1/λ1

)k
.

Note that, for binary trials with A = {S, F }, � = S, and p = pS , it is easy to see that
λ1 = q = 1 − p and a = 1 so that the approximation in (2.1) becomes an equality and

P{Xn(�) = k} =
(
n

k

)
pkqn−k,
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as expected. Furthermore, for k = 0, we have

P{W(�) > n} = P{Xn(�) = 0} ∼ aλn1,

which is a result in Fu et al. (2003, p. 354).
For cumulative tail probabilities, we have

P{Xn(�) < k} ∼
k−1∑
j=0

aj+1
(
n− j (�− 1)

j

)
(1 − λ1)

jλ
n−j
1 . (2.5)

If we note that P{Xn(�) < 1} = P{Xn(�) = 0} and, for k > 1,

P{Xn(�) = k − 2}
P{Xn(�) = k − 1} = O

(
1

n

)
,

we see that, in many cases, the approximation

P{Xn(�) < k} ∼ ak
(
n− (k − 1)(�− 1)

k − 1

)
(1 − λ1)

k−1λn−k+1
1

is sufficient provided that n is very large. The examples will show that, for k > 1, an
approximation based the last two terms in (2.5) is a good compromise provided that n/�(k+ 1)
is relatively large.

2.1. Generalizations and extensions

Before moving on to some numerical examples we discuss how these results can be extended
to Markov-dependent trials and compound patterns.

2.1.1. Markov-dependent trials. In the (first-order) Markov-dependent case, we will use the
notation pαiαj = P{Xn+1 = αj | Xn = αi} for all αi, αj ∈ A and all n ≥ 0. The state space
�P for the Markov chain induced by the simple pattern� = αi1αi2 · · ·αi� of length �will have
the same form as for the i.i.d. case except that, in order to incorporate the Markov dependency,
the state φ is replaced by {φα1 , . . . , φαm} so that

�P = {φα1; . . . ;φαm;αi1;αi1αi2; . . . ;αi1 · · ·αi�−1;αi1 · · ·αi�}.
Similarly, the state space for the essential transition probability matrix N has the form

�N = �P \ {�} = {φα1; . . . ;φαm;αi1;αi1αi2; . . . ;αi1 · · ·αi�−1}.
See Section 3.3 for a worked out example.

The arguments are entirely analogous to those in the previous section. The only difficulty
is the definition of the initial state vector ξ0 and the fact that this is no longer constant for
each Wi(�). Indeed, for any initial distribution ξ0, we have

P{W1(�) = n} = ξ0N
n−1(I − N)1� and P{W1(�) > n} = ξ0N

n1�,

as before. However, for i > 1, we now have

P{Wi(�) = n} = ξ�Nn−1(I − N)1� and P{Wi(�) > n} = ξ�Nn1�,
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where ξ� is a row vector of appropriate length with a 1 in the position of state φαi� and 0s
elsewhere.

When k = 1, we obtain
P{Xn(�) = 0} = ξ0N

n1�,
and, for k > 1, we have

P{Xn(�) = k − 1} =
∑

n∈Cn,k(�)

ξ0N
n1−1(I − N)1�

(k−1∏
i=2

ξ�Nni−1(I − N)1�
)

ξ�Nnk1�.

Applying the arguments in the proof of Theorem 2.1 and simplifying yields the following
theorem.

Theorem 2.2. Let X1, X2, . . . be a sequence of (first-order) Markov-dependent trials taking
values in A, let � be a simple pattern of length � with d × d essential transition probability
matrix N , and letXn(�) be the number of nonoverlapping occurrences of� inX1, . . . , Xn. If

(i) λ1 has algebraic multiplicity m and λ1 > |λj | for all j > m, and

(ii) there exist constants a1, . . . , ad such that 1� = ∑d
j=1 ajη

�
j and a1(ξ0η

�
1 ) > 0,

then, for any fixed k ≥ 0,

P{Xn(�) = k} ∼ abk
(
n− k(�− 1)

k

)
(1 − λ1)

kλn−k1 , (2.6)

where

a =
m∑
j=1

aj (ξ0η
�
j ) and b =

m∑
j=1

aj (ξ�η�
j ). (2.7)

If m = 1, as is usually the case, then a = a1(ξ0η
�
1 ) and b = a1(ξ�η�

1 ).

By the same token, the tail probability can be approximated by

P{Xn(�) < k} ∼
k−1∑
j=0

abj
(
n− j (�− 1)

j

)
(1 − λ1)

jλ
n−j
1 ,

where a and b are defined in (2.7). Note that the constants a, b, and λ1 are independent of n
and depend only on the structure of N . In other words, this approximation is available only
when W(�) is finite Markov chain imbeddable.

Equation (2.6) also holds for counting overlapping occurrences of � in both the i.i.d. and
(first-order) Markov-dependent cases. The only requirement is the identification of the ‘re-start’
vector ξ� for each case. For example, with A = {A,C,G, T } and� = ACAC, the state space
for the essential transition probability matrix in the i.i.d. case is

�N = {φ,A,AC,ACA}.
For overlapping counting, we have ξ� = (0, 0, 1, 0) (for nonoverlapping counting, ξ� = ξ0 =
(1, 0, 0, 0) and a = b so that (2.6) reduces to (2.1)). If the trials are (first-order) Markov
dependent, we have

�N = {φA, φC, φG, φT ,A,AC,ACA}.
For nonoverlapping counting, ξ� = (0, 1, 0, 0, 0, 0, 0), and, for overlapping counting, ξ� =
(0, 0, 0, 0, 0, 1, 0).
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2.1.2. Compound patterns. Furthermore, we would like to point out that, if � = ⋃r
i=1�i is

a compound pattern and the trials are i.i.d., then the approximation given in (2.1) remains
applicable. The difficulty is in specifying � in the approximation. A reasonable (but not
optimal) choice is to take � as the minimum length of the �i . For large n, this makes little
difference since, for any fixed k, �, and u,

lim
n→∞

(
n− (k − 1)(�− 1)

k − 1

)/(
n− u

k − 1

)
= 1.

For compound patterns in Markov-dependent trials, the extensions such as those given in
Section 2.1.1 are also obvious. Of course, the transition probability matrix N and associated
constants depend on the dependence structure of the {Xi} and the structure of the compound
pattern. No mathematical detail will be provided here.

When {Xi} is a Markov-dependent sequence and � is a compound pattern, the exact
distribution for overlapping counting can be obtained, but the complexity of the approximation
method grows. We leave this case as an open problem.

2.1.3. When 1� �∈ EN . When 1� /∈ EN , we have two options. The first involves choosing and
decomposing ξ0 (and ξ� if required), and the second involves the Jordan canonical form for Nk .

Let ζ1, . . . , ζd denote the left eigenvectors of N . If we are willing to choose a ξ0 such that
there exist constants c1, . . . , cd such that ξ0 = ∑d

j=1 cjζj and, if required, we can find constants
u1, . . . , ud such that ξ� = ∑d

j=1 ujζj , then we may proceed as in the proof of Theorem 2.1
except that we write

P{W(�) > n} = ξ0N
n1� =

d∑
j=1

cjζjN
n1� = cλn1

(
1 +

d∑
j=m+1

cj (ζj1�)
c

(
λj

λ1

)n)
,

where c = ∑m
j=1 cj (ζj1�) and, similarly,

P{W(�) = n} = ξ0N
n−1(I − N)1� = c(1 − λ1)λ

n−1
1

(
1 +

d∑
j=m+1

cj (ζj1�)
c(1 − λ1)

(
λj

λ1

)n)
,

and similarly for any terms involving ξ�. The development is entirely analogous to that in
Theorem 2.1 and the details are left to the reader.

If the required constants {cj } and (if required) {uj } do not exist, then we may still appeal to
the Jordan canonical form J for Nk to obtain a similar result (i.e. there exists a nonsingular V

and Jordan matrix J such that V JV −1 = Nk). If we let q denote the size of the largest Jordan
block of J associated with λ1, then it is possible to show that there exists a constant cq > 0,
independent of n, such that

ξ0N
n
k 1� = ξ0V J nV −11� ∼ cq

(
n

q − 1

)
λn1 .

The reader will notice the connection between this argument and that presented in Section 2. We
comment that the only pattern we have encountered that requires this technique is A = {S, F }
with pS = 1

2 and� = SF , and, in this case, powers of the 2×2 essential transition probability
matrix are entirely trivial to calculate exactly. For large � and moderate k, this method is
computationally more expensive since it requires us to find the generalized eigenvectors of Nk ,
which is of dimension k�× k� (for simple patterns).
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3. Numerical examples and comparisons

In this section we provide some numerical examples of the approximations in Section 2 and
give some comparisons to the Poisson approximation and to the normal approximation given
in (1.2). In order to fairly compare the approximations, we make use of the comparison function

ρ(a, e) =
(

1 − min

{
a

e
,
e

a

})
sgn(a − e),

where a is an approximate probability and e is the exact probability. This measure is always
in [−1, 1]; it is symmetric in the sense that it treats over and under estimation equivalently; it
goes to 1 as e/a gets small, indicating severe over estimation; it goes to −1 as a/e gets small,
indicating severe under estimation; and it is 0 when a = e.

In addition to k, n, and the exact probabilities (calculated using (1.4) and the FMCI tech-
nique), the tables in this section contain one or more of the following columns, each reporting
the value of ρ(a, e).

• F: the FMCI approximation for P{Xn(�) = k} given in (2.1).

• F(k): the FMCI approximation for P{Xn(�) < k} using all of the terms in (2.5).

• F(2): the FMCI approximation for P{Xn(�) < k} using the last two terms in (2.5).

• F(1): the FMCI approximation for P{Xn(�) < k} using only the last term in (2.5).

• POI: the Poisson approximation for both P{Xn(�) = k} and P{Xn(� < k} calculated as
in Godbold and Schnaffner (1993).

• CLT: the normal approximation given in (1.2) with continuity correction applied for both
P{Xn(�) = k} and P{Xn(� < k}.

Unless stated otherwise, for these examples, we assume that the {Xi} are i.i.d. taking values
in A = {A,C,G, T } with equal probability.

3.1. Approximating P{Xn(�) = k}
Before presenting the results of these comparisons we can make the following few remarks.

1. While we expect the normal approximation to work reasonably well in the neighborhood
of E[Xn(�)], especially when this is large, we do not expect that the normal approxi-
mation will be able to capture the tail behavior of Xn(�) very well. We expect that the
Poisson approximation will be better at capturing this tail behavior, especially when the
distribution of Xn(�) is moderately skewed.

2. It is usually the case that E[Xn(�)] > var[Xn(�)] and, hence, even with an appropriate
choice of λ, we expect the Poisson approximation to over estimate probabilities in the
tails and under estimate probabilities in the neighborhood of E[Xn(�)]. The severity of
this phenomenon will depend, primarily, on E[W(�)]—large E[W(�)] indicates that�
is ‘rare’ and the Poisson approximation should work quite well, especially when n is not
too large.

This behavior is illustrated in Figure 1, in which we plot ρ(a, e) for three patterns, of
lengths 2, 4, and 6, and the three approximations F (solid line), POI (dashed line), and CLT
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(dotted line). The top axes show the (approximate) standard z-scores making use of (1.2):

z = k − n/µW√
nσ 2

Wµ
−3
W

.

k

k

k
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Figure 1: The measure ρ(a, e) for three patterns, fixed n and varying k (see text). The dotted line is for
the normal approximation, the dashed line is for the Poisson approximation, and the solid line is for the

FMCI approximation proposed in Theorem 2.1.
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Figure 1(a) (� = AG, n = 1000) highlights the above comments the most dramatically.
While the proposed FMCI approximation (F) works well in the extreme left tail, its performance
degrades as k gets larger. The normal approximation works reasonably well in the neighborhood
of E[Xn(�)], but performs very poorly in both tails, as expected. The pattern AG cannot be
considered rare, occurring on average once in about every E[W(�)] = 16 trials and, as expected,
the Poisson approximation performs poorly for this �.

Figure 1(b) (� = ACGT , n = 5000) and (c) (� = AACAAG, n = 70 000) show that
(i) the FMCI approximation works extremely well in these cases (since n � k over most
of the k considered) and (ii) the Poisson approximation is still problematic in Figure 1(b)
(where E[W(�)] = 256), but performs better in Figure 1(c) (where E[W(�)] = 4096). As
expected, the performance of the normal approximation actually degrades in these cases since
E[Xn(�)] < 20 in both examples.

We would also like to point out that these tail probabilities can be quite small. Nevertheless,
it is sometimes important to be able to estimate these accurately, especially in applications
involving likelihood ratios and relative risk assessments.

Table 1 shows the exact probabilities P{Xn(�) = k} andρ(a, e) for the FMCI approximation
(F) in Theorem 2.1, the Poisson approximation (POI), and the normal approximation (CLT). In
this table we report results for the pattern � = AACAAG in Figure 1(c) and 0 ≤ k < 40.

In application, the Poisson approximation is frequently used to estimate P{Xn(�) = 0}
when � is rare and E[Xn(�)] is small. In Table 2 we present a few comparisons of the FMCI
approximation in Theorem 2.1 and the Poisson approximation. The n where chosen such that

n = min{j : P{Xj(�) = 0} < 0.95},

which would be typical in a hypothesis testing situation.
Finally, Godbole and Schaffner (1993) gave an example with � = ABRACADABRA

defined on A = {A,B,C,D,R}, which has overlaps. With each letter equally likely, they
gave the mean of the approximating Poisson random variable as

λ = (n− 20)(510 − 53 − 1)

521 .

With n = 250 000, this yields λ = 0.005 119 524, which is very close to

n

E[W(�)] = 0.005 119 934.

For k = 0, . . . , 4, the exact and approximate probabilities are given in Table 3.
While both approximations perform well, the proposed approximation does slightly better

than the Poisson approximation.

3.2. Approximating P{Xn(�) < k}
Table 4 shows the performance of the approximation(s) given in (2.5) for P{Xn(�) < k}

and that of the normal and Poisson approximations. While it is clear that using all of the terms
(F(k)) is preferred, we see that, for large n/�(k+1), using only the last two (F(2)) also performs
well provided that n/�(k+1) is large enough so that k is in the far-left tail. Using a single term
requires much larger n for the approximation to become accurate. Of course, once λ1 and η1
have been determined, there is little additional effort required to make use of all the terms in
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the sum, and this is recommended. As expected, the CLT approximation does not perform that
well at all. Note also that Table 4 illustrates the convergence in (2.4) for each fixed k.

Table 1: Exact values of P{Xn(�) = k} for the simple pattern� = AACAAG and the values of ρ(a, e)
for the approximation proposed in Theorem 2.1 (F), the Poisson approximation (POI), and the normal

approximation (CLT).

k Exact F POI CLT

0 3.702 71×10−08 0.000 0.024 0.998
1 6.344 47×10−07 0.000 0.021 0.987
2 5.434 66×10−06 0.000 0.019 0.957
3 3.103 06×10−05 0.000 0.016 0.894
4 1.328 62×10−04 0.000 0.014 0.795
5 4.550 22×10−04 0.000 0.012 0.663
6 1.298 42×10−03 0.000 0.010 0.512
7 3.175 28×10−03 0.000 0.008 0.357
8 6.793 43×10−03 0.000 0.007 0.214
9 1.291 74×10−02 0.000 0.005 0.095

10 2.210 22×10−02 0.000 0.004 0.005
11 3.437 44×10−02 0.000 0.002 –0.050
12 4.899 79×10−02 0.000 0.001 –0.077
13 6.445 98×10−02 0.000 0.001 –0.082
14 7.873 14×10−02 0.000 –0.000 –0.073
15 8.973 77×10−02 0.000 –0.001 –0.054
16 9.587 49×10−02 0.000 –0.001 –0.029
17 9.639 12×10−02 0.000 –0.001 –0.000
18 9.151 20×10−02 0.000 –0.001 0.027
19 8.229 42×10−02 0.000 –0.001 0.050
20 7.029 36×10−02 0.000 –0.001 0.066
21 5.717 47×10−02 0.000 –0.001 0.073
22 4.438 34×10−02 0.000 –0.000 0.069
23 3.295 06×10−02 0.000 0.001 0.052
24 2.343 98×10−02 0.000 0.001 0.020
25 1.600 47×10−02 0.000 0.002 –0.031
26 1.050 61×10−02 0.000 0.004 –0.096
27 6.640 09×10−03 0.000 0.005 –0.174
28 4.046 17×10−03 0.000 0.006 –0.262
29 2.380 16×10−03 0.000 0.008 –0.356
30 1.353 24×10−03 0.000 0.010 –0.451
31 7.444 53×10−04 0.000 0.012 –0.544
32 3.966 81×10−04 0.000 0.014 –0.631
33 2.049 34×10−04 0.000 0.016 –0.710
34 1.027 43×10−04 0.000 0.018 –0.778
35 5.003 02×10−05 0.000 0.021 –0.835
36 2.368 15×10−05 0.000 0.024 –0.881
37 1.090 48×10−05 0.000 0.027 –0.917
38 4.888 53×10−06 0.000 0.030 –0.944
39 2.134 95×10−06 0.000 0.033 –0.963
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Table 2: Exact and approximate values of P{Xn(�) < 0} for various � and n.

� n Exact F POI

AACAAG 215 0.949 957 90 0.949 957 90 0.951 182 98
AACAAGAAT 13 454 0.949 999 25 0.949 999 25 0.950 029 82
AACAAGAAT T 53 794 0.949 999 48 0.949 999 48 0.950 008 08

Table 3: Exact and approximate probabilities for the pattern� = ABRACADABRAwith n = 250 000
and 0 ≤ k ≤ 4.

k Exact F POI

0 9.948 934×10−01 9.948 934×10−01 9.948 936×10−01

1 5.093 587×10−03 5.093 587×10−03 5.093 382×10−03

2 1.303 780×10−05 1.303 780×10−05 1.303 785×10−05

3 2.224 628×10−08 2.224 628×10−08 2.224 919×10−08

4 2.846 657×10−11 2.846 656×10−11 2.847 632×10−11

Table 4: Left tail probabilities P{Xn(�) < k} and ρ(a, e) for � = ACGT and various k and n.

� k n Exact F(k) F(2) POI CLT

ACGT 1 500 1.396 79×10−01 0.000 0.038 0.042
1 1 000 1.927 79×10−02 0.000 0.064 0.521
1 2 500 5.068 09×10−05 0.000 0.137 0.962
1 5 000 2.537 97×10−09 0.000 0.247 1.000

3 100 9.942 21×10−01 0.000 –0.685 –0.001 0.005
3 250 9.286 10×10−01 0.000 –0.405 –0.001 0.013
3 1 000 2.499 27×10−01 0.000 –0.077 0.023 –0.058
3 2 500 3.100 47×10−03 0.000 –0.016 0.093 0.663

5 500 9.548 90×10−01 0.000 –0.725 –0.001 0.013
5 2 500 3.255 13×10−02 0.000 –0.095 0.057 0.256
5 5 000 2.098 23×10−05 0.000 –0.027 0.168 0.926
5 10 000 7.602 86×10−13 0.000 –0.007 0.363 1.000

AACAAG 1 100 9.770 44×10−01 0.000 0.001 0.022
1 250 9.418 64×10−01 0.000 0.001 0.021
1 10 000 8.685 91×10−02 0.000 0.004 0.186
1 30 000 6.537 08×10−04 0.000 0.011 0.887

3 2 500 9.761 62×10−01 0.000 –0.557 –0.000 0.016
3 5 000 8.754 66×10−01 0.000 –0.337 0.000 0.002
3 30 000 2.306 97×10−02 0.000 –0.028 0.006 0.379
3 50 000 4.335 12×10−04 0.000 –0.011 0.013 0.839

5 5 000 9.918 37×10−01 0.000 –0.883 –0.000 0.007
5 30 000 1.451 58×10−01 0.000 –0.159 0.003 0.019
5 50 000 6.528 78×10−03 0.000 –0.066 0.009 0.520
5 100 000 4.283 65×10−07 0.000 –0.018 0.024 0.984
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3.3. Markov-dependent trials

In this section we consider an example where the Xi are (first-order) Markov dependent.
Suppose that A = {A,C,G, T } and that {Xi : i ≥ 0} is a Markov chain with transition
probability matrix given by

PX =

⎡
⎢⎢⎣

A C G T

A 0.2 0.3 0.2 0.3
C 0.2 0.2 0.2 0.4
G 0.1 0.3 0.3 0.3
T 0.2 0.4 0.2 0.2

⎤
⎥⎥⎦.

Note that the stationary distribution for this chain is

π = ( 16
90 ,

27
90 ,

20
90 ,

27
90

)
.

The state space �P is similar to that for the i.i.d. case except that we replace φ with
φA, φC, φG, φT . For � = CAA, we have

�P = {φA, φC, φG, φT , C,CA,CAA}

and

�N = {φA, φC, φG, φT , C,CA}.
The essential transition probability matrix is given by

N =

⎡
⎢⎢⎢⎢⎢⎢⎣

φA φC φG φT C CA

φA pAA 0 pAG pAT pAC 0
φC pCA 0 pCG pCT pCC 0
φG pGA 0 pGG pGT pGC 0
φT pTA 0 pTG pT T pTC 0
C 0 0 pAG pAT pCC pCA
CA 0 0 pCG pCT pAC 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Table 5 shows the exact tail probabilities and the approximation ratios for the simple pattern
� = CAA and various k and n. The exact probabilities (and the approximations) were
calculated by taking

ξ0 = ξ� = (1, 0, 0, 0, 0, 0)

so that the interarrival times Wi are i.i.d. and the CLT is easier to apply. Normally, we would
assume that the {Xi} chain was stationary and take

ξ0 = ( 16
90 ,

27
90 ,

20
90 ,

27
90 , 0, 0

)
.

As in the i.i.d. case, we see that the approximation F(k) works very well and the two-term
approximation F(2)performs well for largen/�(k+1). Results for P{Xn(�) = k} are analogous
to those in the i.i.d. case and are not tabulated. The Poisson approximations for this case were
not tabulated sinceCAA is not a ‘rare’ pattern. In general, we expect the results for the Poisson
approximation in Markov-dependent trials to mirror those for the i.i.d. case.
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Table 5: Left tail probabilities P{Xn(�) < k} and ρ(a, e) for � = CAA and various k and n when the
{Xi} are first-order Markov dependent (see text).

k n Exact F(k) F(2) CLT

1 250 4.646 59×10−02 –0.000 –0.000 0.319
1 500 2.105 31×10−03 –0.000 –0.000 0.795
1 1 000 4.321 91×10−06 –0.000 –0.000 0.986
1 2 500 3.739 02×10−14 –0.000 –0.000 1.000

5 500 2.800 53×10−01 0.001 –0.205 –0.058
5 1 000 6.486 29×10−03 0.001 –0.062 0.492
5 2 500 1.815 78×10−09 0.000 –0.011 0.998
5 5 000 9.991 37×10−22 0.000 –0.003 1.000

10 1 000 2.364 13×10−01 0.003 –0.353 –0.034
10 2 500 4.522 55×10−06 0.001 –0.066 0.920
10 5 000 7.407 14×10−17 0.001 –0.017 1.000
10 10 000 4.759 92×10−41 0.000 –0.004 1.000

20 2 500 1.917 17×10−02 0.005 –0.313 0.201
20 5 000 2.644 92×10−10 0.003 –0.081 0.992
20 10 000 1.669 14×10−31 0.001 –0.020 1.000
20 20 000 1.488 25×10−79 0.001 –0.005 1.000

4. Concluding comments

In this paper we have developed an approximation for P{Xn(�) = k} and P{Xn(�) < k}
based on the FMCI of � that work very well for fixed k and large n. The approximations
are appropriate for both i.i.d. and Markov-dependent multistate trials; both overlapping and
nonoverlapping counting; and both simple and compound patterns. The proposed approxi-
mations perform very well and, in many cases, outperform the typical normal and Poisson
approximations.
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