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Abstract

Let R(n, θ) denote the number of representations of the natural number n as
the sum of four squares, each composed only with primes not exceeding nθ/2. When
θ > e−1/3 a lower bound for R(n, θ) of the expected order of magnitude is established,
and when θ > 365/592, it is shown that R(n, θ)> 0 holds for large n. A similar result is
obtained for sums of three squares. An asymptotic formula is obtained for the related
problem of representing an integer as the sum of two squares and two squares composed
of small primes, as above, for any fixed θ > 0. This last result is the key to bound
R(n, θ) from below.

1. Introduction

All natural numbers are the sum of four integral squares. The first proof of this very classical
result in the theory of numbers is due to Lagrange, and Jacobi and Kloosterman have shown
that the number of representations of the natural number n in the proposed manner equals

8(2 + (−1)n)
∑
d|n

d≡1 mod 2

d= π2S(n)n (1.1)

where

S(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

q−4

( q∑
b=1

e

(
ab2

q

))4

e
(
−an
q

)
(1.2)

is the singular series associated with sums of four squares.
Following a suggestion of Sarkőzy, we investigate here the question whether large n are the

sum of four smooth squares, that is, of squares composed only of small prime factors. Let θ > 0,
and let R(n, θ) denote the number of solutions of the Diophantine equation

x2
1 + x2

2 + x2
3 + x2

4 = n (1.3)

in non-zero integers x1, x2, x3, x4 subject to the constraint that whenever p is a prime with
p|x1x2x3x4 then p 6 nθ/2. Note that R(n, 1) is the number of representations of n as the
sum of four non-zero squares, and therefore differs from the number described in (1.1) by
at most O(n1/2+ε). A formal use of the Hardy–Littlewood method yields an asymptotic
formula for R(n, θ) with a main term that coincides with (1.1) save for a positive constant
factor. In particular, for any fixed θ > 0, it is expected that R(n, θ)�S(n)n, and hence
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R(n, θ)> 0 should hold for sufficiently large n. We are able to confirm these conclusions only for
rather large values of θ.

Theorem 1. Let θ > e−1/3. Then R(n, θ)�θ S(n)n.

Though we fail to establish an asymptotic formula for R(n, θ), the lower bound is of the
expected order of magnitude. At the cost of a weaker lower bound, it is possible to treat somewhat
smaller values of θ.

Theorem 2. Let θ > 365/592. Then R(n, θ)> 0 for all sufficiently large n.

Note that e−1/3 = 0.716 . . . and 365/592 = 0.616 . . . .
Our results appear to be the first in the literature that yield a representation of all large n

as the sum of four smooth squares. Earlier, Harcos [Har99] has shown that almost all natural
numbers are the sum of four squares of integers, the greatest prime divisor of which does not
exceed exp(20(log n log log n)1/2). Wooley [Woo02] gave a quantitative form of this and proved
that for any fixed θ > 0, one has R(n, θ)> 0 for all but O(N1/2−θ/1600) of the natural numbers n
not exceeding N .

Many other variants of the four squares theorem with multiplicative constraints on the
variables have been considered. Most prominent in this circle of ideas is the Waring–Goldbach
problem. All large n≡ 4 mod 24 should be the sum of four squares of primes, but again this is
only known for n outside a slim set (Wooley [Woo02]). The best approximation known today
is due to Tolev [Tol03], improving work of Brüdern and Fouvry [BF94] and Heath-Brown and
Tolev [HT03], to the effect that for large n, (1.3) admits solutions in integers with at most 21
prime factors. Perhaps also of interest is a comparison of these results with the current state of
the art in a linear analogue of our problem, such as the binary Goldbach problem. We owe to
Chen [Che73] the famous proposition that all large even numbers are the sum of a prime and
a number with at most two prime factors, and Balog [Bal89] proved that all large numbers n
are the sum of two natural numbers whose prime factors do not exceed n4/(9

√
e). As in the

quadratic case, the ‘smooth’ version appears weakish compared to the sieve results with almost-
primes. Additive problems with smooth numbers, although so powerful in Waring’s problem (see
Vaughan and Wooley [VW02]), seem to be intrinsically difficult if one cannot use a suitable mean
value estimate of Hua’s lemma type.

The methods of proof for Theorems 1 and 2 are very different. The idea for Theorem 2 also
appears in Balog [Bal89], and is readily described. We make use of the distribution of smooth
numbers in short intervals. Roughly speaking, for any large m ∈ N there exists an integer k
in a prescribed residue class modulo 8 with its largest prime factor not exceeding

√
m, and

m− 100m1/4 < k 6m, see § 5 for details. Hence, for given n ∈ N, we can choose x4 with largest
prime factor not exceeding n1/4, and 0 6 n− x2

4� n5/8, and by adjusting the congruence class
of x4 modulo 8 appropriately, n− x2

4 is a sum of three squares of integers that trivially cannot
exceed n5/16. This would lead to R(n, 5/8)> 0 for large n. Note that the weak point in this
argument is that the size of the prime factors of three variables remain uncontrolled. One can
do slightly better.

Theorem 3. Let ε > 0, and let n 6≡ 0, 4, 7 mod 8 be sufficiently large. Then n is the sum of three
squares of integers whose largest prime factors do not exceed n73/148+ε.

Theorem 2 follows from Theorem 3 in the manner indicated above. Theorem 3 is a first
attempt towards a result on sums of three smooth squares. It follows with little effort from
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uniform estimates for Fourier coefficients of cusp forms of half integral weight that were obtained
by the first author [Blo04]; see also [Blo08] for refinements. The details will be provided in § 5.

The approach to Theorem 1 takes the inclusion–exclusion principle as a starting point. This
provides a link between R(n, θ) and related counting functions for sums of four squares in which
only two or one of the variables are smooth; see § 4. It is this part of the argument that forces
us to take θ > e−1/3. The new counting functions contain at least two squares that are free of
constraints, and we treat them as a binary additive problem by writing them in the form∑

m6n

r(m)f(n−m) (1.4)

where r(m) is the number of representations of m as the sum of two integral squares, and f
is a suitable function. The main ideas go back to Hooley [Hoo57] who considered the case
where f is the indicator function on the set of primes. His ideas were used by Shields [Shi79],
Plaksin [Pla81, Pla84] and Kovalchik [Kov82] to obtain an asymptotic formula for the number of
representations of n as the sum of two squares and two squares of primes. These methods may be
modified so as to cover the case where f(k) is the number of solutions of y2

1 + y2
2 = k with either

y1 or y1 and y2 smooth, and this will ultimately yield Theorem 1. Our principal conclusions in
this context may be of some independent interest, and therefore we describe them as another
theorem.

For 0< θ 6 1 and 1 6 j 6 4 let Rj(n, θ) denote the number of solutions of x2
1 + x2

2 + x2
3 + x2

4 =
n with the greatest prime factor of x1 · · · xj not exceeding nθ/2. Note that R4(n, θ) =R(n, θ).
When j = 1 or 2, we are able to evaluate Rj(n, θ) asymptotically. The result features Dickman’s
function, defined as the continuous function % : [0,∞)→ (0, 1] defined by %(u) = 1 for 0 6 u 6 1
and the delay equation %(u− 1) + u%′(u) = 0 for u > 1.

Theorem 4. Let 0< θ 6 1 and j = 1 or 2. Then, for all n with 4 - n one has

Rj(n, θ) = %(1/θ)jπ2S(n)n+O(n(log n)−1/30).

It is certainly possible to impose still stronger smoothness conditions in Theorem 4, with θ
tending slowly to zero as n tends to infinity.

It would be interesting to prove a similar result for R3(n, θ). Professor Wooley has informed
us that he has now shown that for any θ > 0 there are no more than O((log N)5) integers n 6N
for which the expected asymptotic formula for R3(n, θ) may fail.

Notational conventions. In this paper we apply the common ε-convention: whenever ε occurs in
a statement it is asserted that the statement holds for any fixed real positive value of ε. Implicit
constants in the Vinogradov- or Landau-symbols may depend on ε. Note that this convention
allows us to conclude from S�Xε, T �Xε that ST �Xε, for example. We also apply the same
convention with the letter A in place of ε. Usually our assertions are meaningful only when ε is
very small whereas we use A in situations where we have in mind large values of A. Summations
start at 1 unless indicated otherwise. Small latin letters usually denote natural numbers except
x, y, z that are integers, and p is reserved for primes. The greatest common factor of a and b is
(a; b) whereas (a, b) is a pair; [a; b] is the lowest common multiple, and [a, b] denotes a closed
interval of real numbers.
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2. Auxiliary tools

2.1 Smooth numbers
We summarize here some results on the distribution of smooth numbers. Let P (k) denote the
greatest prime factor of the natural number k > 2, and put P (1) = 1, P (0) =∞. Following
standard notational practice, let

Ψ(X, Y ; q, a) = #{k 6X : k ≡ a mod q, P (k) 6 Y }, (2.1)
Ψq(X, Y ) = #{k 6X : (k; q) = 1, P (k) 6 Y }. (2.2)

Fouvry and Tenenbaum have shown that for (a; q) = 1 one has

Ψ(X, Y ; q, a)− Ψq(X; Y )
ϕ(q)

� X

(log X)A
. (2.3)

Note that there is no restriction on the ranges of q, X or Y here. This very weak form of a
Siegel–Walfisz theorem for smooth numbers follows from [FT91, Théorème 6], for example. In
our application, however, a and q may have common factors. Therefore we put

E(X, Y ; q, a) = ϕ

(
q

(q; a)

)−1

Ψq/(q;a)(X/(q; a), Y )−Ψ(X, Y ; q, a). (2.4)

Lemma 2.1. Let 0< δ < 1. Then, whenever Xδ 6 Y 6X, one has

E(X, Y ; q, a)�X(log X)−A.

Proof. When (a; q) = 1 this is contained in (2.3). Now put d= (q; a) and note that Ψ(X, Y ; q, a) =
Ψ(X/d, Y ; q/d, a/d) unless P (d)> Y in which case Ψ(X, Y ; q, a) = 0. In the first case we apply
(2.3) to Ψ(X/d, Y ; q/d, a/d) and immediately confirm the conclusion in Lemma 2.1. In the latter
case, note that P (d)> Y implies d > Y whence

E(X, Y ; q, a) = (ϕ(q/d))−1Ψq/d(X/d, Y )�X/d�X1−δ.

This completes the proof. 2

Lemma 2.2. Let 0< δ < 1. Then, whenever Xδ 6 Y 6X, one has∑
q6Q

q∑
a=1

(a;q)=1

E(X, Y ; q, a)2�QX +X2(log X)−A.

This lemma is a weak form of a Barban–Davenport–Halberstam theorem for smooth numbers.
It is nowadays routine to deduce such estimates from the corresponding Siegel–Walfisz theorem
(our Lemma 2.1) via the large sieve. Nonetheless the only explicit reference for Lemma 2.2
that we are aware of is to the recent dissertation of Neumann [Neu06] where a stronger
version of Lemma 2.2 is the starting point for a detailed study of the distribution of smooth
numbers in arithmetic progressions. However, the methods of either Hooley [Hoo75, Hoo98] or
Vaughan [Vau98] readily yield Lemma 2.2 in its present form, and we may leave it to the reader
to give a detailed proof along the indicated lines, or to consult [Neu06].

Before we leave the subject of estimating E we record here the uniform bound

E(X +H, Y ; q, a)− E(X, Y ; q, a)� H

q
+ 1 (2.5)

that follows from the definition of E, (2.1), (2.2) and the elementary observation that at most
O(H/q + 1) integers in an interval of length H belong to an arithmetic progression of modulus q.
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Our next theme is a continuous approximation for Ψq(X, Y ). This features the Dickman
function %, Euler’s constant γ, and the arithmetical function

Π(q) =
∑
p|q

log p
p− 1

. (2.6)

Then, if ζ(s) denotes the Riemann zeta function, one readily checks that

sζ(1 + s)
1 + s

∏
p|q

(1− p−1−s) =
ϕ(q)
q

(1 + s(Π(q) + γ − 1) +O(|s|2)),

and hence, by Corollaire 2 of Fouvry and Tenenbaum [FT91] (with k = 1), for any fixed A> 0,
0< δ < 1,

Ψq(X, Y ) =
ϕ(q)
q

X

(
%

(
log X
log Y

)
+ %′

(
log X
log Y

)
Π(q) + γ − 1

log Y

)
+O

(
X

(
log log qY

log Y

)2)
(2.7)

holds uniformly in q 6XA, Xδ 6 Y 6X. In particular, we may insert this into (2.4) and then
conclude as follows.

Lemma 2.3. Let 0< δ < 1. Then, for Xδ 6 Y 6X and any a, q with q 6XA one has

Ψ(X, Y ; q, a) =
X

q

(
%

(
log(X/(q; a))

log Y

)
+ %′

(
log(X/(q; a))

log Y

)
Π(q/(q; a)) + γ − 1

log Y

)
− E(X, Y ; q, a) +O

(
X

q

(log log X)3

(log X)2

)
.

We conclude our discussion of sums over smooth numbers with a character sum estimate.

Lemma 2.4. Let χ denote the non-principal character modulo 4. Let X > 10 and Y =
exp(log X/log log X). Then, uniformly in 1 6 Z1 6 Z2 6X, one has∑

Z16k6Z2
P (k)6Y

χ(k)
k
� Z−1

1 + exp(−(log X)2/5).

Proof. A crude application of Theorème 4 of Fouvry and Tenenbaum [FT91] shows that there is
a constant c > 0 such that whenever Y 6 Z 6X one has∑

k6Z
P (k)6Y

χ(k)� Z exp(−c
√

log Y ).

When 1 6 Z 6 Y and k 6 Z, the condition P (k) 6 Y is void, and hence∑
k6Z

P (k)6Y

χ(k)� 1.

We split the sum over Z1 6 k 6 Z2 into two parts Z1 6 k 6 Y , Y < k 6 Z2 if necessary, and then
apply partial summation to see that∑

Z16k6Z2
P (k)6Y

χ(k)
k
� Z−1

1 + (log X) exp(−c
√

log Y ),

which is stronger than asserted in the lemma. 2
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2.2 Divisor sums
The later part of the proof of Theorem 4 features several divisor sums that are of a more
recondite nature. The basic principles derive from work of Hooley [Hoo57, Hoo79]. We begin
with a refinement of the classical estimate∑

d|n

τ(d)k

d
� (log log n)2k (2.8)

that is within the scope of elementary prime number theory.

Lemma 2.5. Let 0< α 6 1/4 and k be a non-negative integer. Then∑
d|n

d>exp((log n)α)

τ(d)k

d
� exp

(
−1

2
α(log n)α

)
. (2.9)

Proof. We work somewhat more generally than necessary for the immediate needs. Let N > 1
and α > 0. Then ∑

d|n
d>N

τ(d)k

d
6
∑
d|n

τ(d)k

d

(
d

N

)α
6N−α

∏
p|n

∞∑
l=0

τ(pl)kp(α−1)l.

For 0 6 α 6 1/4 one has pα−1 6 p−3/4 6 2−3/4. The previous inequality now simplifies to∑
d|n
d>N

τ(d)k

d
6N−α

∏
p|n

(
1 +

2k

p1−α +
Bk
p3/2

)
6 CkN

−α
∏
p|n

(1 + 2kpα−1) (2.10)

where

Bk =
∞∑
l=0

(l + 3)k2−(3/4)l, Ck =
∏
p

(1 +Bkp
−3/2).

The inequality log(1 + t) 6 t suffices to bound the product in (2.10) by

log
∏
p|n

(1 + 2kpα−1) 6 2k
∑
p|n

pα−1 6 2k
∑

p6log n

pα−1 + 2k
∑
p|n

p>log n

pα−1. (2.11)

For the second summand, note that no more than log n/log log n primes p > log n may divide n.
It follows that ∑

p|n
p>log n

pα−1 6 (log n)α(log log n)−1.

We now take α= 0 and N = 1. Then, by one of Mertens’ asymptotic formulae, one has∑
p6Y

1
p

6 log log Y + C, (2.12)

where C is a certain positive constant. We use this with Y = log n, and then deduce (2.8)
from (2.10) and (2.11). To establish Lemma 2.5, fix 0< α 6 1/4 and take N = exp((log n)α). By
Chebychev’s estimates and partial summation, one finds that there is C > 0 (depending on α
only) with ∑

p6Y

pα−1 6 CY α(log Y )−1.
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Here we take Y = log n again and then find from (2.11) that∏
p|n

(1 + 2kpα−1) 6 exp
(

2k(C + 1)
(log n)α

log log n

)
whereas N−α = exp(−α(log n)α). Hence, for n sufficiently large in terms of k, we find from (2.10)
that the sum (2.9) does not exceed N−α/2, as required to confirm Lemma 2.5. 2

We require another variant of (2.8) that underpins much of Hooley’s work [Hoo57, Hoo79].
To describe this in detail, fix a constant 0< δ 6 1, and let

Y = exp
(

log n
log log n

)
.

Then, we shall prove the inequality∑
P (a)6Y
a>nδ

µ(a)2

a
� (log n)−δ(log log log n)/3. (2.13)

Note that the sum in (2.13) is of the type we currently consider. In fact, if Q denotes the product
of all primes p 6 Y , then ∑

P (a)6Y
a>nδ

µ(a)2

a
=
∑
d|Q
d>nδ

1
d
,

and we may now argue as in the reasoning leading to (2.10). Then, for any α > 0 we find that∑
P (a)6Y
a>nδ

µ(a)2

a
6 n−δα

∏
p6Y

(1 + pα−1). (2.14)

It will be convenient to write temporarily `= (1/2) log log log n. We take α= `(log Y )−1. Then,
for 2 6 p 6 Y , one has

pα = exp
(
`

log p
log Y

)
6 1 +

log p
log Y

`e`,

for example by the mean value theorem. Consequently,∑
p6Y

pα−1 6
∑
p6Y

1
p

+ `e`(log Y )−1
∑
p6Y

log p
p

.

We may now use (2.11) and the other Mertens formula∑
p6Y

log p
p

6 log Y + C

(for suitable C > 0) to see that ∑
p6Y

pα−1 6 log log Y + C + 2`e`

holds for all sufficiently large n. Taking exponentials, we infer that the right-hand side of (2.14)
is bounded by a value not exceeding

eC(log Y )n−δα exp(2`e`) 6 eC(log n) exp(−δ`(log log n) + 2`(log log n)1/2),

and (2.13) follows.
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A slightly weaker form of (2.13) occurs in Plaksin [Pla81, Lemma 13]. Our proof, however,
is very different. Unfortunately, (2.13) is not quite sufficient for our purposes, but the following
variant will do.

Lemma 2.6. Let 0< δ < 1, k ∈ N, and Y = exp(log n/log log n). Then∑
P (a)6Y
a>nδ

τ(a)k

ϕ(a)
� (log n)−A.

Proof. By Cauchy’s inequality,∑
a

τ(a)k

ϕ(a)
6

(∑
a

1
a

)1/2(∑
a

aτ(a)2k

ϕ(a)2

)1/2

where all sums are over integers a with P (a) 6 Y and a > nδ. Now∑
P (a)6Y

aτ(a)2k

ϕ(a)2
=
∏
p6Y

∞∑
h=0

ph(h+ 1)2k

ϕ(ph)2
6
∏
p6n

(
1 +

4k

p
+Ok

(
1
p2

))
so that the second factor in the previous inequality does not exceed (log n)4k. To estimate the
first factor, write a= uv2 where µ(u)2 = 1; this decomposition is unique. Now∑

P (a)6Y
a>nδ

1
a

6
∞∑
v=1

1
v2

∑
P (u)6Y
uv2>nδ

1
u
. (2.15)

First consider the contribution of terms with u > nδ/2. We may then use (2.13) with δ/2 in place
of δ to see that these terms contribute to (2.15) at most O((log n)−4A). In the complementary
portion, u 6 nδ/2, the sum over u in (2.15) is O(log n), and since now v > nδ/4, the outer sum is
O(n−δ/4). This shows that (2.15) is O((log n)−4A), and the lemma follows. 2

Our final divisor sum estimate rests on the sparsity of integers that have a divisor in a
prescribed small interval. Hooley [Hoo79] made important contributions to this subject, and we
base our analysis on powerful and essentially best possible estimates of Tenenbaum [Ten84].

Lemma 2.7. Let X(n) = exp((log n)1/250). Let S denote the set of all integers s 6 n that have
a divisor in the interval [

√
nX−1,

√
nX]. Then∑
s∈S

1
s
� (log n)37/40.

Proof. Let S =
√
n exp((log n)23/25). Note that any s ∈ S must exceed

√
nX−1, and we have∑

√
nX−16s6S

1
s
� log

SX√
n
� (log n)23/25. (2.16)

Hence, it remains to consider s ∈ S with s > S. Now let Υ(x, y) denote the number of integers
k ∈ [x, 2x] that have a divisor in the interval [y, 2y]. Since [

√
nX−1,

√
nX] can be covered by

O((log n)1/250) intervals [y, 2y], a dyadic splitting-up argument shows∑
s∈S
s>S

1
s
� (log n)251/250 max

S6x6n√
nX−16y6

√
nX

Υ(x, y)
x

. (2.17)
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We now invoke the fundamental inequality

Υ(x, y) 6 x(log y)−0.086 (3 6 y 6
√

2x); (2.18)

this is a crude version of Hall and Tenenbaum [HT88, (2.2)]. In particular, since S >
√
n, for pairs

x, y with y 6
√

2x in (2.17), we have Υ(x, y)� x(log x)−0.086. In the opposite case y >
√

2x, we
cannot use (2.18) directly, but if x 6 k 6 2x and k has a divisor d ∈ [y, 2y], then k/d also divides k
and satisfies x/2y 6 k/d 6 2x/y. Hence, by (2.18) with y replaced by x/2y and x/y, we see that
when y >

√
2x we have

Υ(x, y) 6 2x
(

log
x

2y

)−0.086

6 2x
(

log
S

2
√
nX

)−0.086

.

One now checks that Υ(x, y)� x(log x)−0.079 for y >
√

2x in (2.17), and the lemma follows from
(2.16) and (2.17). 2

2.3 Sums of two squares
The next three lemmata concern the arithmetical function λn(q) defined by

qλn(q) = #{1 6 a1, a2 6 q : a2
1 + a2

2 ≡ n mod q}. (2.19)

As a function of q, this expression is multiplicative. Other properties are listed below.

Lemma 2.8. For any q ∈ N, n ∈ N, the function λn(q) satisfies the inequalities

λn(q)� τ(q), λn(q)� q

ϕ(q)
τ((q; n)).

If q is odd and (q; n) = 1, then λn(q)> 0.

Proof. We begin by examining λn(pl) when p is a prime. The reader will readily confirm the
elementary inequalities 0 6 λn(2l) 6 4 for all n ∈ N, l ∈ N with the aid of the fact that an odd
number is a square modulo 2l (l > 3), if and only if it is congruent to 1 modulo 8. Therefore we
may concentrate on the case where p is odd. Define the Gauß sum

G(q, a) =
q∑

x=1

e

(
ax2

q

)
and note that by (2.19) and orthogonality, one has

λn(q) = q−2
q∑

a=1

G(q, a)2e

(
−an
q

)
.

When p is odd and p - a, then the explicit evaluation of Gauß sums (see Estermann [Est45], for
example) shows that (

G(pk, a)
pk

)2

= χ(p)kp−k;

here χ is the non-trivial character modulo 4, as before. Moreover, q−1G(q, b) = q̃−1G(q̃, b̃)
whenever b/q = b̃/q̃, as one confirms directly from the definition of G. Combining these facts
one finds that for any l > 1 one has

λn(pl) =
l∑

k=0

χ(p)kp−kcpk(n) (2.20)
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where

cq(n) =
q∑

a=1
(a;q)=1

e

(
an

q

)

is Ramanujan’s sum. By Theorems 67 and 272 of Hardy and Wright [HW79], one has

cq(n) = ϕ(q)
µ(q/(q; n))
ϕ(q/(q; n))

. (2.21)

Write n= pνn0 with p - n0. By (2.20) and (2.21), we now see that

λn(pl) = λn(pν+1) (l > ν + 1), (2.22)

and that for p≡ 1 mod 4 one has

λn(pl) = 1 + l

(
1− 1

p

)
(1 6 l 6 ν); λn(pν+1) = (ν + 1)

(
1− 1

p

)
(2.23)

whereas when p≡ 3 mod 4, the formulae

λn(pl) =


1
p

(1 6 l 6 ν, l odd),

1 (1 6 l 6 ν, l even),
λn(pν+1) =

1 +
1
p

(ν even),

0 (ν odd),
(2.24)

are valid. In particular, (2.22), (2.23) and (2.24) imply λn(pl) 6 l + 1 = τ(pl). This confirms
the first inequality in Lemma 2.8. When l 6 ν, this also gives the inequality λn(pl) 6
τ((pl; pν))(pl/ϕ(pl)) which is weaker in this case. When l > ν, we conclude from (2.22), (2.23)
and (2.24) that

λn(pl) = λn(pν+1) 6

(
1 +

1
p

)
τ(pν) 6

pl

ϕ(pl)
τ(pν),

and the second inequality in Lemma 2.8 also follows by multiplicativity. The final statement of
the lemma is an immediate consequence of (2.22) and (2.24). 2

More subtle than the readier accessible λn(q), we also have to evaluate the quantity

Λd(q; n) = #{1 6 x, y 6 q : (y; q) = d, x2 + y2 ≡ n mod q}. (2.25)

By (2.19) one has

qλn(q) =
∑
d|q

Λd(q; n), (2.26)

and much like the multiplicativity of λn(q), the Chinese remainder theorem implies a quasi-
multiplicativity for Λ. Whenever d|q, one finds that

Λd(q; n) =
∏
pl‖q

Λ(d;pl)(p
l; n). (2.27)

We proceed to compute Λph(ph+l; n) for all odd primes p and all non-negative integers h, l.
The case h= 0 will be considered first. Trivially, Λ1(1; n) = 1. When l > 1, then Λ1(pl; n) is the
number of solutions of x2 + y2 ≡ n mod pl with p - y. Since a number is a quadratic residue
modulo pl if and only if this is so modulo p, we see that

Λ1(pl; n) = pl−1Λ1(p; n). (2.28)

1410

https://doi.org/10.1112/S0010437X09004254 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004254


Sums of smooth squares

From (2.25) it is immediate that Λp(p; n) = 1 + (np ), and (2.26) then shows that Λ1(p; n) =
pλn(p)− 1− (np ). By (2.20), it follows that

Λ1(p; n) =

p− χ(p)−
(
n

p

)
− 1 (p - n),

p+ (p− 1)χ(p)− 1 (p|n).
(2.29)

When h > 1 there is a similar formula. Write n= pνn0 with p - n0. Then, if 1 6 h 6 ν/2, one
has

Λph(ph+l; n) =

{
ϕ(pl)p[(h+l)/2] (0 6 l 6 h),
ph+l−1Λ1(p, np−2h) (l > h)

(2.30)

whereas for h > ν/2 the corresponding result is

Λph(ph+l; n) =


ϕ(pl)p[(h+l)/2] (h+ l 6 ν),

ϕ(pl)pν/2
(

1 +
(
n0

p

))
(h+ l > ν, ν even),

0 (h+ l > ν, ν odd).

(2.31)

For a proof, note that for h > 1, l > 0, the definition (2.25) shows that

Λph(ph+l; n) = #{1 6 x 6 ph+l, 1 6 y 6 pl : x2 + p2hy2 ≡ n mod ph+l, p - y}. (2.32)

In particular, when h > l, the congruence reduces to x2 ≡ n mod ph+l, and

Λph(ph+l; n) = ϕ(pl)#{1 6 x 6 ph+l : x2 ≡ n mod ph+l}.

By elementary number theory, the congruence x2 ≡ pνn0 mod pt has p[t/2] solutions when t 6 ν,
it has pν/2(1 + (n0

p )) solutions when t > ν and ν is even, and it has no solutions when t > ν and
ν is odd. We use this with t= h+ l to confirm (2.30) and (2.31) in all cases where h > l.

Now suppose that l > h > 1 and 2h 6 ν. Then the congruence in (2.32) implies that x2 ≡
0 mod p2h, and we may substitute x= phz to reduce that congruence to z2 + y2 ≡ np−2h mod
pl−h. On considering the ranges for z and y implied by (2.32), one finds that Λph(ph+l; n) =
p2hΛ1(pl−h; np−2h), and (2.30) follows from (2.28).

It remains to examine the case where l > h > 1 and 2h > ν. Here (2.32) implies x2 ≡
pνn0 mod p2h. Hence, if ν is odd, there is no solution, in accordance with (2.31). If ν is even, then
pν/2|x. We write x= pν/2z in (2.32). It follows that Λph(ph+l; n) equals the number of solutions
of

z2 + p2h−νy2 ≡ n0 mod ph+l−ν (2.33)
with 1 6 z 6 ph+l−ν/2 and y as in (2.32). Since 2h > ν in the current context, there is no solution
of (2.33) unless (n0

p ) = 1. In the latter case, n0 − p2h−νy2 is a quadratic residue modulo p, and
hence also modulo ph+l−ν , for each of the ϕ(pl) values of y in (2.32). For a particular value
of y, there are two solutions for z modulo ph+l−ν in (2.33), and hence 2pν/2 solutions with
1 6 z 6 ph+l−ν/2. This confirms (2.31).

We require estimates for certain convolutions involving λn(q) that do not follow from
Lemma 2.8 alone. The next lemma is a typical example.

Lemma 2.9. Let q be odd and (n; q) = 1. Then

0< λn(q)
∑
d|q

µ(d)
dλn(q/d)

� ϕ(q)
q

.
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V. Blomer, J. Brüdern and R. Dietmann

Proof. If (n; q) = 1, then λn(d)> 0 for any divisor d|q, by Lemma 2.8. Since λn is multiplicative,
it suffices to prove Lemma 2.9 in the special case where q = pl is a power of an odd prime p, p - n.
When l > 2, then λn(pl) = λn(p) by (2.22), and hence, in this case,

λn(pl)
∑
d|pl

µ(d)
dλn(pl/d)

= 1− 1
p

which already confirms the proposed inequality. When l = 1, however,

λn(p)
∑
d|p

µ(d)
dλn(p/d)

= 1− λn(p)
p

= 1− 1
p

+
(
−1
p

)
1
p2

6

(
1− 1

p

)(
1 +

2
p2

)
,

and the lemma follows. 2

Lemma 2.10. Let a be odd and (a; n) = 1. Then the function

ha(q) =
∑
d|q

µ

(
q

d

)
λn(ad)
λn(a)

is multiplicative in q. When q is odd and (q; n) = 1, one has

|ha(q)| 6
µ(q)2

q
.

Proof. By Lemma 2.8, λn(a) 6= 0, and hence, q 7→ λn(aq)/λn(a) is defined and multiplicative, and
so is ha. It now suffices to establish the proposed inequality when q = pl is a power of an odd
prime p - n. Write a= pαa0 with p - a0. Then

ha(pl) = λn(pα)−1(λn(pl+α)− λn(pl+α−1)).

Since p - n, we may use (2.22) to see that ha(pl) = 0 unless l + α= 1. In this last case, we must
have l = 1, α= 0, and then,

ha(p) = λn(p)− 1 =−χ(p)/p.
The lemma follows. 2

The function λn(q) arises in connection with the distribution of sums of two squares in
arithmetic progressions. In this direction, the following results suffice for our purposes.

Lemma 2.11. For any natural numbers a and q, one has∑
k6X

k≡a mod q

r(k) =
πλa(q)
q

X +O(X1/2+εq−1/4(q; a)1/4).

Let 0< δ < 1. Then, uniformly in Xδ 6 Y 6X and q 6X1−δ one has∑
X−Y <k6X
k≡a mod q

r(k)� τ((q; a))
ϕ(q)

Y log X.

Proof. For the first statement we may refer to Plaksin [Pla81, Lemma 20], or Smith [Smi68]
(with a different proof), at least when q 6X2/3−ε. For q > X2/3−ε this part of Lemma 2.11 is
trivially true if we recall that r(k)� τ(k) and invoke the bound λa(q)� τ(q) from Lemma 2.8.

The second of the proposed inequalities follows from a result of Shiu [Shi80], applied
to τ(k). 2
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Lemma 2.12. One has ∑
q6Q

λn(q)
q
� (log Q)(log log n)2. (2.34)

Moreover, for any L > 1, one also has

∑
q6Q

q∑
a1,a2=1

a2
1+a2

2≡n mod q
(a1;q)>L

1
q2
� L−1/3(log Q)4. (2.35)

Proof. For (2.34), we merely invoke Lemma 2.8 and routinely find that

∑
q6Q

λn(q)
q
�
∑
q6Q

τ
(
(q; n)

)
ϕ(q)

=
∑
r|n
r6Q

τ(r)
∑
q6Q

(q;n)=r

1
ϕ(q)

=
∑
r|n
r6Q

τ(r)
∑
s6Q/r

(s;n/r)=1

1
ϕ(rs)

6
∑
r|n

τ(r)
ϕ(r)

∑
s6Q

1
ϕ(s)

,

and (2.34) follows from standard estimates. For (2.35), we have to work much harder, and the
following technical estimate is essential: for natural numbers r, q and n, one has

q∑
a=1

(a;q)=1

(q; n− r2a2)1/2� τ(q)q(q; r2; n)1/2. (2.36)

We postpone the proof of (2.36) and proceed directly to the derivation of (2.35). From the
elementary theory of congruences we know that the number of solutions of a quadratic congruence
x2 ≡m mod q does not exceed τ(q)(q;m)1/2. It follows that

q∑
a1,a2=1

a2
1+a2

2≡n mod q
(a1;q)>L

1 6

q∑
a=1

(a;q)>L

τ(q)(q; n− a2)1/2 = τ(q)
∑
r|q
r>L

q/r∑
a=1

(a;q/r)=1

(q; n− r2a2)1/2.

For simplicity, write q′ = q/r and note that

(q; n− r2a2) 6 (r; n− r2a2)(q′; n− r2a2) = (r; n)(q′; n− r2a2).

By (2.36) (with q′ in place of q),

q∑
a1,a2=1

a2
1+a2

2≡n mod q
(a1;q)>L

1� τ(q)2
∑
r|q
r>L

(r; n)1/2q′(q′; r2; n)1/2,
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and a routine calculation yields∑
q6Q

q∑
a1,a2=1

a2
1+a2

2≡n mod q
(a1;q)>L

1
q2
�
∑
q6Q

τ(q)2

q

∑
r|q
r>L

(r; n)1/2

r
(q/r; r2; n)1/2

�
∑
r>L

∑
s6Q/r

τ(rs)2

r2s
(r; n)1/2(s; r2; n)1/2

�
∑
r>L

τ(r)2

r3/2

∑
s6Q

τ(s)2

s
(s; r);

so far we have used only the trivial bounds τ(rs) 6 τ(r)τ(s) and (s; r2)1/2 6 (s; r). Again by
standard methods, the inner sum here is∑

s6Q

τ(s)2

s
(s; r) 6

∑
d|r

∑
s6Q/d

τ(ds)2

s
6
∑
d|r

τ(d)2
∑
s6Q

τ(s)2

s
� rε(log Q)4,

and (2.35) follows. The reader will notice that even finer estimates are possible. For our purposes,
(2.35) is sufficient, and is independent of n.

It remains to prove (2.36). Note that the value of (q; n− r2a2) depends only on the residue
class of a modulo q. Hence, when q = q1q2 with (q1; q2) = 1, we write a= a1q2 + a2q1 and then
see that

q∑
a=1

(a;q)=1

(q; n− r2a2)1/2 =
q1∑

a1=1
(a1;q1)=1

q2∑
a2=1

(a2;q2)=1

(q1; n− r2q2
2a

2
1)1/2(q2; n− r2q2

1a
2
2)1/2.

The substitutions b1 = q2a1 and b2 = q1a2 now show that the left-hand side of (2.36) is a
multiplicative function of q, for any fixed value of r and n.

We now proceed to prove that when q = pl is a power of a prime, then

pl∑
a=1
p-a

(pl; n− r2a2)1/2 6

{
2pl(pl; r2; n)1/2 if p > 11,
25pl(pl; r2; n)1/2 for all p.

(2.37)

By multiplicativity, this implies (2.36). We write n= pνn0, r = p%r0 with p - n0r0. Then, we
substitute ar0 for a to confirm the identity

pl∑
a=1
p-a

(pl; n− r2a2)1/2 =
pl∑
a=1
p-a

(pl; pνn0 − p2%a2)1/2. (2.38)

Suppose that ν = 0, % > 0, or that %= 0, ν > 0. Then, for any a with p - a, one also has
p - pνn0 − p2%a2, and hence the sum in (2.38) equals ϕ(pl). This establishes (2.37) in these cases.

Next, consider the case where %= ν = 0. Then n= n0, and the sum in (2.38) is

pl∑
a=1
p-a

(pl; n− a2)1/2 6 ϕ(pl) +
l∑

k=1

pk/2#{1 6 a 6 pl : a2 ≡ n mod pk}.
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If p > 3, then a2 ≡ n mod pk has at most two solutions. Hence, the sum in (2.38) does not exceed

ϕ(pl) + 2
l∑

k=1

pl−k/2 6 pl
(

1 +
2

√
p− 1

)
, (2.39)

and (2.37) again follows. When p= 2, then a2 ≡ n mod 2k may have up to four solutions, and a
consequential adjustment in the previous computation also confirms the claim in (2.37).

Finally, we have to treat the remaining case where ν > 0, % > 0. When ν > l, 2% > l, then
(2.37) is trivial. Hence, we write t= min(ν, 2%) and may assume that t < l so that (pl; r2; n) = pt

and (pl; pνn0 − p2%a2) = pt(pl−t; pν−tn0 − p2%−ta2). If ν 6= 2%, then p - pν−tn0 − p2%−ta2 whenever
p - a, and so,

(pl; pνn0 − p2%a2) = pt

which shows that the sum in (2.38) is ϕ(pl)pt/2 in accordance with (2.37). If ν = 2%, we find

pl∑
a=1
p-a

(pl; n− r2a2)1/2 = pt/2
pl∑
a=1
p-a

(pl−t; n0 − a2)1/2 = p(3/2)t
pl−t∑
a=1
p-a

(pl−t; n0 − a2).

This final sum corresponds to the case where ν = %= 0, and, hence, is bounded by pl+(1/2)t(1 +
(2/(
√
p− 1))) when p > 3, and similarly when p= 2. This completes the proof of (2.37), and of

Lemma 2.12. 2

3. A binary additive problem

3.1 Initial transformations
This section is devoted to the proof of Theorem 4. We present details only for the case j = 2,
the case j = 1 is similar but simpler. Let 0< θ < 1. As was pointed out in the introduction, we
begin by writing R2(n, θ) in the form (1.4). Let t(m, n) denote the number of (x1, x2) ∈ Z2 with
x2

1 + x2
2 =m; P (x1x2) 6 nθ/2. Then

R2(n, θ) =
n∑

m=0

r(m)t(n−m, n) = t(n, n) + 4
n∑

m=1

t(n−m, n)
∑
d|m

χ(d)

where for m ∈ N we have used the familiar convolution

r(m) = 4
∑
d|m

χ(d).

Note that t(n, n) 6 r(n)� nε. We follow Hooley [Hoo57] and his successors and split the inner
sum into three parts, according to the size of d. Let

D =
√
n(log n)−100. (3.1)

Then

R2(n, θ) = 4(M1(n) +M2(n) + E(n)) +O(nε) (3.2)

where

E(n) =
n∑

m=1

t(n−m, n)
∑
d|m

D<d6m/D

χ(d), (3.3)
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and where M1(n) and M2(n) are defined likewise, but with the condition D < d 6m/D replaced
by d 6D for M1 and d >max(D, m/D) for M2. Reversing the order of summation in M1 yields

M1(n) =
∑
d6D

χ(d)
n−1∑
l=0

l≡n mod d

t(l, n). (3.4)

We transform the sum M2(n) similarly by writing m= dk and l = n−m. Then

M2(n) =
∑
k6D

∑
06l<n−Dk
l≡n mod k

t(l, n)χ
(
n− l
k

)
+O

(
n1+ε

D

)
. (3.5)

It is convenient to extend the inner sum in (3.5) to l 6 n− 1. Since t(l, n) 6 r(l), we can use
Lemma 2.11 to see that the extra terms introduce an error that does not exceed∑

k6D

∑
n−Dk<l<n
l≡n mod k

t(l, n)�
∑
k6D

τ((n; k))Dk log n
ϕ(k)

�D2(log n)2.

By (3.1), we may now combine (3.4) and (3.5) as

M1(n) +M2(n) =M(n) +O(n/log n)

where

M(n) =
∑
d6D

n−1∑
l=0

l≡n mod d

t(l, n)
(
χ(d) + χ

(
n− l
d

))
. (3.6)

The scene has now been prepared to evaluate M(n) asymptotically by invoking the results on
smooth numbers and on sums of two squares in arithmetic progressions. This will be the subject
of the next subsection. The more arithmetic analysis of the main term is performed in § 3.3, and
in § 3.4, we then show that E(n) is an error term. Theorem 4 will follow from the formula

R2(n, θ) = 4M(n) + 4E(n) +O(n/log n) (3.7)

that itself now is inferred from (3.2).

3.2 The main term: smooth numbers

Our analysis of M(n) is modelled on Hooley [Hoo57] but also borrows from Plaksin [Pla81]. Note
that when x2

1 + x2
2 ≡ n mod d, the value of χ((n− x2

1 − x2
2)/d) depends only on x1, x2 modulo 2d.

Recalling the definition of t(l, n) and (3.6), this allows us to write

M(n) =
∑
d6D

2d∑
a1,a2=1

a2
1+a2

2≡n mod d

(
χ(d) + χ

(
n− a2

1 − a2
2

d

)) ∑
x2
1+x2

26n
xj≡aj mod 2d

P (x1x2)6nθ/2

1.

Here the innermost sum extends over integers x1, x2, but for the argument to follow it is more
convenient to sum only over natural numbers that we shall denote by k1, k2. For negative values
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of xj we may change aj to −aj to see that

M(n) = 4
∑
d6D

2d∑
a1,a2=1

a2
1+a2

2≡n mod d

(
χ(d) + χ

(
n− a2

1 − a2
2

d

)) ∑
k2
1+k2

26n
kj≡aj mod 2d

P (k1k2)6nθ/2

1. (3.8)

In (3.8), large common factors between d and aj are a nuisance in the later analysis, and we
proceed by removing such terms. Let

L= (log n)15. (3.9)

Since the inner sum over k1, k2 in (3.8) is at most n/d2, we deduce from the second clause
in Lemma 2.12 that the contribution of terms in (3.8) with (a1; d)> L does not exceed
� nL−1/3(log D)4. By symmetry in a1, a2, we conclude from (3.8) that M(n) = 4M∗(n) +
O(n/ log n), where M∗(n) is defined as the sum in (3.8), but with the additional constraints
(a1; d) 6 L, (a2; d) 6 L. This is still unsatisfactory for the use of a mean value estimate in the
evaluation of (3.8). The reason for this is that for large values of k1 the sum over k2 may be rather
short. To prevent this happening, we restrict the summation over k1 in (3.8) to k1 6

√
n− n/L.

This will introduce an error not exceeding

∑
d6D

2d∑
a1,a2=1

a2
1+a2

2≡n mod d

∑
√
n−n/L<k1<

√
n

k1≡a1 mod 2d

√
n

d

�
∑
d6D

dτ(d)
(√

n

dL
+ 1
)√

n

d
�
√
nD log D + n(log D)2L−1,

and we may finally conclude that

M(n) = 4M0(n) +O(n/log n) (3.10)

where M0(n) is defined as the sum in (3.8), but subject to the additional constraints

(a1; d) 6 L, (a2; d) 6 L, k1 6

√
n− n

L
.

We are now ready to apply the variance estimate provided by Lemma 2.2 to extract a main
term from M0(n). We use the notation introduced in Lemma 2.3, and for simplicity we also write

Ξd,a(u) = %

(
log(u/(a; 2d))

log nθ/2

)
u

2d
+ %′

(
log(u/(a; 2d))

log nθ/2

)
(Π(2d/(a; 2d)) + γ − 1)u

2d log nθ/2
. (3.11)

Then, by Lemma 2.3, whenever n(θ+ε)/2 6 u 6 n1/2, d 6D, and (a; 2d) 6 L, one has

Ψ(u, nθ/2; 2d, a) = Ξd,a(u)− E(u, nθ/2; 2d, a) +O

(
u(log log n)3

d(log n)2

)
. (3.12)
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In the definition of M0(n) implicit in (3.8) and (3.10), insert (3.12) for the sum over k2. This
produces

M0(n) =
∑
d6D

2d∑
a1,a2=1

a2
1+a2

2≡n mod d
(aj ;d)<L

(
χ(d) + χ

(
n− a2

1 − a2
2

d

)) ∑
k16
√
n−n/L

k1≡a1 mod 2d
P (k1)6nθ/2

(
Ξd,a2(

√
n− k2

1)

− E(
√
n− k2

1, n
θ/2; 2d, a2) +O

(√
n(log log n)3

d(log n)2

))
. (3.13)

Using the first statement in Lemma 2.12 we may sum the error term inside the triple sum of
(3.13), and the resulting total error does not exceed

∑
d6D

2d∑
a1,a2=1

a2
1+a2

2≡n mod d

n(log log n)3

d2(log n)2
� n

(log log n)6

log n
.

Next, we consider the terms involving E in (3.13). Their sum does not exceed O(LΣ) where

Σ =
∑
d6D

2d∑
a2=1

τ(d) max
16a162d

∑
k6
√
n−n/L

k≡a1 mod 2d

|E(
√
n− k2, nθ/2; 2d, a2)|. (3.14)

The simple inequality (2.5) allows us to split the sum over k into ranges where E can be made
independent of k. To do so, let ∆ =D(log n)50, H = (log n)50

√
1− 1/L, and sort k into ranges

(h− 1)∆< k 6 h∆. By (2.5) and (3.14) one finds that

Σ�
∑
h6H

∑
d6D

2d∑
a=1

τ(d) max
16a162d

∑
(h−1)∆<k6h∆
k≡a1 mod 2d

(
|E(
√
n− (h∆)2, nθ/2; 2d, a)|+ h∆2

d
√
n− (h∆)2

+ 1
)

�
∑
h6H

∑
d6D

τ(d)
∆
d

2d∑
a=1

|E(
√
n− (h∆)2, nθ/2; 2d, a)|+

∑
h6H

∑
d6D

τ(d)
∆
d

(
h∆2

d
√
n− (h∆)2

+ 1
)
.

The second term in this last estimate is O(∆
√
n+H∆(log D)2) =O(n(log n)−50). For the first

term, we apply Cauchy’s inequality and Lemma 2.2 to find that this contribution to (3.14) is
bounded by

∆
∑
h6H

(∑
d6D

τ(d)2

d

)1/2(∑
d6D

2d∑
a=1

|E(
√
n− (h∆)2, nθ/2; 2d, a)|2

)1/2

�∆(log D)2
∑
h6H

(D
√
n− (h∆)2 + n(log n)−300)1/2

� n3/4D1/2(log D)2 + n(log n)−30� n(log n)−30.

By (3.9) and (3.14), this shows that the contribution from terms involving E in (3.13) does not
exceed O(n/log n). The terms involving Ξ contain the main term. In fact, by partial summation
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and a change of variable,

∑
k6
√
n−n/L

k≡a1 mod 2d
P (k)6nθ/2

Ξd,a2(
√
n− k2) = Ξd,a2(

√
n/L)

∑
k6
√
n−n/L

k≡a1 mod 2d
P (k)6nθ/2

1 +
∫ √n
√
n/L

Ξ′d,a2
(u)

∑
k6
√
n−u2

k≡a1 mod 2d
P (k)6nθ/2

du.

The first summand on the right-hand side is O(nL−1/2d−2), whence by Lemma 2.12, the
contribution to (3.13), after summation over a1, a2, d, is O(n/log n), and is therefore negligible.
For the second summand, we split the integral into two parts, over [

√
n/L,

√
n− n/L] and

[
√
n− n/L,

√
n]. The portion over [

√
n− n/L,

√
n] will make, after summing over a1, a2, d, a

contribution not exceeding n/ log n. To see this, note that

Ξ′d,a(u) =
1
2d

(
%

(
log(u/(a; 2d))

log nθ/2

)
+

Π(2d/(2d; a)) + γ

log nθ/2
%′
(

log(u/(a; 2d))
log nθ/2

))
+O

(
1 + Π(2d/(2d; a))

d(log n)2

)
(3.15)

whence Ξ′d,a(u)� d−1, and then proceed in much the same way as in the argument leading to
(3.10) to see that these terms contribute in total

∑
d6D

2d∑
a1,a2=1

a2
1+a2

2≡n mod d

√
n

d

∫ √n
√
n−n/L

|Ξ′d,a2
(u)| du�

∑
d6D

d∑
a1,a2=1

a2
1+a2

2≡n mod d

n

d2L
� n(log n)−1.

We may summarize the previous deliberations by inserting all estimates into (3.13). This shows
that M0(n) equals

∑
d6D

∑
a1,a2

(
χ(d) + χ

(
n− a2

1 − a2
2

d

)) ∫ √n−n/L
√
n/L

Ξ′d,a2
(u)

∑
k6
√
n−u2

k≡a1 mod 2d
P (k)6nθ/2

du+O(n(log n)ε−1) (3.16)

where the sum over a1, a2 is subject to the same constraints as in (3.13). It is now possible
to repeat some aspects of the previous argument. The sum over k in the above integral
equals Ψ(

√
n− u2, nθ/2; 2d, a1) and may be replaced by Ξd,a1(

√
n− u2) using (3.12). The bound

Ξ′d,a2
(u)� 1/d is valid in the range

√
n/L < u <

√
n− n/L by (3.15), and as before, we may

use (3.12) to see that all errors introduced into (3.16) contribute a total amount not exceeding
O(n(log n)ε−1). Therefore, by (3.16), M0(n) now equals

∑
d6D

∑
a1,a2

(
χ(d) + χ

(
n− a2

1 − a2
2

d

)) ∫ √n−n/L
√
n/L

Ξ′d,a2
(u)Ξd,a1(

√
n− u2) du+O(n(log n)ε−1)

(3.17)
where the sum over a1, a2 is still as in (3.13).

We now evaluate the integral in (3.17). To reduce the notational complexity, let

U1 =
log(
√
n− u2/(2d; a1))

log nθ/2
, U2 =

log(u/(2d; a2))
log nθ/2

.
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Then, by (3.11) and (3.15),

Ξ′d,a2
(u)Ξd,a1(

√
n− u2) =

√
n− u2

4d2

(
%(U1)%(U2) +

%(U1)%′(U2)(Π(2d/(2d; a2)) + γ)
log nθ/2

+
%′(U1)%(U2)(Π(2d/(2d; a1)) + γ − 1)

log nθ/2
+O

((
log log n

log n

)2))
uniformly for d 6D,

√
n/L 6 u 6

√
n− n/L. It is now convenient to write u=

√
nv with√

1/L 6 v 6
√

1− 1/L, and we note that Uj = 1/θ + ηj with

η1 =
log
√

1− v2 − log(2d; a1)
log nθ/2

, η2 =
log v − log(2d; a2)

log nθ/2
.

In the ranges for v as above, and (2d; aj) 6 L, we have ηj < 0 and |ηj | � log L/log n. When
θ 6= 1/2, then % is twice differentiable in a neighbourhood of 1/θ, and hence, by Taylor’s theorem,

%(Uj) = %

(
1
θ

)
+ ηj%

′
(

1
θ

)
+O

((
log L
log n

)2)
,

%′(Uj) = %′
(

1
θ

)
+O

(
log L
log n

)
.

But when θ = 1/2, then we may use the formula %(u) = 1− log u (1< u < 2) and the fact that
ηj < 0 to confirm these expansions also in this exceptional case. We insert this above and find
that

Ξ′d,a2
(u)Ξd,a1(

√
n− u2) =

√
n− u2

4d2

(
%

(
1
θ

)2

+
%(1/θ)%′(1/θ)

log nθ/2
B +O

((
log log n

log n

)2))
where

B = 2γ − 1 + Π
(

2d
(2d; a1)

)
+ Π

(
2d

(2d; a2)

)
+ log(v

√
1− v2)− log((2d; a1)(2d; a2)).

We insert this formula into (3.17) and take v = u/
√
n as the variable of integration. From the

error term O((log log n/log n)2) there arises a contribution to M0(n) that can be bounded with
the aid of Lemma 2.12 as O(n(log n)ε−1), which is acceptable. For the main terms, we write

I1(n) =
∫ √1−1/L

√
1/L

√
1− v2 dv, I2(n) =

∫ √1−1/L

√
1/L

√
1− v2 log(v

√
1− v2) dv,

s1(n) =
∑
d6D

1
d2

∑
a1,a2

(
χ(d) + χ

(
n− a2

1 − a2
2

d

))
,

s2(n) =
∑
d6D

1
d2

∑
a1,a2

(
χ(d) + χ

(
n− a2

1 − a2
2

d

))(
Π
(

2d
(2d; a1)

)
− log(2d; a1)

)
where the sums over a1, a2 are still subject to the conditions in (3.13). Observing symmetry in
a1, a2, we then find that

4M0(n) = ns1(n)I1(n)
(
%

(
1
θ

)2

+O

(
1

log n

))
+ %

(
1
θ

)
%′
(

1
θ

)(
2n

log nθ/2
s2(n)I1(n) +

n

log nθ/2
s1(n)I2(n)

)
+O(n(log n)ε−1).
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To see that I1(n) is essentially independent of n, it suffices to integrate over [0, 1] instead to
confirm the formula I1(n) = π/4 +O(L−1/2). Moreover, we obviously have I2(n)� log L. The
previous formula for M0(n) now simplifies to

4M0(n) =
π

4
ns1(n)

(
%

(
1
θ

)2

+O

(
log log n

log n

))
+

2%(1/θ)%′(1/θ)n
log nθ/2

s2(n)I1(n) +O(n(log n)ε−1).

(3.18)

3.3 Two singular series
It remains to evaluate the sums s1 and s2. The treatment of s1(n) is rather straightforward,
for s2(n) some extra complications will arise. The summation conditions for a1, a2 contain the
artificial conditions (aj ; d) 6 L that we remove to recover the genuinely multiplicative nature
of these sums. If we add in terms with (a1; d)> L or (a2; d)> L, then by Lemma 2.12, the
sum s1(n) will be altered by an amount not exceeding L−1/3(log n)4� (log n)−1, and since
Π(2d/(2d; a1))− log(2d; a1)� log d, the same argument shows that s2(n) is altered by O(1). We
write

Γ(d) =
2d∑

a1,a2=1
a2
1+a2

2≡n mod d

(
χ(d) + χ

(
n− a2

1 − a2
2

d

))
. (3.19)

Then we have shown

s1(n) =
∑
d6D

d−2Γ(d) +O((log n)−1) (3.20)

and

s2(n) =
∑
d6D

1
d2

2d∑
a1,a2=1

a2
1+a2

2≡n mod d

(
χ(d) + χ

(
n− a2

1 − a2
2

d

))(
Π
(

2d
(2d; a1)

)
− log(2d; a1)

)
+O(1).

(3.21)
We shall now complete the sums over d by Dirichlet series techniques. The function Γ(d)

factors with respect to the decomposition into prime factors. To see this, let d= 2δd0 with
odd d0, and apply the Chinese remainder theorem in (3.19) to confirm the formula

Γ(d) = χ(d0)d0λn(d0)Γ(2δ) (3.22)

where it is convenient to note that χ(d0)d0λn(d0) is multiplicative. Moreover, if 4 - n, one has

Γ(2δ) = 0 (δ > 1). (3.23)

For a proof, consider (3.19) with d= 2δ and δ > 2. Suppose that a1, a2 is a pair that meets the
summation conditions. Then, in particular, a2

1 + a2
2 ≡ n mod 2δ, and since 4 - n, at least one of

a1, a2 must be odd, say a1. Then a1 + 2δ, a2 is another pair that meets the summation condition,
and one has

χ

(
n− a2

1 − a2
2

2δ

)
=−χ

(
n− (a1 + 2δ)2 − a2

2

2δ

)
, χ(2δ) = 0.

This confirms (3.23) for δ > 2, and for δ = 1 it may be checked by hand.
We may combine (3.22) and (3.23) to the simpler formula Γ(d) = Γ(1)χ(d)dλn(d) for all d.

Hence, (3.20) now reads

s1(n) = Γ(1)S(D) +O((log n)−1), (3.24)
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where

S(D) =
∑
d6D

d−1χ(d)λn(d), (3.25)

and we evaluate this sum through the Dirichlet series

Fn(s) =
∞∑
d=1

χ(d)λn(d)
ds

.

By Lemma 2.8 we see that Fn(s) converges absolutely for Re s > 1, and may therefore be written
as an Euler product. Using (2.22) in conjunction with (2.20) and (2.21), one may calculate the
Euler factors explicitly. This yields

Fn(s) = (1− 2−1−s)−1L(s)ζ(s+ 1)−1
∏
p|n
p-2

En,p(s) (3.26)

where ζ(s) is the Riemann zeta function, L(s) is the Dirichlet L-function with character χ, and
En,p(s) is defined by pν‖n and

En,p(s) =
1− p−(ν+1)s

1− p−s
. (3.27)

Hence, (3.26) provides the analytic continuation of Fn(s) to Re s > 0.

We now compare the finite sum in (3.24) with its limit by standard analytic techniques,
but because we need to take care of the dependence on n, moderate details will be presented.
The Dirichlet series with coefficients χ(d)λn(d)d−1 is Fn(s+ 1). An effective version of Perron’s
formula, such as Theorem II.2.2 in Tenenbaum [Ten95], shows that

S(D) =
1

2πi

∫ 1/4+in

1/4−in
Fn(s+ 1)

Ds

s
ds+O

(
D1/4

∞∑
d=1

λn(d)
d5/4(1 + n|log d/D|)

)
.

Here the error term is readily seen to be bounded by O(n−1/4). The integrand is analytic
in Re s >−1 except for a simple pole of residue Fn(1) at s= 0. From (3.27) we find that
En,p(s)� 1 + p−1/2 uniformly in Re s > 1/2. Since

∏
p|n(1 + p−1/2)� nε, we deduce from (3.26)

and (3.25) that in Re s > 1/2 one has

Fn(s)� nε|L(s)|.

Hence, we may integrate Fn(s+ 1)Dss−1 over the rectangle with corners 1/4± in and −1/2± in,
and a standard estimate like L(s)� 1 + |Im s|1/6 suffices to estimate the integrals along the
horizontal lines and the segment on Re s=−1/2 by n1/6+εD−1/2. The residue theorem now
yields

S(D) = Fn(1) +O(nε−1/12). (3.28)

It is straightforward to recover the formulae (1.1) from Fn(1). Indeed, the classical evaluations
ζ(2) = π2/6 and L(1) = π/4 combined with (3.25), (3.26) and (3.27) yield

Fn(1) =
2
π

∏
pν‖n
p6=2

1− p−ν−1

1− p−1
,

and (3.19) gives Γ(1) = 4 + χ(n) + 2χ(n− 1) + χ(n− 2). Thus Γ(1) = 4 when n is odd, and
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Γ(1) = 6 when n≡ 2 mod 4. Using multiplicativity we now find that whenever 4 - n one has

πnΓ(1)Fn(1) = 8(2 + (−1)n)
∑
d|n

d≡1 mod 2

d,

which is the term in (1.1). In particular, it follows that S(D)� Fn(1)� log log n, and that

s1(n) = Γ(1)Fn(1) +O((log n)−1).

If we now anticipate the bound s2(n)� (log n)ε, we conclude from (3.18) and (3.28) that

16M0(n) = %

(
1
θ

)2

S(n)n+O(n(log n)ε−1). (3.29)

It remains to consider s2(n). We mimic the above treatment of s1(n) via a conventional
contour integral approach. The presence of terms log(2d; a1) and Π(2d/(2d; a1)) in (3.21) is a
cause for extra complication, but since we only need an upper bound we may economize in part
of the argument. We study the sums

Γv(d) =
2d∑

a1,a2=1
a2
1+a2

2≡n mod d
(a1;2d)=v

(
χ(d) + χ

(
n− a2

1 − a2
2

d

))

that allow us to rewrite (3.21) in the form

s2(n) =
∑
d6D

1
d2

∑
v|2d

Γv(d)(Π(2d/v)− log v) +O(1). (3.30)

Suppose that d= 2δd0 with 2 - d0. When v|2d one has v = 2ηv0 with v0|d0 and 0 6 η 6 δ + 1. Any
residue class aj mod 2d has exactly one representative 2δ+1bj + d0cj with 1 6 bj 6 d0, 1 6 cj 6
2δ+1, and one readily confirms the identity

χ(d0)Γv(d) =
∑

b1,b2,c1,c2

(
χ(2δ) + χ

(
n− (d0c1)2 − (d0c2)2

2δ

))
where the sum is over all 1 6 bj 6 d0, 1 6 cj 6 2δ+1 subject to the additional constraints (b1; d0) =
v0, (c1; 2δ+1) = 2η and

(2δ+1b1)2 + (2δ+1b2)2 ≡ n mod d0, (d0c1)2 + (d0c2)2 ≡ n mod 2δ.

Substitute bj for 2δ+1bj and cj for d0cj to see that

Γv(d) = χ(d0)Γ2η(2δ)Λv0(d0) (3.31)

where Λv(d) denotes the number of solutions of the congruence a2
1 + a2

2 ≡ n mod d with 1 6
a1, a2 6 d and (a1; d) = v. Note that Λv(d) = Λv(d; n) in the notation of § 2.3; we suppress
dependence of n here as long as there is no risk of confusion.

The argument that proved (3.23) is still applicable in the new context, and now shows that

Γ2η(2δ) = 0 (δ > 2, 0 6 η 6 δ + 1), (3.32)

but in some cases now Γ2η(2) 6= 0. We sort the terms in (3.30) according to the values of δ and η
where 2δ‖d, 2η‖v. Then, by (3.31) and (3.32), and recalling the definition of Π, the sum on the
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right-hand side of (3.30) becomes

1∑
δ=0

δ+1∑
η=0

4−δΓ2η(2δ)
∑

d62−δD

χ(d)
d2

∑
v|d

Λv(d)
(

Π
(

2δ+1−η d

v

)
− log 2ηv

)

=
1∑
δ=0

δ+1∑
η=0

4−δΓ2η(2δ)(T (2−δD)− c(δ, η)S(2−δD))

where S(D) is the sum defined by (3.24), where

T (D) =
∑
d6D

χ(d)
d2

∑
v|d

Λv(d)
(

Π
(
d

v

)
− log v

)
, (3.33)

and where c(δ, η) = (η − 1) log 2 if η 6 δ, and c(δ, δ + 1) = (δ + 1) log 2. The term involving T
is independent of η, and since Γ1(2) + Γ2(2) + Γ4(2) = Γ(2) = 0 by (3.23), we may combine our
results with (3.30) to the simpler formula

s2(n) = Γ(1)T (D) +O(log log n). (3.34)

We estimate T (D) by a rough version of Dirichlet’s hyperbola method and the analytic technique
that was used to evaluate s1(n). Let

V = (log n)21, (3.35)

and consider the contribution to T (D) of the subsum defined by v > V in (3.33). Because one
has

∏
(d/v)− log v� log D for v|d, v 6D, we may apply Lemma 2.12 to see that terms with

v > V amount to

� (log D)
∑
d6D

1
d2

∑
v|d
v>V

Λv(d)� (log n)−2

in (3.33), and hence,

T (D) = T1(D)− T2(D) +O((log n)−2) (3.36)

where

T1(D) =
∑
v6V

χ(v)
v2

∑
u6D/v

Π(u)
χ(u)
u2

Λv(uv), (3.37)

T2(D) =
∑
v6V

χ(v)
v2

(log v)
∑

u6D/v

χ(u)
u2

Λv(uv). (3.38)

The sum (3.38) is ready for direct treatment by analytic methods. For odd v ∈ N, we study
the Dirichlet series

G(s; v, n) =G(s) =
∞∑
u=1

χ(u)Λv(uv)u−s. (3.39)

The inequalities

Λv(uv) 6 uvλn(uv)� uvτ(u)τ(v) (3.40)

follow from (2.19), (2.25) and Lemma 2.8, and imply that G(s) converges absolutely for
Re (s)> 2. The quasi-multiplicative property of Λ expressed by (2.27) shows that in the same
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range Re (s)> 2 we may write G(s) as a product of Eulerian type. This takes the shape

G(s) =
∏
ph‖v

∞∑
l=0

Λph(ph+l)χ(pl)p−ls =
∏
p

Gp(s), say. (3.41)

As was the case with F (s) in the discussion of s1(n), it is again possible to compute Gp(s)
explicitly, and as we shall see, G(s) contains L(s− 1) as a factor. Indeed, for odd primes p - v,
we may use (2.28) to confirm the formula

Gp(s) = 1 +
∞∑
l=1

pl−1Λ1(p)χ(pl)p−ls =
1 + χ(p)p1−s((Λ1(p)/p)− 1)

1− χ(p)p1−s . (3.42)

When ph‖v with h > 1, it is convenient to write n= pνnp with p - np. There are three cases. First
suppose that h > ν. If ν is odd, then Gp(s) = 0 by (2.31), and if ν is even, then again by (2.31),

Gp(s) = pν/2
(

1 +
(
np
p

)) ∞∑
l=0

ϕ(pl)χ(pl)p−ls = pν/2
(

1 +
(
np
p

))
1− χ(p)p−s

1− χ(p)p1−s . (3.43)

Next, suppose that 1 6 h 6 ν/2. Then, by (2.30),

Gp(s) =
h∑
l=0

ϕ(pl)p[(h+l)/2]χ(pl)
pls

+
∞∑

l=h+1

ph+l−1Λ1(p; np−2h)
χ(pl)
pls

.

We may rearrange this in the form

(1− χ(p)p1−s)Gp(s) = p[h/2] +
h∑
l=1

χ(pl)
pls

(ϕ(pl)p[(h+l)/2] − pϕ(pl−1)p[(h+l−1)/2])

+
χ(ph+1)
p(h+1)s

p2h(Λ1(p; np−2h)− p+ 1). (3.44)

Finally, suppose that ν/2< h 6 ν. Here, when ν is odd, (2.31) gives

Gp(s) =
ν−h∑
l=0

ϕ(pl)p[(h+l)/2]χ(pl)
pls

;

this we rewrite as

(1− χ(p)p1−s)Gp(s)

= p[h/2] +
ν−h∑
l=1

χ(pl)
pls

(ϕ(pl)p[(h+l)/2] − pϕ(pl−1)p[(h+l−1)/2])− χ(pν−h+1)
p(ν−h+1)s

pϕ(pν−h)p[ν/2].

(3.45)

When ν/2< h 6 ν and ν is even, then by (2.31) we find likewise

Gp(s) =
ν−h∑
l=0

ϕ(pl)p[(h+l)/2]χ(pl)
pls

+
∞∑

l=ν−h+1

ϕ(pl)pν/2
χ(pl)
pls

(
1 +

(
np
p

))
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and much as in (3.45), this takes the more convenient form

(1− χ(p)p1−s)Gp(s) = p[h/2] +
ν−h∑
l=1

χ(pl)
pls

(ϕ(pl)p[(h+l)/2] − pϕ(pl−1)p[(h+l−1)/2])

+
χ(pν−h+1)
p(ν−h+1)s

pν/2
(
ϕ(pν−h+1)

(
1 +

(
np
p

))
− pϕ(pν−h)

)
.

In the particular case h= ν, this simplifies to

(1− χ(p)p1−s)Gp(s) = p[ν/2] +
χ(p)
ps

pν/2
((

np
p

)
(p− 1)− 1

)
, (3.46)

and when h < ν one gets

p[h/2] +
ν−h∑
l=1

χ(pl)
pls

(ϕ(pl)p[(h+l)/2] − pϕ(pl−1)p[(h+l−1)/2]) +
(
np
p

)
χ(pν−h+1)
p(ν−h+1)s

pν/2ϕ(pν−h+1).

(3.47)
By (3.41)–(3.47), we obtain

G(s) = L(s− 1)Jn,v(s)K(s; v, n) (3.48)

where once again L is the Dirichlet L-function for χ, and where

Jn,v(s) :=
∏
p-v

(
1 + χ(p)p1−s

(
Λ1(p; n)

p
− 1
))

,

K(s; v, n) :=
∏
p|v

(1− χ(p)p1−s)Gp(s).

By (3.44)–(3.48) it follows that G(s) is regular in Re (s)> 1, in particular.
Further progress now depends on an upper bound for |G(s)| in Re (s) > 3/2 that we now

derive. By (2.29), we have |p−1Λ1(p, n)− 1| 6 3/p when p - n, and |p−1Λ1(p, p)− 1| 6 1 + 2/p. If
σ = Re s it follows that

|Jn,v(s)| 6
∏
p

(
1 +

3
pσ

)∏
p|n

(1 + p1−σ), (3.49)

and in particular, in Re (s) > 3/2, this yields the convenient bound Jn,v(s)� τ(n). Similarly, an
inspection of (3.43)–(3.47) shows

|K(s; v, n)| � τ(v)(v; n)1/2 (Re (s) > 3/2). (3.50)

Let D/V 3 6 U 6D. Then, by (3.41) and Perron’s formula [Ten95, Theorem II.2.2],∑
u6U

χ(u)
u2

Λv(uv) =
1

2πi

∫ 1/4+in

1/4−in
G(s+ 2; v, n)

U s

s
ds+O

(
U1/4

∞∑
u=1

Λv(uv)
u9/4(1 + n|log u/U |)

)
.

For v 6 V , one finds from (3.40) and crude estimates that the error term here is O(n−1/4).
Now integrate G(s+ 2; v, n)U ss−1 along the rectangle with corners 1/4± in and −1/2± in. By
(3.48), (3.49) and (3.50), we have

|G(s+ 2)| � |L(s+ 1)|(vn)ε(v; n)� V 1+εnε|L(s+ 1)| � n2ε|L(s+ 1)|, (3.51)

and hence we may argue exactly as in the corresponding treatment of Fn(s) in the evaluation of
S(D) to show that the integral over the horizontal parts as well as over the vertical portion on
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Re (s) =−1/2 contribute O(nε−1/12). Thus, by the residue theorem,∑
u6U

χ(u)
u2

Λv(uv) =G(2; v, n) +O(nε−1/12),

uniformly in v 6 V . By (3.49) and (3.50), G(2; v, n)� (log log n)τ(v)v1/2, and so, by the previous
formula with U =D/v, and (3.38),

T2(D)� log log n. (3.52)

The treatment of the sum T1(D) is similar, but some preparation is required before we can
bring in our earlier analysis of the Dirichlet series G(s). Recall the definition of Π(u) in (2.6)
and then reverse the order of summation in (3.37) to see that

T1(D) =
∑
p6D

χ(p) log p
p2(p− 1)

∑
v6V

∑
u6D/pv

χ(v)χ(u)
v2u2

Λv(uvp). (3.53)

We estimate the contribution of primes p > V to (3.53) with the aid of (3.40) as

�
∑
p>V

log p
p2

∑
v6V

τ(v)
v

∑
u6D

τ(u)
u
� V −1(log V log D)2� 1.

For the remaining primes p 6 V in (3.53), we write v = phv0, u= plu0 with p - u0v0. Then, by
(2.26),

T1(D) =
∞∑

h,l=0

∑
p6V

χ(p1+h+l)Λph(ph+l+1)
p2(h+l+1)(p− 1)

log p
∑

v6V p−h

p-v

χ(v)
v2

∑
u6Dp−1−lv−1

p-u

χ(u)
u2

Λv(uv) +O(1).

(3.54)
Here we bound terms with pl > V by invoking (3.40) again. Since only terms with pl 6D make
a non-zero contribution, these terms amount to

�
∑

h,l�log n

∑
p6V

V <pl6D

(log p)(h+ 1)(l + 1)
ph+l+1(p− 1)

∑
v6V

τ(v)
v

∑
u6D

τ(u)
u
� V −1(log n)4� 1.

Thus, (3.54) remains valid with the additional contraint pl 6 V on the sum over p. In this
situation, the innermost sum over u in (3.54) is of the type∑

u6U
p-u

χ(u)
u2

Λv(uv) (3.55)

where p - v, and where U =Dp−1−lv−1 ∈ [DV −3, D]. By (3.41),
∞∑
u=1
p-u

χ(u)Λv(uv)u−s =G(s)/Gp(s),

and the ‘missing’ Euler factor Gp(s) is given by (3.42) (because p - v). Hence, an inspection
of the analysis of G(s) shows that for G(s)/Gp(s) the bound (3.51) still holds, and that
we may therefore adapt the argument that followed (3.50) to conclude that the sum (3.55)
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V. Blomer, J. Brüdern and R. Dietmann

equals G(2)/Gp(2) +O(nε−1/12), and is therefore bounded by O(v1/2+ε log log n), uniformly in
v 6 V, p 6 V, pl 6 V . Consequently, by (3.54),

T1(D)� 1 + (log log n)
∑
h,l>0

∑
p6V
p6V 1/l

log p
p1+2(h+l+1)

Λph(ph+l+1)� log log n;

here (3.40) is again sufficient for the final inequality. When combined with (3.52), (3.36) and
(3.34), it follows that s2(n)� log log n, and hence, the proof of (3.29) is complete.

3.4 The error term

Recall that it remains to estimate E(n), defined by (3.3) above. We initiate our treatment by
using the inequality t(l, n) 6 r(l) in (3.3) to infer the bound

|E(n)| 6
∑
m<n

r(n−m)|H(m)| (3.56)

where

H(m) =
∑
d|m

D<d6m/D

χ(d).

We explore the fact that numbers m with H(m) 6= 0 are rare through the estimate provided by
Lemma 2.7. Our path will follow the pattern laid down by Hooley [Hoo57], and with this in
mind, we introduce the sets

An = {a ∈ N : p|a⇒ p - n and p 6 Y (n)}
Bn = {b 6 n : p|b⇒ p > Y (n) or p|n}

where Y (n) = exp(log n/log log n), in accordance with the setup in Lemmata 2.4 and 2.6.
Note that An ∩ Bn = {1} and that, by unique factorisation, any m 6 n has exactly one

representation m= ab with a ∈ An, b ∈ Bn. We use this in (3.56), and separate terms with
a > n1/50 from the resulting double sum over a and b. By the definition of An, any a ∈ An
with a > n1/50 has a divisor a1 ∈ An with n1/50 < a1 < n1/25. Therefore, these terms contribute
to (3.56) at most ∑

a∈An,b∈Bn
ab<n

a>n1/50

r(n− ab)|H(ab)| 6
∑
m<n

r(n−m)|H(m)|
∑
a1∈An
a1|m

n1/50<a16n1/25

1.

Write n−m= l and replace a1 by a again. Then reverse the order of summation to find that
the right-hand side equals ∑

n1/50<a6n1/25

a∈An

∑
l<n

l≡n mod a

r(l)|H(n− l)|.

Now r(l) 6 4τ(l) and |H(m)| 6 τ(m) by trivial estimates. From Cauchy’s inequality we infer that
the previous expression does not exceed

4
( ∑
n1/50<a6n1/25

a∈An

∑
l<n

l≡n mod a

τ(l)2

)1/2( ∑
n1/50<a6n1/25

a∈An

∑
m<n

m≡0 mod a

τ(m)2

)1/2

;
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here we replaced n− l by m again. In both factors, Shiu’s version of the Brun–Titchmarsh
theorem [Shi80] bounds the inner sum by τ(a)ϕ(a)−1n(log n)3, and we may use Lemma 2.6 to
sum over a. It follows that ∑

a∈An,b∈Bn
ab<n

a>n1/50

r(n− ab)|H(ab)| � n(log n)−2, (3.57)

say. For the complementary part with a 6 n1/50, we note that whenever a ∈ An, b ∈ Bn, one has
(a; b) = 1, and hence

H(ab) =
∑
d|ab

D<d<ab/D

χ(d) =
∑

a1∈An,b1∈Bn
a1|a,b1|b

D<a1b1<ab/D

χ(a1)χ(b1).

It follows that ∑
a∈An,b∈Bn

ab<n
a6n1/50

r(n− ab)|H(ab)| 6
∑
m<n

r(n−m)
∣∣∣∣ ∑
a1∈An,b1∈Bn

a1b1|m,a16n1/50

D<a1b1<m/D

χ(a1)χ(b1)
∣∣∣∣

because a1 6 n1/50 holds for any a1|a, and we have added non-negative terms on the right in
cases where m is not of the form m= ab with a 6 n1/50. We sum over b1 first and use the triangle
inequality. Then, it follows that the above expression does not exceed∑

b1∈Bn
b16n/D

∑
m6n

m≡0 mod b1

r(n−m)
∣∣∣∣ ∑
a1∈An,a16n1/50

a1|(m/b1)
D<a1b1<m/D

χ(a1)
∣∣∣∣.

In the interest of notational simplicity, we write a1 = a, b1 = b and m= bs. Then the previous
expression takes the form∑

b∈Bn
b6n/D

∑
s6n/b

r(n− bs)
∣∣∣∣ ∑

a∈A,a|s
D/b<a<min(n1/50,s/D)

χ(a)
∣∣∣∣. (3.58)

The interval for a is empty unless b > Dn−1/50. Moreover, for a given s, the innermost sum is
also empty unless s has a divisor s0 = s/a with a ∈ An and D/b < a <min(n1/50, s/D). But then
s0 >D and s0 6 n/ab 6 n/D. Hence, if we define

S = {s 6 n : s has a divisor s0 ∈ [D, n/D]},

we may add the conditions b > Dn−1/50 and s ∈ S in (3.58) without altering the sum. By Cauchy’s
inequality, it follows that ∑

a∈An,b∈Bn
a6n1/50,ab<n

r(n− ab)|H(ab)| 6 (S1S2)1/2 (3.59)
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where

S1 =
∑

Dn−1/50<b6n/D
b∈Bn

∑
s6n/b
s∈S

r(n− bs),

S2 =
∑
b6n/D
b∈Bn

∑
s6n/b

r(n− bs)
∑

a1,a2∈An
D/b<a1,a2<min(n1/50,s/D)

a1|s,a2|s

χ(a1a2).

By (3.56), (3.57) and (3.59), we then have

E(n)� (S1S2)1/2 + n(log n)−2, (3.60)

and it remains to bound S1 and S2.

We begin the estimation of S1 by reversing the order of summation. Then

S1 6
∑

s6n51/50D−1

s∈S

∑
b6n/s
b∈Bn

r(n− bs).

An integer k with k 6 n is in Bn if and only if k is not divisible by any of the primes in An.
Hence, by properties of the Möbius function,∑

b6n/s
b∈Bn

r(n− bs) =
∑
a∈An

µ(a)
∑
k6n/s

k≡0 mod a

r(n− ks),

and therefore,

S1 6
∑

s6n51/50D−1

s∈S

∑
a∈An

µ(a)
∑

l6n/as

r(n− las). (3.61)

Here we split the sum over a ∈ An into two parts. The portion where a > n1/50 will be estimated
first. Since any s ∈ S satisfies s >D, the innermost sum in (3.61) is empty unless a 6 n/D. Hence,
the contribution of terms with a > n1/50 to (3.61) does not exceed∑

a∈An
n1/50<a6n/D

∑
D6s6n51/50D−1

∑
l6n/as

r(n− las) 6
∑
a∈An

n1/50<a6n/D

∑
ls6n/a

r(n− las),

where now the inner sum is a double sum over l and s. Since this sum is symmetric in l and s,
the above sum is

�
∑
a∈An

n1/50<a6n/D

∑
l6n/a

∑
l6s6n/al

r(n− las).

Note that the innermost sum is empty unless l2 6 n/a. On summing over s, we see that the
previous expression is bounded by∑

a∈An
n1/50<a6n/D

∑
l6
√
n/a

∑
m6n

m≡n mod al

r(m).
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But al 6
√
an 6 nD−1/2, and hence, by Lemma 2.11, the above does not exceed∑

a∈An
n1/50<a6n/D

∑
l6
√
n/a

τ((n, al))n log n
ϕ(al)

.

By elementary estimates, ϕ(al) > ϕ(a)ϕ(l) and τ((n; al)) 6 τ(a)τ(l), and hence, by routine
estimates and Lemma 2.6, the final bound for the portion of (3.61) with a > n1/50 is

� n(log n)
∑
a∈A

n1/50<a6n/D

τ(a)
ϕ(a)

∑
l6n

τ(l)
ϕ(l)

� n

(log n)2
.

For the portion of (3.61) where a 6 n1/50 we substitute the asymptotic formula from Lemma 2.11
for the innermost sum over l and find from (3.61) and the preceding discussion that

S1� n
∑

s6n51/50D−1

s∈S

∣∣∣∣ ∑
a∈An
a6n1/50

µ(a)
λn(as)
as

∣∣∣∣+ n1/2+ε
∑

s6n51/50D−1

∑
a6n1/50

(
(as; n)
as

)1/4

+
n

(log n)2
.

By elementary estimates, the middle summand is O(n1/2+2ετ(n)2(n26/25D−1)3/4), and may
therefore be absorbed into the third term n/(log n)2. In the first term, we wish to remove the
condition a 6 n1/50, and instead sum over all a ∈ An. This introduces an error term that we may
estimate via λn(as) 6 τ(s)τ(a) (from Lemma 2.8) and Lemma 2.6 as

� n
∑
s6n

τ(s)
s

∑
a∈An
a>n1/50

τ(a)
a
� n

(log n)2
.

Thus far, we have shown that

S1� n
∑
s6n
s∈S

1
s

∣∣∣∣∑
a∈A

µ(a)λn(as)
a

∣∣∣∣+
n

(log n)2
. (3.62)

By multiplicativity, we may write the sum over a in (3.62) as a product of Eulerian type.
This takes the shape∑

a∈An

µ(a)λn(as)
a

=
∏
pσ‖s
p/∈An

λn(pσ)
∏
pσ‖s
p∈An

(λn(pσ)− p−1λn(pσ+1)).

But p ∈ An implies p - n, and in this case, λn(pl) = λn(p) for all l > 2 by (2.22). Hence, the
previous identity simplifies to∑

a∈An

µ(a)λn(as)
a

= λn(s)
∏
p∈An
p|s

(
1− 1

p

) ∏
p∈An
p-s

(1− p−1λn(p)).

But λn(p) = 1− χ(p)p−1 whenever p - n (by (2.20) and (2.21)), and hence, all Euler factors are
positive. Moreover, we see that

1− λn(p)
p

6 1− 1
p

+
1
p2

6

(
1− 1

p

)(
1 +

2
p2

)
,
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whence, recalling the definition of An, we may conclude that

0 6
∑
a∈An

µ(a)λn(as)
a

6 λn(s)
(∏

p

(
1 +

2
p2

)) ∏
p∈An

(
1− 1

p

)

� λn(s)
∏
p|n

(
1− 1

p

)−1 ∏
p6Y (n)

(
1− 1

p

)
� λn(s)(log n)−1(log log n)2;

here we have used elementary prime number theory for the final estimate. Now insert this bound
into (3.62) to confirm the bound

S1�
n(log log n)2

log n

∑
s6n
s∈S

λn(s)
s

+
n

(log n)2
� n(log log n)3

log n

∑
s6n
s∈S

τ
(
(n; s)

)
s

+
n

(log n)2
; (3.63)

for the last line we have used Lemma 2.8 and the elementary bound s/ϕ(s)� log log s.
Put d= (n; s). Then ∑

s6n
s∈S

τ((n; s))
s

6
∑
d|n

τ(d)
d

∑
s6n/d
ds∈S

1
s
. (3.64)

Let X(n) = exp((log n)1/250), as in Lemma 2.7. First consider the portion of (3.64) where
d > X(n)1/2. Using the trivial bound O(log n) for the sum over s, and Lemma 2.5 for the divisor
sum, we see that these terms contribute to (3.65), at most,

� (log n)
∑
d|n

d>X(n)1/2

τ(d)
d
� (log n)−2.

Now consider the terms with d 6X(n)1/2. If ds ∈ S, then ds has a divisor s0 ∈ [D, n/D]. We
may write s0 = s1s2 with s1|d, s2|s. Although such a decomposition is not necessarily unique,
we may conclude that s has a divisor s2 with s2 6 s0 6 n/D and s2 > s0/d >DX(n)−1/2. In
particular, recalling the definitions of D and X(n), we have s2 ∈ [

√
nX(n)−1,

√
nX(n)], that is,

s ∈ S, in the notation of Lemma 2.7. Consequently,∑
s6n/d
ds∈S

1
s

6
∑
s6n
s∈S

1
s
� (log n)37/40,

uniformly in d 6X(n)1/2. A standard estimate for the outer sum over d in (3.64) suffices to
conclude from the above discussion that the sum in (3.64) does not exceed (log n)37/40+ε. Hence,
(3.63) reduces to the final estimate

S1� n(log n)ε−3/40. (3.65)

It remains to estimate S2. We reverse the order of summation in the definition implicit in
(3.59) and take the resulting formula

S2 =
∑
b6n/D
b∈Bn

∑
a1,a2∈An

D/b<aj6min(n1/50,n/Db)

χ(a1a2)
∑
s6n/b

s>Daj(j=1,2)
s≡0 mod [a1;a2]

r(n− bs) (3.66)
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as the starting point. For convenience, we write a∗ = max(a1, a2) and q = [a1; a2]b. ThenDba∗ 6 n
by the conditions of summation for a1, a2, and hence, the inner sum in (3.66) equals∑

Dba∗<m6n
m≡0 mod q

r(n−m) = π
λn(q)
q

(n−Dba∗) +O

(
n1/2+ε (n; q)1/4

q1/4

)
;

here we invoked Lemma 2.11. We insert this into (3.66) and sum the error term to∑
b6n/D

∑
a1,a26n1/50

n1/2+ε (n; [a1; a2]b)1/4

([a1; a2]b)1/4

� n1/2+ε
∑

a1,a26n1/50

(a1a2)1/4
∑
b6n/D

(n; b)1/4

b1/4
� n1/2+1/20+ε

(
n

D

)3/4

� n49/50.

The formula for S2 in (3.66) now takes the shape

S2 = π
∑
b6n/D
b∈Bn

∑
a1,a2∈An

D/b<aj6min(n1/50,n/Db)

χ(a1a2)(n−Dba∗)λn(q)
q

+O(n49/50).

We partially reverse the previous procedures by writing

n−Dba∗ =
∑

Dba∗<m6n

1 +O(1).

Within the last expression for S2, the error O(1) will result in a total contribution to S2 that
does not exceed a value very much less than∑

b6n/D

∑
a1,a26n1/50

λn(q)
q
�

∑
b6n/D

τ(b)
b

∑
a1,a26n1/50

τ(a1)τ(a2)� n3/50;

here we only used λn(q)� τ(q) and crude bounds. We now insert this information in the last
formula for S2 and reverse the order of summation. Since aj ∈ An, b ∈ Bn implies (b; [a1; a2]) = 1,
we find

S2 = π
∑
b6n/D
b∈Bn

λn(b)
b

∑
D2<m6n

∑
a1,a2∈An

D/b<aj6min(n1/50,m/Db)

χ(a1a2)
λn([a1, a2])

[a1; a2]
+O(n49/50).

We wish to remove the conditions aj 6 n1/50 from the main term here. By symmetry in a1, a2,
this will introduce an extra contribution not exceeding

� n
∑
b6n/D

τ(b)
b

∑
a1∈An
a1>n1/50

∑
a2∈An

τ([a1; a2])
[a1; a2]

� n(log n)2
∑
a1∈An
a1>n1/50

∑
a2∈An

τ(a1a2/(a1; a2))(a1; a2)
a1a2

� n(log n)2
∑
d∈An

∑
a′1∈An

da′1>n
1/50

∑
a′2∈An

τ(da′1a
′
2)

da′1a
′
2

.
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But τ(da′1a
′
2) 6 τ(da′1)τ(a′2), and da′1 = a1 has at most τ(a1) solutions in d, a′1. Therefore, the

above expression does not exceed

� n(log n)2
∑
a1∈An
a1>n1/50

τ(a1)2

a1

∑
a′2∈An

τ(a′2)
a′2

. (3.67)

We may now apply Lemma 2.6 to bound the sum over a1, and for the sum over a′2, we use the
elementary bound ∑

a∈An

τ(a)
a

6
∏

p6Y (n)

∞∑
l=0

l + 1
pl
� (log n)2.

It follows that (3.67) does not exceed O(n(log n)−2), and consequently, the asymptotic formula
for S2 may be rewritten as

S2 = π
∑
b6n/D
b∈Bn

λn(b)
b

∑
D2<m6n

∑
a1,a2∈An

D/b<a1,a26m/Db

χ(a1a2)
λn([a1; a2])

[a1; a2]
+O

(
n

log n

)
. (3.68)

Here, we sort the inner double sum according to the value of a= (a1; a2). Then, on writing
aj = aa′j , our preliminary finding is∑

a1,a2∈An
D/b<a1,a26m/Db

χ(a1a2)
λn([a1; a2])

[a1; a2]
=

∑
a∈An

a6m/Db

χ(a)2

a

∑
a′1,a

′
2∈An

D/b<aa′j6m/Db
(a′1;a′2)=1

χ(a′1a
′
2)
λn(a′1a

′
2a)

a′1a
′
2

.

Note that χ(a) = 0 when a is even. Hence, the outer sum extends over odd values of a ∈ An only
in which case χ(a)2 = 1. But whenever a ∈ An is odd, it follows from (2.22), (2.23) and (2.24)
that λn(a)> 0. Hence, for these a, the function t 7→ λn(at)/λn(a) is defined and multiplicative,
and we may rewrite the right-hand side above as∑

a∈An
a6m/Db
a≡1 mod 2

λn(a)
a

∑
a′1,a

′
2∈An

D/b<aa′j6m/Db
(a′1;a′2)=1

χ(a′1)χ(a′2)
λn(a′1a)λn(a′2a)
a′1a
′
2λn(a)2

.

Now pick up the coprimality condition with the indicator
∑

d|(a′1;a′2) µ(d) and pull the sum over d
outside. Then, on writing a′j = duj , the expression in the previous display equals∑

a∈An
a6m/Db
a≡1 mod 2

λn(a)
a

∑
d∈An

d6m/Dba

µ(d)
∑

u1,u2∈An
D/b<aduj6m/Db

χ(d)2χ(u1)χ(u2)
λn(u1da)λn(u2da)
d2u1u2λn(a)2

=
∑
a∈An

a6m/Db
a≡1 mod 2

λn(a)
a

∑
d∈An

d6m/Dba
d≡1 mod 2

µ(d)
d2

( ∑
u∈An

D/b<adu6m/Db

χ(u)
λn(uda)
uλn(a)

)2

. (3.69)

The final expression may be rearranged by introducing v = ad into the outer sum. Note that v is
odd if and only if a≡ d≡ 1 mod 2, and that likewise one has v ∈ An if and only if a ∈ An, d ∈ An.
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For such values of v, we also have λn(v)> 0 by Lemma 2.5, and hence (3.69) can be written in
the form ∑

v∈An
v6m/Db
v≡1 mod 2

λn(v)2

v

∑
ad=v

µ(d)
dλn(a)

( ∑
u∈An

D/b<uv6m/Db

χ(u)
u

λn(uv)
λn(v)

)2

. (3.70)

For v ∈ An we have (v; n) = 1. Hence, we may use Lemma 2.9 for the convolution in (3.70). On
the one hand, it shows that for any fixed v the summands in (3.70) are non-negative, and on the
other, it then implies the upper bound∑

v∈An
v6m/Db
v≡1 mod 2

λn(v)ϕ(v)
v2

( ∑
u∈An

D/b<uv6m/Db

χ(u)
u

λn(uv)
λn(v)

)2

for the sum in (3.70). Recalling that (3.70) is an expression for the innermost sum in (3.68), we
thus deduce from the above discussion the preliminary inequality

S2�
∑
b6n/D
b∈Bn

λn(b)
b

∑
D2<m6n

∑
v∈An

v6m/Db
v≡1 mod 2

λn(v)
v

( ∑
u∈An

D/b<uv6m/Db

χ(u)
u

λn(uv)
λn(v)

)2

+
n

log n
. (3.71)

We now consider the sum over u within the square in (3.71). Recall the function ha(q)
introduced in Lemma 2.10. Then, for any v ∈ An, v ≡ 1 mod 2, Möbius inversion yields

λn(uv)
λn(v)

=
∑
w|u

hv(w).

In particular, this shows that whenever U2 > U1 > 1, one has∑
U1<u6U2
u∈An

χ(u)
u

λn(uv)
λn(v)

=
∑

U1<uw6U2
u∈An,w∈An

hv(w)
χ(w)
w

χ(u)
u

whence by Lemma 2.10 and the triangle inequality one finds that∣∣∣∣ ∑
U1<u6U2
u∈An

χ(u)
u

λn(uv)
λn(v)

∣∣∣∣ 6 ∑
w6U2

1
w2

∣∣∣∣ ∑
U1/w<u6U2/w

u∈An

χ(u)
u

∣∣∣∣.
We insert this bound into (3.71) with U1 =D/bv, U2 =m/Dbv. Then we may write k = bv and
recall that the representation of k in this form with v ∈ An, b ∈ Bn is unique. It follows that

S2�
∑

D2<m6n

∑
k6m/D

λn(k)
k

( ∑
w6m/Dk

1
w2

∣∣∣∣ ∑
D/kw<u6m/Dkw

u∈An

χ(u)
u

∣∣∣∣)2

+
n

log n
. (3.72)

The endgame begins with an estimate for the sum over u in (3.72). We take U1 =D/kw
and U2 =m/Dkw, and note that U2/U1 =m/D−2� (log n)200. Therefore, with this choice of
parameters, ∑

U1<u6U2
u∈An

χ(u)
u
�

∑
U1<u6U2

1
u
� 1 + log

U2

U1
� log log n. (3.73)
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Now let 0< α < 1/100 denote a real number to be fixed later, and put

K =
√
n exp(−(log n)α).

The trivial bound (3.73) suffices to estimate the contribution of terms with K < k 6m/D in
(3.72). These in fact will contribute to S2 at most

� (log log n)2
∑

D2<m6n

∑
K<k6m/D

λn(k)
k
� (log log n)3n

∑
K<k6n/D

τ((n; k))
k

,

and standard estimates give∑
K<k6n/D

τ((n; k))
k

=
∑
d|n

τ(d)
d

∑
K/d<l6n/Dd

1
l

=
∑
d|n

τ(d)
d

(
log

n

KD
+O(1)

)
� (log n)α(log log n)2

so that the total contribution of terms with K < k 6m/D in (3.72) is O(n(log n)α+ε).

It remains to consider terms with k 6K in (3.72). The contribution of the subsum with the
extra condition w > log n is again estimated by (3.73), and is therefore bounded by

� (log log n)2
∑

D2<m6n

∑
k6K

λn(k)
k

( ∑
w>log n

1
w2

)2

�
(

log log n
log n

)2

n
∑
k6
√
n

τ(k)
k
� n(log log n)2,

so that we are now reduced to the subsum of (3.72) where k 6K and w 6 log n. We
take U1 =D/kw, U2 =m/Dkw, as before. Then, U1 >D/(K log n) > (log n)−100 exp((log n)α) >
exp((log n)α/2) when n is large. Moreover, U2 6 n. Under these conditions, one has∑

U1<u6U2
u∈An

χ(u)
u
� (log n)−5, (3.74)

as we shall see in a moment. Equipped with (3.74), we now see that the portion of (3.72) with
k 6K and w 6 log n contributes to S2 an amount not exceeding

� (log n)−10
∑

D2<m6n

∑
k6m/D

λn(k)
k
� n(log n)−8;

here it suffices to use Lemma 2.8 (λn(k)� τ(k)) and straightforward bounds. We have now
completed the estimation of the right-hand side of (3.72), and may infer the bound S2�
n(log n)α+ε from the above discussion. Since 0< α < 1/100 was an arbitrary real number, it
follows that S2� n(log n)ε. Hence, by (3.60) and (3.65), we finally conclude that E(n)�
n(log n)ε−3/80. The proof of Theorem 4 is now complete.

It remains to establish (3.74). Actually, much better bounds are available from Lemma 2.4.
To see this, note that∑

U1<u6U2
u∈An

χ(u)
u

=
∑

U1<u6U2
P (u)6Y (n)

(u;n)=1

χ(u)
u

=
∑
d|n

P (d)6Y (n)

µ(d)
χ(d)
d

∑
U1/d<k6U2/d
P (k)6Y (n)

χ(k)
k
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whence ∣∣∣∣ ∑
U1<u6U2
u∈An

χ(u)
u

∣∣∣∣ 6 ∑
d|n
d6U2

1
d

∣∣∣∣ ∑
U1/d<k6U2/d
P (k)6Y (n)

χ(k)
k

∣∣∣∣. (3.75)

Note that for U1 < d 6 U2, the innermost sum starts at k = 1. In the ranges for U1, U2 for which
we claim (3.74), we import from Lemma 2.4 with X = n, Y = Y (n) the bounds∑

U1/d<k6U2/d
P (k)6Y (n)

χ(k)
k
�min

(
d

U1
, 1
)

+ exp(−(log n)2/5),

and by (3.75), we then find that∑
U1<u6U2
u∈An

χ(u)
u
�
∑
d|n
d6U2

1
d

min
(
d

U1
, 1
)

+ exp
(
−1

2
(log n)2/5

)
.

For the remaining divisor sum on the right-hand side here, we use the upper bound

6
∑
d|n
d>U1

1
d

+ U−1
1

∑
d|n
d6U1

1 6
∑
d|n
d>U1

1
d

+
∑
d|n√

U1<d6U1

1
d

+ U−1
1

∑
d|n

d6
√
U1

1.

The sum on the far right is trivially bounded by O(U−1/2
1 ), and the first two sums may be

recombined and bounded by Lemma 2.5 as∑
d|n

d>
√
U1

1
d
� exp(−(log n)α/4),

provided one has U1 > exp((log n)α/2), as we have assumed.

4. A combinatorial interlude

We begin by a detailed description of an application of the inclusion–exclusion principle that
will ultimately yield a lower bound for R(n, θ). For a readier exposition, let X (n) be the set of
all x = (x1, . . . , x4) ∈ Z4 satisfying (1.3). Recall the definition of Rj(n) from the introduction,
and note that R(n, θ) =R4(n, θ). We wish to relate R4 with R2 and R1 because the latter two
can be evaluated asymptotically. By the inclusion–exclusion principle,

R4(n, θ) = R2(n, θ)−#{x ∈ X (n) : P (x1x2) 6 nθ/2, P (x3)> nθ/2}
−#{x ∈ X (n) : P (x1x2) 6 nθ/2, P (x4)> nθ/2}
+ #{x ∈ X (n) : P (x1x2) 6 nθ/2, P (x3)> nθ/2, P (x4)> nθ/2}.

The two middle terms in the sum on the right are equal, by symmetry. It follows that

R4(n, θ) >R2(n, θ)− 2U(n) (4.1)

where

U(n) = #{x ∈ X (n) : P (x1x2) 6 nθ/2, P (x3)> nθ/2}.
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Yet another application of the same idea, this time with respect to x1, shows that

U(n) = #{x ∈ X (n) : P (x2) 6 nθ/2, P (x3)> nθ/2}
−#{x ∈ X (n) : P (x1)> nθ/2, P (x2) 6 nθ/2, P (x3)> nθ/2}.

However, directly from the definition,

R1(n, θ)−R2(n, θ) = #{x ∈ X (n) : P (x1) 6 nθ/2, P (x2)> nθ/2},

and hence, by symmetry in x1, . . . , x4,

U(n) 6R1(n, θ)−R2(n, θ).

From (4.1) we now infer that

R(n, θ) > 3R2(n, θ)− 2R1(n, θ). (4.2)

Our initial manipulations finished, we now turn to the evaluation of the right-hand side of (4.2)
with the aid of Theorem 4. When 1/2< θ < 1, then %(1/θ) = 1 + log θ by the definition of %.
Consequently,

R(n, θ) > (3(log θ)2 + 4 log θ + 1)π2S(n)n+O(n(log n)−γ)

holds for all 4 - n. The first factor on the right-hand side is positive for θ > e−1/3. Moreover, as
we saw in § 3.3, the singular series (1.2) may be rewritten as an Euler product. If n=

∏
p p

ep ,
then

S(n) =
1 + (−1)n

2e2
∏
p6=2

(
1 +

1
p

)(
1− 1

pep+1

)
. (4.3)

In particular, it follows that S(n)� 1 for 4 - n. This proves Theorem 1 for all large n with
4 - n. If 4|n, write n= 4km with 4 -m. From (4.3) or (1.1) it follows that either S(n)n= S(m)m
or S(n)n= 3S(m)m. Also, any solution of x2

1 + · · ·+ x2
4 =m with P (x1 · · · x4) 6mθ/2 can be

multiplied by 4k to produce a solution of y2
1 + · · ·+ y2

4 = n with P (y1 · · · y4) 6mθ/2. Hence,
R(n, θ)� nS(n) for all n with 4 - n implies R(n, θ)�S(n)n for all n. This completes the proof
of Theorem 1.

5. Ternary quadratic forms

In this section we shall prove Theorem 3. As indicated in the introduction, Theorem 2 will be
a simple consequence. Let ε > 0, let n 6≡ 0, 4, 7 mod 8 be sufficiently large (in terms of ε) and
choose three different primes p1, p2, p3 ∈ Z ∩ [n1/148−ε, 2n1/148−ε] such that p1p2p3 - n and pj ≡ 1
mod 4. We show that the Diophantine equation

n= q(x) := (p1x1)2 + (p2x2)2 + (p3x3)2

has a solution x ∈ Z3. Obviously this implies Theorem 3. The number of representations r(q, n)
of n by the quadratic form q can be approximated by the Siegel mean (see for example [Blo08]
for the definitions)

r(gen q, n) =
2π

p1p2p3

∏
p

rp(q, n)

where

rp(q, n) = lim
ν→∞

1
p2ν

#{x ∈ (Z/pνZ)3 | q(x)≡ n mod pν}
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are the local densities. We have rp(q, n) = 1 + (−np )p−1 if p - 2p1p2p3n, and rp(q, n) > 1− 1/p
if p - 2p1p2p3 [Sie35, Hilfssätze 12, 16]. In order to calculate the local densities at the ramified
primes, we observe that for d≡ 1 (modulo 4) and (h, d) = 1 one has by quadratic reciprocity

G(h, d) =
∑

b mod d

e

(
hb2

d

)
=
(
h

d

)√
d.

For j = 1, 2, 3 this gives

rpj (q, n) =
∞∑
k=0

1
p3k
j

∑
h mod pkj
(h; pj)=1

G(hp2
1, p

k
j )G(hp2

2, p
k
j )G(hp2

3, p
k
j )e
(
−hn
pkj

)
= 1− 1

pj
.

Finally one can check by direct computation that r2(q, n) = 3/2 if n≡ 1, 2 mod 4 and r2(q, n) = 1
if n≡ 3 mod 8. Using Siegel’s lower bound for L(1, χ−n), we find

r(gen q, n)� n1/2−ε

p1p2p3
.

By [Ome73, (102:10)], the quadratic form q has only one spinor genus per genus. Thus
r(gen q, n) = r(spn q, n) (cf. [Blo08] for the notation), and by [Blo08, (2.7)] we have

r(q, n)− r(spn q, n)� nεp
1/4
1 (p1p2p3)2(n7/16 + (p1p2p3)1/2n3/8)� n1/2−2ε

p1p2p3

for our choice of p1, p2, p3. In particular, r(q, n)> 0 for sufficiently large n. This completes the
proof of Theorem 3. 2

In order to deduce Theorem 2, we start with the following (essentially known) observation
concerning smooth numbers in short intervals, see e.g. [FL87]. Let m be any positive integer.
Choose a := d

√
me and b ∈ Z ∩ [

√
a2 −m, 9 +

√
a2 −m], and write k := a2 − b2. Then we have

m− (36 + o(1))m1/4 6 k 6m and P (k) 6 a+ b 6 (1 + o(1))
√
m. For the proof of Theorem 2 we

can assume that 4 - n, cf. the remark after (4.3). We may choose x4 ∈ Z ∩ [n1/2 − 37n1/8, n1/2]
such that P (x4) 6 2n1/4 and n− x2

4 6≡ 0, 4, 7 mod 8. Note that n− x2
4� n5/8. By Theorem 3,

we can find x1, x2, x3 such that n− x2
4 = x2

1 + x2
2 + x2

3 and P (x1x2x3)� n((5/8)·(73/148))+ε, and
Theorem 2 follows with θ > 365/592.
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Sie35 C. L. Siegel, Über die analytische Theorie quadratischer Formen I, Ann. of Math. (2) 36 (1935),
527–606.

Smi68 R. A. Smith, The circle problem in an arithmetic progression, Canad. Math. Bull. 11 (1968),
175–184.
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