Over- and undernutrition: challenges and approaches. 29 June-2 July 2009

Macro- and micronutrient intakes of Royal Air Force recruits at the start of military training

R. Leiper¹, S. A. Lanham-New², A. Dziubak³, D. Whittamore² and J. L. Fallowfield³ ¹Regional Medical Centre, RAF Halton, Aylesbury HP22 5PG, Bucks., UK, ²University of Surrey, Guildford GU2 7XH, Surrey, UK and ³Institute of Naval Medicine, Alverstoke, Gosport PO12 2DL, Hants., UK

Royal Air Force (RAF) phase-1 recruit training represents 9 weeks of initial professional and physical training and provides a transition from civilian to military life. Young men and women (16-33 years) complete phase-1 training before commencing their specialist branch (phase-2) training. Adequate nutrition may play an important role in reducing illness and injury, thus contributing to a successful training outcome.

RAF recruits attending a pre-recruit training course at RAF Halton were given an initial study brief, after which 719 recruits consented to participate. Dietary intake was recorded using a modified FFQ, which was distributed in a classroom at the start of training. Studies examining the validity and reliability of the modified FFQ are reported elsewhere^(1,2).

Macro- and micronutrient intakes are shown in the Table. The carbohydrate (CHO), fat and protein intakes represented: 46, 37 and 17% total energy intake respectively for males; and 47, 35 and 18% total energy intake respectively for females. Thus, the mean percentage energy from CHO was lower than that recommended for physically-active individuals. Mean Ca and vitamin C intakes were above the UK military training dietary reference values, but total energy and mean Fe intakes for both male and female recruits were less than the corresponding required values⁽³⁾.

	Energy (MJ)		CHO (g)		Fat (g)		Protein (g)		Vitamin C (mg)		Ca (mg)	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Males (n 612) Females (n 107)	10.0 8.2**	3.72 3.54	273 236**	102 95.4	97.1 76.5**	42.7 43.0	100 85.6**	34.3 33.0	114 127*	51.0 52.7	1358 1149**	493 441

Mean values were significantly different from those for males: *P < 0.05, **P < 0.01.

A recruit's working day continues to be long and physically demanding throughout phase-1 training and there are concerns that food intake may not meet nutritional requirements.

The authors would like to thank colleagues at RAF Halton, Aylesbury, Bucks., for their support and assistance.

- 1. Leiper R, Lanham-New SA, Dziubak A et al. (2010) Proc Nutr Soc 69, OCE1, E66.
- Delaney S, Lanham-New SA, Leiper R et al. (2010) Proc Nutr Soc 69, OCE1, E65. Casey A (2008) UK Military Dietary Reference Values (MDRVs) 2008. Farnborough, Hants.: QinetiQ Ltd.
- American College of Sports Medicine, American Dietetic Association and Dieticians' of Canada (2000) Joint position statement: Nutrition and Athletic Performance. Med. Sci. Sports. Exerc. 32(12): 2130-2145.