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The effect of the initial condition upon the transport dynamics of miscible flowing fluids
in a porous medium is investigated under viscosity and density contrasts. Such flows
have attracted significant attention due to their importance in many fields of science and
engineering, such as CO2 sequestration and aquifer remediation. Using high-resolution
two-dimensional numerical simulations, we illustrate the impact of viscosity and density
contrasts on the temporal evolution of the spreading and mixing quantities. We show that
such impact depends on the initial shape of the source distribution where the solute is
injected and on the intensity of the horizontal background flux. We find that rates of mixing
are dependent on whether the solute is more or less viscous than the ambient fluid, a result
usually not taken into consideration in studies on gravity fingering. At higher background
flux, the effects due to horizontal viscous fingering dominate over gravitational fingering.
Our computational analysis also suggests a non-trivial relationship between mixing and
the length of the plume’s interface under fingering instabilities. Finally, we show how a
stratified permeability field can interact with these sources of instabilities and affect the
transport behaviour of the plume.

Key words: buoyancy-driven instability, stratified flows, fingering instability

1. Introduction

Improved understanding of the mixing mechanisms of fluids in a porous medium is of
relevance to a wide range of applications in hydrology, water resources engineering,
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enhanced oil recovery, geothermal systems and risk analysis of groundwater pollution.
Several factors impact the spatiotemporal transport dynamics of a solute injected in a
fluid-saturated porous medium. These factors consist of properties characterising both the
injected fluid and the porous medium, including properties of the ambient fluid flowing
through the medium. Another important factor is the initial configuration of the injected
solute, in particular, its geometrical shape. These factors can introduce disorder in the flow
field as they modulate the strength of physical processes such as advection and diffusion.
In this work, we investigate how the initial configuration of the injected fluid and the
mean flow velocity, e.g. the mean groundwater velocity, control the relative impact of
multiple sources of disorder on the mixing evolution of two miscible fluids, i.e. the ambient
fluid and an injected solute. The main sources of disorder examined in this study are the
viscosity and density contrasts between the injected solute and the ambient fluid. We also
analyse the effect of a third source of disorder, permeability heterogeneity of the porous
medium, in the form of stratification or layering.

Much of the previous work focused on the effects of permeability variability on mixing
(e.g. Le Borgne, Dentz & Villermaux 2015; Dentz et al. 2018) and dispersion (e.g.
Dagan 1984; de Barros & Rubin 2011). This is due to the fact that the variability of the
permeability field over multiple length scales leads to enhanced solute mixing (Dentz et al.
2011; Bonazzi, Dentz & de Barros 2022). However, other mechanisms can impact solute
mixing and spreading rates. For example, differences in viscosity between the added solute
and the ambient fluid impact the mixing dynamics in porous media. When the injected
fluid is less viscous than the ambient fluid, fluid displacement can lead to the formation
of a hydrodynamic interface instability denoted as the Saffman–Taylor instability. This
hydrodynamic instability generates viscous fingering (Saffman 1986; Homsy 1987) which
can potentially augment dilution rates (Jha, Cueto-Felgueroso & Juanes 2011b, 2013). For
many miscible flow systems, the viscosity of the fluid mixture depends on the the volume
fractions of the individual fluids. In the case of injected solute–ambient fluid systems, this
is equivalent to the mixture viscosity’s dependence on the injected solute concentration.
As a result, the solute plume’s mobility and, consequently, mixing are significantly
affected by the viscosity contrast (Jha, Cueto-Felgueroso & Juanes 2011a; Nijjer, Hewitt
& Neufeld 2018; Tran & Jha 2020, 2021; Bonazzi et al. 2021). The interaction between
viscosity contrast and permeability heterogeneity and its effect on mixing have been
studied for low levels of heterogeneity (Tan & Homsy 1992; Tchelepi & Orr 1994; De Wit
& Homsy 1997a,b; Nicolaides et al. 2015; Bonazzi et al. 2021). These studies shed light
on how and when solute mixing is affected by the fluctuations of the permeability field.
Through the use of high-resolution numerical simulations, Bonazzi et al. (2021) showed
how key transport metrics, such as the solute arrival times and the temporal evolution of
spatial statistical descriptors of the plume, were impacted by a spatially heterogeneous
multi-Gaussian random log-permeability field. Other studies investigated the effect of
permeability heterogeneity and viscosity contrast on mixing by considering layered porous
media (Sajjadi & Azaiez 2013; Nijjer, Hewitt & Neufeld 2019).

Density contrast between displacing and displaced fluids is another important source of
disorder. A type of interface instability called Rayleigh–Taylor instability can be triggered
when a more dense fluid, e.g. an injected solute, is located above a less dense fluid, causing
the formation of gravity-driven fingers (Jenny et al. 2014; Slim 2014; Gopalakrishnan
2020). Under these conditions, analogous to the case of viscous fingering, the fluid mixture
density is a function of the solute concentration, thus creating an interdependence between
plume mobility, mixing and density distribution (Hassanzadeh, Pooladi-Darvish & Keith
2007; Hidalgo & Dentz 2018). Studies that focus on the effect of density-driven fingering
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are usually presented in the context of CO2 sequestration in saline aquifers (van der Meer
1993; Riaz et al. 2006; Hidalgo & Carrera 2009). Variable-density flow and its impact
on solute transport in coastal aquifers are also reported in the literature (e.g. Dentz et al.
2006).

The combined effects of viscosity and density contrast have received progressively more
attention given their importance in many environmental and energy-related processes
such as CO2 sequestration and aquifer remediation. Tchelepi & Orr (1994) proposed a
hybrid particle tracking–finite difference method to analyse the effects of viscosity and
density contrasts in two- and three-dimensional heterogeneous porous media. Hidalgo,
MacMinn & Juanes (2013) used numerical simulations to examine the dissolution flux
of injected CO2 in a homogeneous medium. Daniel & Riaz (2014) focused on the effect
of viscosity contrast on a gravitational unstable interface, and Pramanik & Mishra (2016)
studied the instability in a vertical flow of two fluids with different densities and viscosities
under distinct mean flow velocities. Both analytical and semi-analytical solutions have
been proposed to predict the location of the interface between the formation brine and
the CO2-rich phase while accounting for contrast in viscosity and density (Nordbotten,
Celia & Bachu 2005; Vilarrasa et al. 2010). Experimental laboratory studies, aimed at
investigating the joint effects of density and viscosity contrasts on fluid mixing, have
also been conducted, amongst others, by Held & Illangasekare (1995) and Liyanage
et al. (2020). Some other studies focused on fluid mixing when both viscosity and
density contrasts between a solute and the ambient fluid are present in a heterogeneous
permeability medium (e.g. Kempers & Haas 1994). Loggia et al. (1996) focused on
transport in a multi-layered medium. The authors showed that for certain levels of
density and viscosity contrast, the flow field is sufficiently stable to mask the effect of
heterogeneity, causing a multi-layered concentration profile to merge into a single one (see
figure 2 of Loggia et al. 1996).

Despite significant efforts, there is still a need to better understand how these sources of
disorder impact the dynamics of a solute plume under different geometrical configurations
of the initial solute source. Here, we define this initial condition as the zone where a
fluid, characterised with viscosity and density different from those of the ambient fluid,
will be injected. In particular, we consider resident-based concentration injection mode,
which is designed to mimic a source that introduces a solute uniformly throughout the
injection zone. As discussed in Frampton & Cvetkovic (2009), this type of injection mode
can represent multiple leaking canisters within a buffer zone, e.g. when contaminant is
uniformly introduced through a large number of sources distributed throughout the input
zone. The initial configuration of the solute plume is particularly relevant in applications
such as groundwater management and risk assessment. In these applications, contaminant
plumes can originate from leaking tanks and pipes, accidental spills, injection wells or
landfills. In the context of aquifer clean-up, remediation fluids (e.g. remedial reagents) are
injected through wells. Injection wells are also utilised to inject CO2 into the subsurface.
In all of these cases, solutes enter the geological formation by means of different spatial
configurations. Furthermore, as previously mentioned, most of the injected fluids have
viscosity and density that differ from those of the ambient fluid. For such reasons, this
work will explore how different initial geometrical configurations of the solute source
affect the interplay of gravitational and viscous fingering and thereby the overall mixing
behaviour.

Several studies showed the importance of the solute source configuration on mixing
and spreading dynamics in the absence of viscosity and density contrasts (Dentz et al.
2000; Dentz & de Barros 2015; Bonazzi et al. 2022). Koch & Nowak (2015) showed
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Figure 1. Schematic configuration of the problem studied. A solute is injected within an elliptical source zone
into a confined porous medium. (a) Transport of an elliptical solute plume of radii a and b across an aquifer
layer of thickness H confined between impermeable layers. The figure shows the vertical cross-section across
the layers. The impact of the source zone on transport is examined by varying the ratio a/b. (b) Different
initial shapes of the plume investigated in this study. The solute source zones range from vertically oriented
(a/b = 1/3) to horizontally oriented (a/b = 3).

how the uncertainty of contaminant source architecture impacted fate and transport of
non-aqueous-phase liquids in aquifers which are characterised by density and viscosity
values different from those of groundwater. To the best of our knowledge, a systematic
analysis of the impact of the geometrical configuration of the injection zone on mixing
in the presence of viscosity and density contrasts has not been conducted, despite
its importance in applications in subsurface energy, risk analysis and groundwater
remediation. The investigations carried out in this work show that the initial configuration
of the solute plume controls the relative importance of these sources of disorder, namely
viscosity and density contrasts. Intuitively, one could expect the dominance of viscous
fingering when the longer dimension of the solute source is perpendicular to the direction
of mean flow, providing a longer interface to host multiple fingers. Similarly, more intense
density fingering (also known as ‘fingered tongue’) could be predicted when the solute
source is horizontal, e.g. parallel to the direction of mean flow.

In order to study these effects for different ranges of viscosity and density contrasts
between the solute and ambient fluid, we analyse transport for an initial solute source
shaped like an ellipse of radii a and b. We examine how the transport behaviour is affected
by different values of the ratio a/b, as illustrated in figure 1. We also study how varying
the mean flow velocity impacts our results. After analysing the results for a homogeneous
porous medium, we add permeability heterogeneity, in the form of a stratified permeability
field, as an ulterior source of disorder.

This paper is structured as follows. Section 2 provides the equations governing fluid
flow and transport in a porous medium. Details regarding the numerical schemes and
implementation are reported in § 3. We compare the output of our numerical simulations
with existing results from the literature in § 4. The computational analysis is carried out
for homogeneous and heterogeneous media in §§ 5 and 6. The main findings of our work
are summarised in § 7.
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2. Mathematical description of flow and transport

2.1. Governing equations
In this work we consider a two-dimensional porous medium in a dimensionless Cartesian
coordinate system x = (x, z). The dimensionless lengths of our domain are L in the
horizontal direction and H in the vertical direction. All equations and quantities in
this section are normalised and the dimensionless groups employed are reported in
Appendix A. In particular, lengths are normalised by a characteristic length � of the
domain, chosen here to be the thickness of the domain. Thus, we have H = 1. We start by
considering a homogeneous porous medium, characterised by a constant permeability k̂.
Assuming incompressible flow, in the absence of temporally variable boundary conditions
and sources and sink terms, the governing (dimensionless) equation for the flow field is
given by

∇ · q(x, t) = 0, (2.1)

where q denotes the specific discharge, defined by Darcy’s law as

q(x, t) = − 1
μ(c(x, t))

[∇p(x, t) − F(c(x, t))ez]. (2.2)

The velocity field is given by q/φ, where φ is the medium porosity. In (2.2), p(x, t) denotes
the pressure field and μ(c) the viscosity of the ambient fluid mixture of concentration c.
The unit vector along the vertical z direction is denoted by ez. For our work, we adopt an
exponential viscosity model (Jha et al. 2011a) to relate μ and c. An exponential viscosity
model can capture the concentration dependence of viscosity of mixtures such as water
and glycerol (Petitjeans & Maxworthy 1996). The dimensionless form of the functional
relationship between μ and c used in this work is

μ(x, t) = exp[R(1 − c(x, t))], (2.3)

where R is the log-viscosity ratio R = ln(μ0/μ1), in which μ0 is the viscosity of the
ambient fluid and μ1 is the viscosity of the injected solute. For reference, in geological
carbon sequestration applications, the log-viscosity ratio R ranges between 1.9 and 2.7 for
the viscosity values of CO2 and water reported in Frailey & Leetaru (2009).

The function F(c) in (2.2) originates from the density profile model adopted in Daniel
& Riaz (2014):

ρ(c(x, t)) = ρ0 + �ρF(c(x, t)), (2.4)

where ρ0 is the ambient fluid density (i.e. the density at c = 0) and �ρ = ρm − ρ0, in
which ρm is the maximum possible density of the mixture. In our work, we set F(c) = c,
thus adopting a linear density profile (see Horton & Rogers 1945; Daniel & Riaz 2014;
Cowell, Kent & Trevelyan 2020). A linear density profile is able to describe the density
dependence on concentration of a potassium permanganate and water mixture; such a
mixture has been employed in experimental studies such as that of Slim et al. (2013)
as a model for CO2 in brine. For the linear model employed, the maximum density
ρm will coincide with the density of the injected solute ρ1 (i.e. the density at c = 1).
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Therefore (2.2) becomes

q(x, t) = − 1
μ(c(x, t))

[∇p(x, t) − c(x, t)ez]. (2.5)

The governing dimensionless transport equation for an inert substance is given by

∂c(x, t)
∂t

+ q(x, t) · ∇c(x, t) − 1
Ra

∇2c(x, t) = 0, (2.6)

in which the Rayleigh number Ra is defined as

Ra = kc�ρg�

φDμ1
, (2.7)

where kc is the medium characteristic permeability (for a homogeneous medium, kc =
k̂), � is the domain characteristic length (here, � represents the vertical dimension of the
porous formation), φ is the medium porosity and D is the isotropic local-scale dispersion
coefficient. Both φ and D are assumed to be constant.

2.2. Boundary and initial conditions
The boundary conditions for the flow field are, as shown in figure 1, a no-flux condition on
the top and bottom of the domain, a constant inlet flux fL on the left-hand boundary and
an assigned constant pressure pR on the right-hand boundary. These are mathematically
equivalent to

∂p
∂z

∣∣∣∣
z=0

= ∂p
∂z

∣∣∣∣
z=H

= 0, (2.8)

∂p
∂x

∣∣∣∣
x=0

= fL, (2.9)

p|x=L = pR. (2.10)

The dimensionless inlet flux fL can be understood as a measure of the relative strength of
horizontal advection compared with diffusion (equivalent to a Péclet number), whereas Ra
controls the relative strength of vertical convection compared with diffusion. Therefore,
we expect both parameters to control the strength of convective instabilities – viscous
fingering and gravitational fingering – with the effect of Ra being limited to the latter.

For the transport problem, we adopt a no-flux boundary condition at the top and bottom
edges of the computational domain, analogously to the flow problem, which is consistent
with the assumption of confining impermeable layers:

∂c
∂z

∣∣∣∣
z=0

= ∂c
∂z

∣∣∣∣
z=H

= 0. (2.11)

The no flux-boundary condition applies to the left-hand boundary as well:

∂c
∂x

∣∣∣∣
x=0

= 0, (2.12)

while on the right-hand boundary of the domain we assume a natural outflow boundary
condition, i.e. the solute mixture is allowed to exit the domain through convection only,
following the direction of the average flow velocity.
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Figure 2. Temporal evolution of the solute plume for R = 3, Ra = 9000, a/b = 3 and fL = 0.001. The plume
is shown at dimensionless times (a) t = 0.3, (b) t = 0.6 and (c) t = 0.9. These three snapshots in time show
the complex nonlinear interplay between viscous and density fingering mechanisms that can lead to folding
(e.g. vortex-like structure) of the plume. This observed folding dynamics is unique to the specific model
configuration investigated in this work.

The initial condition for the concentration field of the injected fluid is a zero
concentration in the whole domain except where the initial source is located. Our initial
source zone is represented by an ellipse of radii a and b along the longitudinal and
transverse directions respectively, as displayed in figure 1. Within the source zone,
represented here by the area S of the ellipse, the value of concentration is unitary at initial
time t = t0:

c(x, t0) =
{

1, for x ∈ S,

0, for x /∈ S.
(2.13)

By changing the ratio a/b, we can explore the effects of source orientation (figure 1) on
the spatiotemporal dynamics of c and mixing metrics. Note that the area of the ellipse S
is maintained constant throughout all the values of the ratio a/b explored.

The theory of linear stability analysis of viscosity- and density-driven fingering can
provide the instability onset time and the wavenumber versus growth rate relation for
the early-time behaviour of the system. The linear analysis, including the non-modal
analysis, is valid before the fingers start to interact via nonlinear mechanisms such as
tip-splitting, shielding, coalescence, coarsening and channelling, which control plume
spreading and mixing. Given our focus on spreading and mixing, we use direct numerical
simulations, instead of the linear theory, to resolve such nonlinear interactions and their
impact on spreading and mixing metrics. It is important to note that in our numerical
model configuration (figure 1), the background flow direction is not parallel with the
direction where the effects of gravity are manifested. To the best of the authors’ knowledge,
the literature does not provide results from the linear stability analysis that allows for
the prediction of instability wave number and growth rate for this specific configuration.
Due to the orthogonality of background flow and gravity direction in our configuration,
macroscopic vorticity can arise, as visible in figure 2. It is possible to observe in figure 2
that, in the case of a horizontal initial source characterised with multiple density fingers,
the faster-moving left-side finger grows downward to reach the bottom boundary while
the slower-moving right-side finger grows leftward to merge with the rest of plume at the
lower boundary. As a result, the plume appears to roll over itself like a vortex. Merging of
viscous fingers is a well-known mechanism (Jha et al. 2011b, 2013), but rolling of fingers,
as observed in figure 2, due to the interplay between gravitational and viscous fingering
mechanisms has not been mentioned in the literature.

3. Numerical implementation

The numerical implementation of our model is similar to that presented in Bonazzi
et al. (2021), with the due modifications in the discretised equations to account for the
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Parameter Symbol Values

Inlet flux at the left boundary fL 1 × 10−2, 1 × 10−3

Aspect ratio of the initial source a/b 1/3, 1/2, 1, 2, 3
Log-viscosity ratio R [−3.5 : 0.5 : 3.5]
Rayleigh number Ra [1000 : 500 : 10 000]

Table 1. Model input parameters. All parameter values are dimensionless following the dimensionless groups
reported in Appendix A. Parameters R and Ra are varied over a range of values that are uniformly spaced
between a minimum value (value on the left of the first colon) and a maximum value (value on the right of the
second colon) with a constant increment or spacing between successive values (middle value between the two
colons). Here R = ln(μ0/μ1) and Ra is defined in equation (2.7).

concentration dependence of the solute density. To solve (2.1) numerically for cell-centred
pressures, we employ a finite volume method at second-order accuracy (Ferziger, Perić &
Street 2002). Since (2.1) is expressed in terms of the Darcy flux, i.e. the face-centred flux
at the cell interface, we linearise (2.1) using the two-point flux approximation (LeVeque
2002) of the Darcy flux in (2.2). In this way, we express the flux in terms of the
pressure gradient, the concentration distribution and the cell interface transmissibility,
which depends on viscosity. The transport problem, governed by (2.6), is solved explicitly
for the concentration field, c(x, t), in terms of the advective and diffusive concentration
fluxes computed at the previous time step using a second-order finite difference method.

In our numerical model we use a two-dimensional Cartesian grid where each cell has
dimensions �x × �z, with �x = 8 × 10−3 and �z = 4 × 10−3. The number of cells in
both directions, namely Nx and Nz, is the same, Nx = Nz = 250. Thus, the domain lengths
in the longitudinal and vertical directions are respectively L × H = 2 × 1. Our choices for
�x and �z are based on a numerical grid resolution analysis that focused on quantities
of interest such as the horizontally averaged concentration profile in the vertical direction
and the plume’s concentration variance, to ensure that the relative percentage error with
respect to a more refined grid (Nx = Nz = 1000) was below 5 %. The initial source zone
in our model is an ellipse with radii a and b in the horizontal and vertical directions,
respectively. In our paper, we investigate different ratios a/b (see figure 1 and table 1) in
order to explore the effects of the initial plume configuration on transport. Although the
ratio a/b is varied, the values of a and b are calculated such that the area of the ellipse,
S , at t0 is the same in all the simulations; this way the same mass of solute is initially
injected in the domain. For all the ratios explored, we maintain the centre of the ellipse at
the dimensionless coordinate xc = (0.3, 0.5).

4. Comparison with previous work

In this section we compare the results originating from the numerical implementation of
the governing equations as described in § 3. We test the performance of the developed
numerical simulator using the same physical set-up as reported in the work of Hewitt,
Neufeld & Lister (2013). Appendix B provides a brief description of the physical set-up
and parameter values used by Hewitt et al. (2013). A relevant difference between our
numerical simulation and that in Hewitt et al. (2013) is that we chose a horizontal
discretisation with �x = (1024)−1, while in Hewitt et al. (2013) �x = (2048)−1. This was
done in order to reduce the computational burden of the simulation. Another difference is
that the discretisation in the vertical direction is �z = (250)−1 in Hewitt et al. (2013), and
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Figure 3. (a) Comparison between the horizontally averaged concentration profiles, c̄(z, t), of figure 4 in
Hewitt et al. (2013) (circles) and those obtained in our simulation (solid line), at three selected times.
(b) Comparison between the mass flux ṁs evolution of figure 5(b) in Hewitt et al. (2013) (dashed line) and
that obtained in our simulation (solid line). All quantities are dimensionless in accord with the normalisation
provided by Hewitt et al. (2013) and reported in Appendix B.

a vertical coordinate transformation was used to ensure high resolution of the dynamics
near the fluid–fluid interface. Here, we opt for a constant vertical discretisation, �z =
(750)−1. Figure 3(a) shows a comparison between the horizontally averaged concentration
profiles obtained from our simulations and those reported by Hewitt et al. (2013) at distinct
times. We can see that there is a reasonably good agreement between the two results for
the considered times, although some discrepancies are present. Such discrepancies are
expected given that the hydrodynamic instability, which causes the fingering behaviour,
is triggered in numerical models by the introduction of a small random numerical
perturbation which is amplified in time by the physics of hydrodynamic instability and the
properties of the numerical method used. Differences in the amplitude and structure of the
initial perturbation, which are often unreported in studies, and difference in the accuracy
of the numerical discretisation method can also cause differences between studies.
Figure 3(b) also illustrates a comparison of the temporal evolution of the horizontally
averaged inlet solute mass flux at the top boundary of the domain. As shown in figure 3(b),
our computational results are based on a single realisation of the initial perturbation,
therefore displaying some noise. The mass flux estimates obtained from Hewitt et al.
(2013) are smoother given that they represent an average from multiple realisations of
the initial perturbation.

5. Results and discussion

In this section we perform a series of numerical experiments with the model input
parameter values reported in table 1. In § 5.1, we provide a general analysis of the overall
behaviour of miscible flow systems for different values of R, Ra and a/b, and two different
values for the inlet flow rate ( fL). We illustrate how these different parameters impact the
solute plume configuration and the corresponding flow field. Section 5.2 analyses how the
aforementioned parameters impact specific metrics that quantify mixing and spreading of
the plume. Although we have performed simulations for several values of the source zone
configuration, we limit our illustrations for the cases of a/b = 1/3, 1 and 3 for the sake of
brevity (simulations were also carried out for a/b = 1/2 and 2 but are not shown).
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Figure 4. Concentration fields for the slower inlet flux case, fL = 0.001, at the simulation time t = 1. (a,c,e,g)
Results for the vertical source zone (a/b = 1/3) and (b,d, f,h) results for the horizontal source zone (a/b = 3).
All cases are for a plume heavier than the ambient fluid (Ra > 0). (a–d) Cases with low density contrast
(Ra = 1000) and (e–h) cases with high density contrast (Ra = 9000). Ratio R = 3 implies a less viscous
solute compared with the ambient fluid, R = −3 implies a more viscous solute and R = 0 implies no viscosity
contrast.

5.1. Analysis of flow and transport behaviour
Figure 4 shows the spatial distributions of the concentration field at dimensionless time
t = 1 from a set of eight representative simulations characterised by distinct values of R,
Ra and a/b. The results displayed in figure 4 correspond to fL = 0.001, which we denote
here as the low-inlet-flux case. The plumes depicted in figure 4 originate from two different
initial source configurations, namely a vertical source (a/b = 1/3) and a horizontal source
(a/b = 3) (see figure 1 for reference). Comparing the plume snapshots in the left- and
right-hand columns of figure 4, we observe that the initial plume configuration has a
significant impact on the spatial distribution of the solute plume. One of the mechanisms
driving this dependency on the initial configuration is gravitational fingering, the strength
of which depends on the orientation of the source zone, e.g. compare the plumes obtained
for Ra = 9000 and R = 0 for both a/b = 1/3 and 3. Since the gravitational instability
grows downward from the plume’s interface, a horizontal initial source configuration
(a/b = 3) provides a longer interface for the gravitational fingers to form and grow.
The number of these fingers at early time depends on the typical finger width and the
horizontal extent of the source. The typical finger width is a function of Ra, as per the
linear stability analysis of gravitational fingering (Riaz et al. 2006), which predicts the
finite-size wavelength of initial fingers. This is best shown by comparing the second and
third rows in figure 4 for a/b = 3; an increase in Ra from 1000 to 9000 leads to a decrease
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Influence of initial plume shape on porous media flows

in the finger width which means the same interface length can host three fingers instead
of one. The case of a vertical initial plume does not provide enough interface length for
gravitational fingers to form (i.e. a/b = 1/3, figure 4a,c,e,g). Higher Ra means sharper
plume interface and slower effective diffusion, as visible from comparing the second and
third rows.

The results depicted in figure 4(a,b) also highlight the effects of R > 0 in rapidly
diluting the plume via viscous fingering, which (unlike gravitational fingering) does not
have a preferential direction. Viscous fingering takes place in both vertical and horizontal
directions, and in the case of vertical direction, the effect of viscous fingering superposes
on the effect of gravitational fingering, leading to complex plume shapes such as the one
shown in figure 4(b). A horizontal initial source under relatively low Ra leads to one
gravitational finger growing downward and one viscous finger growing rightward from
the plume interface (figure 4b). Due to viscous instability at the tip of the gravitational
finger, the finger travels faster and reaches the bottom boundary earlier than R ≤ 0 cases
(second, third and fourth rows). On the other hand, due to gravitational instability, the
horizontally travelling viscous finger bends downward. Because of the absence of surface
tension effects in a miscible flow, the gravitational and viscous fingers remain connected
to the main plume body, which stretches and distorts in a manner reminiscent of chaotic
mixing (e.g. Ottino 1989). In essence, the two fingering instabilities interact with each
other and our results indicate that the initial source configuration modulates the strength
of that interaction.

Figure 4(g,h) shows the combined effects of R < 0 and high Ra in hindering mixing.
Higher values of density contrast are known to inhibit diffusive mass transfer compared
with lower values. For a/b = 3, gravitational fingering occurs at R ≥ 0 but is absent at
R = −3 because at R = −3 the velocity magnitude inside the plume is below the threshold
for generating the instability; see the velocity field in figure 5(c,d). This important result
has been overlooked in some of the prior studies of buoyant mixing that neglect viscosity
contrast between the solute and the ambient fluid. When the initial source is vertical or
perpendicular to the mean flow direction, i.e. a/b = 1/3, the low mobility of the plume
caused by R < 0 (see figure 5c,d) retards the sinking of plume caused by Ra = 9000, thus
preventing the solute from reaching the bottom boundary. A close inspection of figure 4(g)
for the case of a/b = 1/3 reveals the emergence of backward-propagating fingers on the
rear interface. This occurs because for R < 0, the rear interface is viscously unstable and
the front interface is viscously stable. However, due to the low value of the inlet flux,
fL = 0.001, the backward-propagating fingers do not grow to become dominant features of
the flow.

Next, we examine the impact of the inlet flux (or the background flux), namely fL, on
both the transport dynamics and the velocity field of the plume. The inlet flux is expected
to play a key role in controlling the spreading and mixing behaviour of the plume because
it represents a source of mechanical energy directly inserted into the system. We want to
investigate how our findings, discussed in figure 4, change when fL is higher. To investigate
this impact, we performed a set of simulations using the same parameter values (R, Ra and
a/b) for an inlet flux that is ten times higher than that in figure 4, i.e. we increased fL from
0.001 to 0.01. As a consequence, the mean flow velocity is ten times higher, and we discuss
the resulting eight plumes in figure 6 at dimensionless time t = 0.1 (which corresponds to
a tenth of the time considered in figure 4). By doing this, when we compare the results from
t = 1 for fL = 0.001 with results from t = 0.1 for fL = 0.01, we are comparing plumes
whose centre of mass would be in the same position if no sources of disorder (e.g. viscosity
and density contrast) were acting on them.
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Figure 5. Maps of the velocity magnitude, |v|, at t = 1 for fL = 0.001. Arrow orientation indicates the
flow direction and arrow length indicates the magnitude of the velocity vector. The colourbars represent the
logarithm of base 10 of the velocity magnitude, log10|v|, where the white areas correspond to zones with
velocity equal to the mean flow velocity, red-orange areas have velocities faster than the mean and blue areas
have velocities slower than the mean. The black line outlines the position of the plume.
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Figure 6. Concentration field for the faster inlet flux case, fL = 0.01, at t = 0.1. Analogously to figure 4,
results are shown for the (a,c,e,g) vertically and (b,d, f ,h) horizontally extended source zones. (a–d) Results for
Ra = 1000 and (e–h) results for Ra = 9000. (c–f ) Results in the absence of viscosity contrast and cases where
the solute is (a,b) less and (g,h) more viscous than the ambient fluid.
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Figure 7. Maps of the velocity magnitude, |v|, at t = 0.1, for fL = 0.01. Arrow orientation indicates the
flow direction and arrow length indicates the magnitude of the velocity vector. The colourbars represent the
logarithm of base 10 of the velocity magnitude, i.e. log10|v|, where the white areas correspond to zones with
velocity equal to the mean flow velocity, red-orange areas indicate velocities faster than the mean and blue
areas indicate velocities slower than the mean. The black line outlines the position of the plume.

As illustrated in the first row in figure 6 (R = 3 and Ra = 1000), an increase in the
horizontal flow velocity causes viscous fingering to dominate over density-driven fingering
(compare figures 4 and 6). We observe that the vertically oriented initial source (a/b =
1/3) provides sufficiently long interface for the viscous fingers to nucleate and grow in the
downstream direction. The first row of figure 6 reveals that the effect of density becomes
limited to the bottom finger, which is thicker, horizontally slower, more concentrated with
the denser solute and therefore more prone to sinking toward the bottom boundary; see
the corresponding velocity magnitude map in figure 7. When a/b = 3, the horizontal
source orientation does not provide sufficient vertical interface for viscous fingers to form.
Hence, at R = 3, the plume travels as a single finger with high velocity at the finger tip as
shown in the kinematic analysis of figure 7. This causes a rapid horizontal stretching of the
plume, which triggers gravitational instability on the bottom interface and away from the
viscous finger’s tip. This is a novel mechanism arising out of interplay between viscosity
and density-driven instabilities; viscous fingering triggers density fingering. However,
they dominate different parts of the plume, which are determined by the velocity field.
The initial shape of the source (horizontal versus vertical) modulates the strength of the
interplay; a horizontal source (a/b = 3) enhances the effect of gravity fingering compared
to a vertical source (a/b = 1/3). This is further supported by the kinematic analysis
associated with figure 7.

The second and third rows of figure 6 show the solute plumes in the absence of
viscosity contrast (R = 0). We observe that an increase in the mean flow velocity, which is
horizontally oriented in our study, significantly decreases the effect of density contrast
on mixing even in the absence of viscous fingering. An increase in Ra from 1000 to
9000 (figures 6c,d and 6e,f , respectively) does not affect the shape of the plume or, more
importantly, the degree of mixing (as seen from the colour scale of the two plumes), for
neither a/b = 1/3 nor a/b = 3. The flow is predominantly advective due to the higher
inlet flux; compare figures 4 and 6.

When R < 0 (bottom row in figure 6), we observe that a larger value of fL impacts
the competition between viscous and gravitational fingering; compare with the bottom
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row of figure 4. The results in figure 6 show that viscous fingering becomes dominant
over density-driven fingering at a higher inlet flux fL. For a/b = 1/3, the initial source
orientation paired with the increased horizontal velocity allows the growth of the backward
viscous fingers that could not grow for the same values of R, Ra and a/b in figure 4. As
depicted in figure 7(c,d) for R < 0, the low velocity magnitude inside the plume affects
the mixing behaviour also in the case for a/b = 3, when viscous fingers are not present
due to the source orientation. In this case, the low mobility of the plume prevents it from
travelling with the mean flow, thus obstructing spreading. The plume shape resembles the
shape of the plumes observed for the cases with R = 0; however, it is asymmetric between
downstream and upstream edges of the plume due to the viscosity contrast between the two
fluids. A ‘wake’ emerges downstream of the plume reminiscent of turbulent flow around a
cavity or a bluff body (Wu 1972). This effect, paired with a high Ra that hinders diffusion,
causes the plume to be poorly mixed with the ambient fluid.

5.2. Mixing and spreading

5.2.1. Fluid interface dynamics
We are interested in relating the plume’s interface to the concentration spatial variance
for different initial plume configurations. The concentration variance σ 2

c can be viewed as
a plume mixing indicator (e.g. Boso et al. 2013; Bonazzi et al. 2022). The concentration
spatial variance is defined as

σ 2
c (t) = 1

Ω(t)

∫
Ω(t)

[c(x, t) − 〈c(x, t)〉]2 dΩ, (5.1)

where Ω(t) is the area occupied by the solute plume at time t. It is defined as the area
where concentration is higher than a threshold value ci, with ci = 10−3, and 〈c(x, t)〉 is
the plume’s spatial mean concentration, defined as

〈c(x, t)〉 = 1
Ω(t)

∫
Ω(t)

c(x, t) dΩ. (5.2)

Since the solute is neither injected nor withdrawn from the domain during the time period
of analysis, we can obtain the evolution equation of σ 2

c from the advection–dispersion
equation (2.6) following the steps described in Jha et al. (2011b):

dσ 2
c

dt
= −2〈ε〉, (5.3)

which implies σ 2
c decreases and mixing increases monotonically with time for all

parameter values studied here and the rate at which concentration variance decreases is
proportional to the mean scalar dissipation rate 〈ε〉.

To better quantify the effect of shape of the initial source on mixing and spreading, we
define a plume shape metric η as follows:

η(t) = η̂(t)
ηo

, (5.4)

where η̂ is calculated as

η̂(t) = �ci(t)
Aci(t)

, (5.5)
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where �ci is the length of the isoline of concentration c = ci, and Aci is the area of the
plume delimited by such an isoline. In this study, we set ci = 1 × 10−3. We normalise η̂

by its initial value given by ηo ≡ η̂(t0) = (�ci/Aci)|t=t0 .
The shape metric η is defined to account for the length of the interface between the solute

plume and the ambient fluid, and for the area occupied by the plume. Since the interface
is where mixing happens, and the plume area is related to spreading, the definition of η

includes mechanisms of both mixing and spreading. For diffusion-dominated transport
of an isotropic (circular) source, e.g. R = 0, Ra ≤ 1000 and a/b = 1, the plume radius
increases proportionally to

√
t, the plume interface is �ci ∝ √

t and the area is Aci ∝ t (Jha
et al. 2011a), rendering η ∝ t−1/2, i.e. η decreases monotonically in time during diffusive
transports. For diffusive systems, σ 2

c also decays with time such that η ∝ σ 2
c , with the

proportionality factor given by the initial source shape. In convection-dominated transports
due to viscous fingering or permeability heterogeneity, η can increase at early time due to
rapid stretching of the plume interface while the plume area stays relatively constant or
grows slower than the interface length. This would imply that mixing is still in its early
stages (σ 2

c is relatively high) and the solute has not mixed with the ambient fluid enough
to occupy an area significantly larger than the initial one, but mixing will increase rapidly
in the future across the stretched interface as implied by high η. As time progresses and
the solute becomes more mixed with the ambient fluid, we expect η to decrease as the area
of the plume increases and its interface becomes less sinuous. The result is that η evolves
non-monotonically in convective systems.

Since the concentration spatial variance σ 2
c quantifies the degree of mixing (high σ 2

c
means lack of mixing; see Bonazzi et al. 2021), we analyse the co-evolution of η and
σ 2

c in figures 8 and 9 to learn how the interplay of viscous and gravitational fingering
affects spreading and mixing of plumes of different initial shapes. In the sense of nonlinear
dynamical systems, the η versus σ 2

c plot can be seen as a phase space diagram for
investigating the effect of fingering and shape parameters on mixing. This is equivalent to
σ 2

c versus 〈ε〉 phase diagram in viscous fingering (Jha 2014). We first analyse the evolution
behaviour for a diffusive system, i.e. [R, Ra] = [0, 1000], to set a baseline for interpreting
these plots. For a diffusive system, both η and σ 2

c decrease monotonically in time, which
can be inferred from figures 8 and 9 by noting that darker shades denote early time
and lighter shades denote late times. Therefore, the η versus σ 2

c trend is also monotonic
and agrees with our previously mentioned hypothesis for diffusive transport of a circular
source. The effect of vertical or horizontal initial shape on the η versus σ 2

c trend is minimal
in diffusive systems except in the presence of boundary condition effects; the vertical
source (a/b = 1/3) at slower mean flow (fL = 0.001) reaches the bottom boundary fast
and experiences the effect of no-flux boundary condition, which causes a rapid drop in η.
At higher flux fL = 0.01 (figure 9), this effect is absent and we recover the baseline trend in
η versus σ 2

c . In convective systems with fingering instabilities, η behaves nonlinearly with
σ 2

c because of significant changes in the plume shape, e.g. horizontal viscous fingering in
figure 9 for [R, Ra, a/b] = [3, 1000, 3].

The effect of R on plume shape (η) and mixing (σ 2
c ) metrics is amplified when

convection dominates the flow, which happens at higher Ra (second row in figure 8) and
higher fL (both rows in figure 9). When both density- and viscosity-driven fingering occurs,
their effects are superposed on the baseline diffusive trend, rendering the η versus σ 2

c
trend complex. In these cases, the initial source shape (a/b) plays a more important role in
determining the η versus σ 2

c trend than in the cases where fingering is absent.
The importance of relating an indicator of mixing, such as σ 2

c , to a plume shape metric,
such as η, stems from the observation that mixing is more intense where the concentration
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Figure 8. Scatterplots of the solute plume’s η and σ 2
c for fL = 0.001 at ten equidistributed time intervals

between t = 0.1 (dark colour shade) and t = 1 (light colour shade). Results for Ra = 1000 (a–c) and Ra = 9000
(d–f ), and for R = −3, 0 and 3 (left, centre and right columns, respectively).
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Figure 9. Scatterplots of the solute plume’s η and σ 2
c for fL = 0.01 at equidistributed time intervals between

t = 0.025 (dark colour shade) and t = 0.5 (light colour shade), or until the time the plume reaches the
right-hand boundary of the domain. Results for Ra = 1000 (a–c) and Ra = 9000 (d–f ), and for R = −3, 0
and 3 (left, centre and right columns, respectively).

gradients are higher, i.e. at the interface between an injected solute and the ambient
fluid. Engineers and hydrogeologists who may need to maximise or minimise mixing
between two fluids can attempt to control the plume shape evolution in time by leaning
towards one initial solute source orientation or another. For example, if a fluid is being
injected in an aquifer for the purpose of groundwater remediation, it is desirable to ensure

972 A19-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.710


Influence of initial plume shape on porous media flows

(a) (b) (c)

(d) (e) ( f )

〈c〉 R 0

0.15

0.21

0.15

0.18

0
.1

8

0.15

0.18

0.21

0.24

0.27

0.15

0.1
8

0
.2

1

0
.2

4

0
.1

2

0.18

0.21

0.24

0.03 0.03

0.06

0
.0

6

0
.0

9

0.09

0.12

0
.0

3

0.03

0.030
.0

3

0.03

0.03

0.06

0.06

0
.0

6

0
.0

6

0
.0

9

0.09

0.09 0.12

0.27

0.15
0.15

0
.1

8

0
.2

40
.2

1

2000 6000 10 000

2

–2

0

2000 6000 10 000

2

–2

0

2000 6000 10 000

2000 6000 10 000 2000 6000 10 000 2000 6000 10 000

2

–2

R

Ra

0

2

–2

Ra

0

2

–2

Ra

0

2

–2

σc
2

a/b = 1/3 a/b = 1 a/b = 3

0.1

0.10

0.15

0.05

0.10

0.15

0.05

0.10

0.15

0.05

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

Figure 10. Contour plots of the spatial statistics of the concentration. The mean concentration (a–c) and
concentration variance (d–f ) of the plume at t = 1 for fL = 0.001 and for the range of R and Ra investigated
for different initial shapes: a/b = 1/3, 1 and 3.

maximum mixing between the two fluids. Traditionally, this implies that the remediation
fluid selection and its injection are designed in a way to maximise the interface between
the two fluids; in other words, a high η has been traditionally associated with good mixing,
or low values of σ 2

c . We have shown in figures 8 and 9 that, depending on several factors
(the mean flow velocity, the initial shape and orientation of the injected solute source and
the degree of viscosity and density contrast between the two fluids), the same degree of
mixing can be achieved for different values of the shape parameter η, that is, for different
shapes of the solute plume. Similarly, the same value of η can be associated with different
degrees of mixing; see, for example, cases for R = −3 and Ra = 9000 in figure 9 for
a/b = 3 and a/b = 1/3.

5.2.2. Mixing analysis in the R–Ra parameter space and concentration statistics
To understand how mixing evolves globally in the domain as a function of the density
and viscosity contrasts, we plot the spatially averaged mean 〈c〉 and variance σ 2

c of the
concentration field as contour maps in the parameter space of R and Ra for fL = 0.001 and
fL = 0.01 and distinct values for a/b (see figures 10 and 11, respectively). The spatial
statistics of the concentration field can be viewed as global measures of mixing. As
discussed in Bonazzi et al. (2022), the spatial mean concentration is related to the dilution
index (Kitanidis 1994) and therefore can be used as a descriptor for the global mixing
state of a solute plume. Similarly, the concentration variance is related to the global scalar
dissipation rate (Kapoor & Gelhar 1994). Both figures present results for three different
values of the initial solute source shape (a/b = 1/3, 1 and 3), presenting the contour maps
for the concentration spatial mean (top row of figures 10 and 11) and variance (bottom row
of figures 10 and 11). Results for 〈c〉 and σ 2

c are shown at time snapshots t = 1 (figure 10)
and t = 0.1 (figure 11).

Focusing on the low-inlet-flux case reported in figure 10, we can see that, for R < 0,
a vertical initial source (a/b = 1/3, left column) leads to better mixing compared to a
horizontal source, in agreement with the analysis carried out for the bottom row images
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Figure 11. Contour plots of the spatial statistics of the concentration. The mean concentration (a–c) and
concentration variance (d–f ) of the plume at t = 0.1 for fL = 0.01 and for the range of R and Ra investigated
for a/b = 1/3, 1 and 3.

in figure 4. For R > 0, however, a better degree of global mixing (lower 〈c〉 and σ 2
c ) is

achieved for a/b = 3 because the horizontal initial source facilitates the creation of gravity
fingers along with viscous fingers. For R ≈ 0, values of 〈c〉 and σ 2

c lie between those
computed for R > 0 and R < 0. We also observe that if a/b = 1/3, the impact of viscosity
contrast between the fluids on the resulting concentration spatial mean and variance is not
as strong as in the case of a/b = 3, in which the difference between the upper and the
lower part of the parameter space is more noticeable. In regard to the effect of Ra, the
results in figure 10 show that for a fixed R, better mixing is achieved for lower values of
Ra. This is due to the fact that high density contrasts lead to less diffusive mass transfer.
However, the impact of Ra on mixing becomes almost negligible for R > 0: note how on
the upper half of the parameter spaces in figure 10, the concentration isolines are almost
horizontal. A similar isoline orientation is found for R < 0 when Ra � 6000, suggesting
that as Ra increases its impact on mixing tends to ‘stabilise’. The reason is that reduction
in mixing due to lower diffusion at higher Ra is balanced by increase in mixing due to a
longer interface at higher Ra; a similar observation has been made for fluid mixing from
viscous fingering (Jha et al. 2011a). Further investigation involving a broader range of
Ra considered would be warranted to support this hypothesis. As expected, the impact of
Ra on mixing is higher for a/b = 3 because a horizontally oriented initial source allows
gravitational fingering.

Next, we analyse figure 11 to understand how the physics of mixing changes when
the inlet flux is increased tenfold (fL = 0.01). The observation that a vertically extended
initial source translates to better mixing, compared with a horizontal source, for R < 0
is still valid. However, unlike what was observed in figure 10, when the mean flow
velocity increases, for R > 0, a plume originating from a horizontally extended initial
source (a/b = 3) does not correspond to the best mixed scenario. Since a higher flow
velocity means that viscous fingers are clearly forming in the direction of flow, a/b = 1/3
(perpendicular to the flow direction) is the shape that offers more interface and favours
finger formation. As seen in figure 6, for R > 0 and a/b = 3, the plume travels as a single
finger, which inhibits convective mixing. Another difference in regard to the discussion
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of figure 10 is that in figure 11, values of R ≈ 0 do not result in a mean concentration
that lies between those observed for R > 0 and R < 0. For R ≈ 0 we have the highest
computed values of 〈c〉, and this trend is exacerbated for a/b = 3. The reason is that a high
fL value enhances viscous fingering of the vertical source, forward fingering for R > 0 and
backward fingering for R < 0. Fingering-induced mixing leads to a drop in 〈c〉. Fingering
is absent at R ≈ 0, and hence we observe highest 〈c〉 values at R ≈ 0. As mentioned
previously, at R = 0, mixing is not significantly affected by the density contrast, whose
effect on solute transport is being hampered by the higher mean flow velocity. The solute
plume travels along the mean flow direction almost undisturbed. On the other hand, the
lower velocity inside the plume due to R < 0 causes downstream stretching of the plume
and appearance of the previously mentioned ‘wake’ (see § 5.1, discussion for figure 6), thus
resulting in a mean concentration lower than that computed with R = 0. The difference in
〈c〉 between R = 0 and R < 0 is not as large as that between R = 0 and R > 0, where the
formation of a single finger that travels faster than the mean flow velocity is sufficient to
achieve the best degree of mixing among the ones obtained for a/b = 3.

The effect of Ra on both 〈c〉 and σ 2
c is almost negligible for R > 0, similar to what

was observed in figure 10. Recall that these observations are at a specific time step; Ra
does influence the time evolution of mixing, e.g. the evolution of η in figure 9. If a/b =
1/3, density contrast does not seem to have a significant impact on the mixing metrics
considered here for any value of R. For a/b = 3 on the other hand, if R < 0, we observe
again that density differences between the fluids seem to have an impact only for Ra �
6000, analogous to the case of lower fL in figure 10.

6. Effects of heterogeneity in the permeability field

Next, we focus on quantifying the effect of permeability heterogeneity on plume mixing
and spreading under hydrodynamic instabilities. In order to account for heterogeneity,
we consider a stratified porous medium. Stratification or layering is a common feature
in many geophysical flows. For example, a layered geological formation leads to depth
dependence in hydraulic properties, e.g. causing the permeability to change significantly
from a clean sandstone layer of high permeability to an adjacent silty sandstone layer
of low permeability. This is relevant for solute transport because it is expected that the
solute plume will move faster and farther in a high-permeability layer compared with
a low-permeability layer. Therefore, it is intuitive to expect enhanced plume stretching,
sharper concentration gradients along the stretched interface and faster mixing across the
fluid interface. We model stratification following the model described in (2.9) in Nijjer
et al. (2019):

ln(k) = −σ 2
st cos(2πnz) − ln(I0(σ

2
st)), (6.1)

where σ 2
st is the log-permeability variance, z is the vertical coordinate, I0 is the modified

Bessel function of the first kind and n is the wavenumber which determines the length scale
of the permeability variations. In this study, we set n = 2, thus obtaining four layers in the
domain. We simulate transport for two different values of the log-permeability variance:
σ 2

st = 0.05 and σ 2
st = 0.1, with the same average permeability value. We also consider

the baseline case of a homogeneous medium (σ 2
st = 0) with a uniform permeability value

equal to the average permeability in the heterogeneous cases. Regarding fluid properties,
we set R = 2 (the plume is less viscous than the ambient fluid) and Ra = 5000 (the plume
is denser than the ambient fluid). We also present results for R = 0 for comparison. For the
upcoming results, we set the inlet flux parameter to fL = 0.01 and consider two values of

972 A19-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.710


A. Bonazzi, B. Jha and F.P.J. de Barros

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

σ2
st = 0

σ2
st = 0.05

σ2
st = 0.10

R = 2 R = 0(a) (b)

(c) (d)

(e) ( f )

Figure 12. Concentration fields at t = 0.1 for a/b = 1/3, for three different levels of heterogeneity: (a,b)
no heterogeneity (σ 2

st = 0), (c,d) σ 2
st = 0.05 and (e,f ) σ 2

st = 0.1. (a,c,e) Results for R = 2 and (b,d, f ) the
corresponding cases in the absence of viscosity contrast (R = 0). All results are for Ra = 5000 and fL = 0.01.
The permeability field has been superimposed in transparency to the concentration fields; light shades
correspond to higher-permeability layers, while darker shades to low-permeability ones.

the initial source configuration: a/b = 1/3 (vertical orientation) and a/b = 3 (horizontal
orientation).

Figure 12 shows the concentration fields for different levels of heterogeneity and
values of R. Results are depicted at dimensionless time t = 0.1 for a/b = 1/3. Increasing
heterogeneity in a stratified medium results in the formation of preferential flow paths in
higher-permeability layers. As σ 2

st increases, the middle layer becomes more permeable,
which causes additional stretching of the plume as seen in figure 12. The presence
of heterogeneity changes the location of the peak concentration in the plume. For a
homogeneous case (σ 2

st = 0), highest concentration is at the bottom of the plume because
of gravitational sinking (Ra = 5000). For layered cases, the highest concentration occurs
in the high-permeability middle layer. This occurs with or without the viscosity contrast;
however, viscous fingering at R = 2 creates additional mechanisms that are superposed on
the effects due to density contrast and layering. We know from the literature (Sajjadi &
Azaiez 2013; Nicolaides et al. 2015; Nijjer et al. 2019; Bonazzi et al. 2021) that viscous
fingering interacts with permeability heterogeneity. For example, during continuous slug
injection in layered media (Nijjer et al. 2019), viscous fingering dominates the mixing
behaviour at early times, and when the fingers have grown to become comparable to the
layer thickness scale, heterogeneity begins to dominate mixing. Such investigations of
the interplay between fingering and heterogeneity mechanisms are missing for finite-size
solute bodies, which we address here (see figures 12 and 13). The high flow velocity in the
middle layer (figure 12e) causes tip splitting of the fingers followed by tip blunting, which
we explained in our prior work; see figure 3 in Bonazzi et al. (2021). The result of these
interactions is rapid mixing in the high-permeability middle layer. At R = 0, these effects
are absent, and high concentrations in the middle layer persist for a longer duration.
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Figure 13. Maps of the velocity magnitude, |v|, at t = 0.1 for fL = 0.01 and a/b = 1/3. The arrows indicate
the velocity vector with both direction and magnitude information. The colourbars represent the logarithm of
velocity magnitude, i.e. log10|v|. The black line outlines the position of the plume. All results are for Ra =
5000.

When the initial solute source is horizontally oriented (a/b = 3, figure 14), permeability
stratification does not have a significant impact on solute transport in absence of viscous
fingering (R = 0, figure 14b,d, f ). This is because the source zone is not crossing
multiple layers at the considered time. However, when viscosity contrast is present
(R = 2, figure 14a,c,e), stratification favours the formation of viscous fingers in the
horizontal direction, a feature that was not observed for analogous cases in homogeneous
media discussed in § 5. The horizontal finger formation can be explained by observing
figure 15(a,c,e). As the difference in velocity magnitude between layers increases, the
upper and lower edges of the plume experience lower velocity magnitudes compared
with the centre. The horizontal direction of the velocity field causes the centre of the
plume to travel faster than its edges and split into two fingers, following the tip splitting
mechanism. At σ 2

st = 0.05 (figure 15c), the upper finger eventually merges into the
dominating lower finger, following the finger coarsening mechanism (Jha et al. 2011b).
At σ 2

st = 0.1, heterogeneity is strong enough to sustain the growth of both fingers for a
longer time (figure 14e). Eventually, the fingers will merge as in the case of a vertically
oriented source (a/b = 1/3), and permeability heterogeneity will be the dominant agent
affecting solute mixing and transport.

In this section, the layer thickness is comparable to the size of the initial source. The
horizontally oriented source is inside the higher-permeability layer, i.e. the permeability
values in that layer (albeit not constant due to the sinusoidal nature of the field) are higher
compared with the mean permeability. However, we can see that even such slight variation
of the permeability is able to affect the transport behaviour. This suggests that the structure
of the permeability field might impact the interplay between density and viscosity contrast
in driving mixing. If the permeability field structure is reversed (i.e. switching the locations
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Figure 14. Concentration fields for a/b = 3 at t = 0.1 for three levels of heterogeneity: (a,b) σ 2
st = 0 (no

heterogeneity), (c,d) σ 2
st = 0.05 and (e, f ) σ 2

st = 0.1. All results are for Ra = 5000 and fL = 0.01.
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Figure 15. Maps of the velocity magnitude, |v|, for a/b = 3 at t = 0.1 for fL = 0.01. The arrows indicate
the velocity vector with both direction and magnitude information. The colourbars represent the logarithm of
velocity magnitude, i.e. log10|v|. The black line outlines the position of the plume. All results are for Ra =
5000.
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of high-permeability layers with the locations of the low-permeability layers), or if the
solute injection is located between layers, the impact of the structure of the permeability
field on mixing might be different.

7. Summary

The need for modelling the effects of viscosity and density contrasts in the spreading and
mixing dynamics of a solute body has been recognised and addressed in the literature given
its importance in contaminant transport, energy recovery and storage in the subsurface
environment. In all these applications, solutes are characterised by viscosity and density
values that differ from those of the ambient fluid. Furthermore, these solutes are injected
into the subsurface through source zones of different spatial configurations. Our work
focuses on systematically investigating the impact of the initial configuration of the
source zone on the transport behaviour in the presence of hydrodynamic instabilities.
The numerical analysis carried out in the present work illustrates the importance of both
the initial solute source configuration and the intensity of the inlet (background) flux in
controlling the relative significance of R and Ra in the mixing and spreading behaviour. In
the following, we highlight the key findings of our analysis.

Effect of viscosity contrast on mixing: For a homogeneous medium and low inlet or
background flux, gravitational fingering is impeded when the solute is more viscous than
the ambient fluid, i.e. R < 0. When R > 0, viscous fingering occurs in both horizontal
and vertical directions and in the latter case, viscous fingering and gravitational fingering
effects overlap. For R < 0, better mixing is achieved with a vertically oriented initial
source. If more mixing is desired under R > 0 conditions, a horizontally oriented solute
source is preferable at a low background flux, whereas a vertical source is preferable at
high background flux. At higher inlet flux, when R > 0, a horizontally oriented source
does not result in the best degree of mixing because the dominance of viscous fingering
(as the primary driver of mixing) allows a vertically extended source to form a larger
number of fingers. The importance of viscosity contrast in enhancing mixing when the
inlet flux is higher means that the degree of mixing is lower when no viscosity contrast is
present (R ≈ 0).

Effect of density contrast on mixing: For a homogeneous medium and low inlet flux,
higher values of Ra were also found to allow lower rates of diffusive mass transfer. The
impact of Ra on mixing was found to be almost negligible when R > 0. A horizontally
oriented initial source zone allows gravitational fingers to form and grow in the vertical
direction. The number of fingers increases with Ra in accordance with the linear stability
analysis theory. At higher inlet flux, the role of Ra in mixing is minor for a vertically
oriented source for any value of R considered. For a horizontally oriented source, Ra
appears to affect mixing when R < 0.

Effect of background flow velocity on mixing: We established that a higher mean flow
velocity hampers gravitational fingering, thus rendering viscous fingering the dominant
force driving mixing. As a consequence, the source orientation becomes a significant
factor when R < 0. Under these conditions, we observed the following: (1) for a/b = 1/3
(vertically oriented source), a higher flow velocity allows the formation of viscous fingers,
which will lead to enhanced mixing; while (2) for a/b = 3 (horizontally oriented source)
the absence of viscous fingering and the low velocity inside the plume result in poor
mixing.

Relationship between mixing and plume shape: The numerical analysis presented here
allowed us to investigate the relationship between the degree of mixing and the length of
the interface between the solute and the ambient fluid (i.e. plume shape). Traditionally, one
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would expect enhanced mixing rates for increased elongation of the plume’s interface with
the surrounding fluid. In the context of aquifer remediation, hydrologists and engineers aim
to maximise the interface between the contaminant and groundwater in order to enhance
dilution and reaction rates (e.g. Bagtzoglou & Oates 2007; Kitanidis & McCarty 2012;
Trefry et al. 2012; Piscopo, Neupauer & Mays 2013). As shown in § 5.2.1, the relationship
between mixing and plume shape is non-trivial when fingering instabilities are present.
The results in § 5.2.1 shed novel insights on the role of source orientation, inlet flux and
fingering instabilities (i.e. viscosity and density contrasts) in controlling the plume shape
and its mixing dynamics. Our results show that the same degree of mixing can be achieved
for different plume shapes.

Effect of permeability heterogeneity on mixing: To account for the heterogeneity,
we considered a stratified permeability field. We found that, for a vertically oriented
solute source, heterogeneity in the porous medium affects the location of the plume’s
highest concentration values by overlaying the effect of gravitational instability and
favouring higher concentration values in the higher-permeability layer. The high flow
velocity in the more permeable layer causes tip splitting and results in rapid mixing.
For a horizontally oriented solute source, the combined effect of viscosity contrast and
permeability heterogeneity results in fingering along the flow direction, a result not
observed for the homogeneous media analysis presented in § 5.

The simulations carried out in this work highlight the importance of the initial
solute source configuration and the intensity of the inlet flux in modulating both the
plume’s spreading and mixing behaviour in homogeneous and heterogeneous permeability
fields. Additional research is needed to understand these complex interactions in
three-dimensional settings, larger computational domains, in the absence of interaction
with the bottom boundary of the domain, with different injection modes and distinct
conceptualisations of the permeability field, including higher levels of permeability
heterogeneity.
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Appendix A

The governing dimensional equation for the flow field is given by

∇ · q̂(x̂, t̂) = 0, (A1)

where the (·̂) symbol denotes a dimensional variable and q̂ is the specific discharge defined
by Darcy’s law as

q̂(x̂, t̂) = − k̂(x̂)

μ̂(ĉ(x̂, t̂))
(∇p̂(x̂, t̂) − �ρgF(ĉ(x̂, t̂)). (A2)

The dimensional governing equation for transport of an inert solute is

φ
∂ ĉ(x̂, t̂)

∂ t̂
+ q̂(x̂, t̂) · ∇ĉ(x̂, t̂) = φD∇2ĉ(x̂, t̂). (A3)
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(a) (b)

Figure 16. Comparison between the concentration field at t = 4 from figure 4(a) in Hewitt et al. (2013) (a)
and the concentration field obtained with our model at the same time (b).

In a homogeneous field, k̂(x̂) in (A2) is a constant, k̂(x̂) = k̂, with corresponding
dimensionless group k = k̂/kc, with kc = k̂. We then define the following dimensionless
groups:

x = x̂
�
; q = q̂

Q
; t = t̂

τ
; c = ĉ

co
; μ = μ̂

μ1
; p = p̂

pc
, (A4a–f )

where � represents the characteristic length of the domain (chosen to be its thickness);
Q denotes the characteristic velocity defined as Q = kc�ρg/μ1; τ corresponds to the
characteristic time scale defined as τ = μ1�φ/kc�ρg; pc is the characteristic pressure
defined as pc = ��ρg; co is the injected solute initial concentration; and μ1 is the viscosity
of the injected solute. By substituting (A4a–f ) into (A1)–(A3), we find the corresponding
dimensionless equations in § 2, (2.1), (2.2) and (2.6).

In a heterogeneous field, the dimensionless form of the governing equations for flow
and transport will remain the same as presented in (2.1) and (2.6), respectively; however,
permeability will not disappear from the dimensionless form of Darcy’s law:

q(x, t) = − k(x)

μ(c(x, t))
[∇p(x, t) − c(x, t)ez]. (A5)

Appendix B

We test our numerical simulator by comparing its result for a fixed interface case with
the result for the same case from Hewitt et al. (2013). The set-up for this case consists of
a zero mass and buoyancy fluxes condition at the bottom and side boundaries, while the
upper boundary has zero vertical velocity and a constant concentration C∗

m imposed. The
initial concentration C∗− in the porous medium is constant with C∗− < C∗

m, so that as time
evolves the dimensional concentration C∗ is C∗− < C∗ < C∗

m. In Hewitt et al. (2013) the
dimensionless concentration C is defined in such a way that −1 < C < 0. We rescaled it
in our verification process so that 0 < C < 1.

Times are normalised with the convective time scale T , with T = φH/U. Lengths are
normalised with the initial interfacial height H, which in the examined case corresponds
to the domain thickness. Parameter U is the convective velocity scale, U = k�ρg/μ,
analogous to Q in Appendix A with the notable difference that in Hewitt et al. (2013) the
system viscosity μ is a constant. Pressures are normalised with the characteristic pressure
pc = μUH/k. Further details about the process to obtain the dimensionless governing
equations can be found in § 3.2 of Hewitt et al. (2013).

A comparison between the concentration fields in Hewitt et al. (2013) and that obtained
in our numerical simulation at t = 4 is presented in figure 16. Differences between the
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two images are due to the nature of the random perturbation at the top boundary, to the
different horizontal grid resolution (�x = (1024)−1 in our study, and �x = (2048)−1 in
Hewitt et al. (2013)) and to the slight differences in the image colour scale.
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