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Abstract

The degree distribution of the neighbors of nodes in a network is a theoretically important

tool that is invoked in diverse studies in network science, such as epidemics, network resilience,

network search and observability, network synchronization, random walks, opinion dynamics,

and other dynamical systems on networks. Many real networks grow, and their properties

pertaining to the said phenomena evolve. There is a paucity of theoretical research on how

the evolution of these properties depend upon time and upon the structure of the initial

network. This paper addresses this problem by providing the first theoretical study of the

temporal evolution of the nearest-neighbor degree distribution for arbitrary networks (with

any size) in arbitrary times. The posited results enable the analysis of the structural properties

of growing networks in the short-time and intermediary time regimes, which are typically

ignored in favor of the steady state. We corroborate the solutions via Monte Carlo simulations

on various topologies. As a byproduct of the obtained solutions, we also demonstrate that

the existing result in the literature on the asymptotic behavior of the Pearson coefficient of

growing networks under the preferential attachment mechanism is incorrect, and we present

the correct solution.
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1 Introduction

Dynamism of structure is one of the central features of real networks that many

studies in network science seek to accommodate. Two main strands of research exist

in the literature, focusing mainly on two distinct time regimes of structural change.

One strand focuses on temporal fluctuations of links, such as the bursty nature of

social interactions. This is the focus of the recent wave of literature on temporal

networks (Holme and Saramäki, 2012). The other approach focuses on the longer

time scales that characterize the growth of networks. Growth is ubiquitous across

a broad array of networks. Examples include the growth of scientific citation net-

works (Price, 1976), network of collaborations between actors (Albert and Barabási,

2000) or scientists (Newman, 2004), ecological and biological networks (Bersini et al.,
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2006; Bhan et al., 2002; Chung et al., 2003), online social networks (Kumar et al.,

2010), offline social networks (Jin et al., 2001), the Internet (Faloutsos et al., 1999)

and the worldwide web (Broder et al., 2000), criminal networks (Marshak et al.,

2016), and the growth of the power grid due to expansion of urban areas (Pagani

and Aiello, 2014). The present paper undertakes the latter approach to structural

dynamics.

The degree distribution of a network—which we denote by pk—is the probability

that a uniformly chosen node (ego) is attached to k other nodes. The nearest-

neighbor degree distribution (NNDD)—denoted by p(�|k)—is the degree distribution

of the neighbors (alters) of a degree-k node chosen uniformly among all degree-k

nodes in the network. In other words, if we randomly select an ego and observe

that its degree is k, then the probability that a randomly selected alter will have

degree � is given by p(�|k). The NNDD is theoretically important and is invoked

in diverse studies in network science, including network resilience (Vázquez and

Moreno, 2003; Goltsev et al., 2008), epidemics on simple (Barrat et al., 2008;

Boguná et al., 2003) and metapopulation (Colizza and Vespignani, 2008; Apolloni et

al., 2014) networks, random walks and diffusive dynamics on networks (Barrat et al.,

2008; Baronchelli et al., 2008; Baronchelli and Pastor-Satorras, 2010), transportation

networks (Peruani, 2009), loop statistics in networks (Noh, 2008), contact processes

on networks (Ferreira et al., 2011), network search (Fortunato et al., 2008, 2007)

and observability (Hasegawa et al., 2013), evolutionary games (Zhang et al., 2015),

voter model (Pugliese and Castellano, 2009; Vazquez and Eguı́luz, 2008), structural

cutoffs (Boguná et al., 2004a), and finding the largest eigenvalue of the adjacency

matrix of the network (Restrepo et al., 2007)—which itself is invoked in numerous

applications, such as epidemics (Van Mieghem, 2012; Prakash et al., 2010; Lee

et al., 2013), agent-based network consensus problems (Olfati-Saber et al., 2007),

and network synchronization (Restrepo et al., 2006, 2005). In all of the analyses

mentioned above, the NNDD is invoked as a measure of network connectivity at

the nearest-neighbor level.

The present paper focuses on the temporal evolution of the NNDD, which

enables the theoretical study of how the properties of network pertaining to all the

said phenomena evolve in time. More specifically, this paper answers the following

question: if an arbitrary network with given degree distribution and given NNDD

is subject to growth, how does its NNDD evolve in time? We seek a solution for

arbitrary times that also captures the effect of the initial network.

Although there exist ample theoretical studies and results on the structural

properties of growing networks, most of them are mainly restricted to the steady state

(also known as the equilibrium state, the thermodynamic limit, or the t → ∞ limit).1

However, no real network has infinite size. Real networks evolve over time, and

this motivates studying the time evolution of the structural attributes of networks

for arbitrary times. Given the observed structure of a network at a given reference

time, one may wish to forecast how its structure will evolve over a period of a

1 When time is taken into account, it is again conventionally restricted to the asymptotic limit. An
example is the work of Barrat and Pastor-Satorras (2005) that studies the average nearest-neighbor
degree taking into account the leading term in the asymptotic limit. The effect of initial conditions has
already vanished in this time regime.
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few days or weeks. This period is small compared to the typical age of massive

real networks. (For example, consider a citation network; the number of papers

published in a week or a month is typically much smaller than the size of the entire

corpus of previous literature.) This illuminates the need for the theoretical analysis

of short-time evolution of networks, for which there is little existing work.

This work is also motivated by the following observation. Due to the finite size

of observed networks, existing asymptotic theoretical predictions in the literature

cannot be tested. For example, failure to fit a power-law degree distribution to

observed data does not imply that the corresponding network is not evolving

according to a preferential attachment model, since the network may not have

reached the steady-state regime yet. This paper takes a step toward addressing this

problem.

To study the temporal evolution of the NNDD, we employ the most basic

growth mechanism posited in the literature: preferential attachment. It is a simple

generative model proposed originally by Price (1976) to model citation networks. It

was more recently revived by Barabási and Albert (1999) to model the formation of

scale-free (SF) networks—networks with power-law degree distributions. Until very

recently (Fotouhi and Rabbat, 2013a), there has not been any theoretical analysis

providing expressions for the NNDD of networks constructed by the preferential

attachment mechanism. Rather, previous work has resorted to a combination of

numerical simulations and the so-called “uncorrelated approximation”, assuming

that the degree distributions of neighboring nodes are independent.2

The first contribution of this paper is to derive an expression for the evolution of

the expected NNDD of growing networks as a function of time. We assume that

the network begins from an arbitrary initial condition with given degree distribution

and NNDD, and that the network structure evolves according to the preferential

attachment model. We corroborate the results via Monte Carlo simulations on

various network topologies. We then use the obtained results and find the leading

behavior of the NNDD for long times. Using the results, we demonstrate that the

Pearson correlation coefficient for the preferential attachment model tends to zero for

infinite system size, which is consistent with the findings in Dorogovtsev et al. (2010).

We also utilize the results to study the asymptotic behavior of the Pearson correlation

coefficient. Denoting the number of nodes by N and the Pearson coefficient by r, we

demonstrate that r → 0 as log2N/
√
N as N becomes large. This is in contrast to

the result presented in Newman (2002), in which the denominator reads N, rather

than
√
N. We support our finding both theoretically and via simulations.

2 Notation and method

Denote by N(t) the number of nodes in the network at time t, and let Nk(t) denote

the expected number of nodes with degree k at time t. Let V (t) denote the set of

nodes in the network at time t, and let L(t) denote the number of links in the

network at time t. For all time-dependent quantities, we take the initial conditions

at time t = 0 to be given (e.g., the initial set of nodes V (0) and initial number of

2 See Fotouhi and Rabbat (2013a) and Equation (15), for a detailed list of previous work using the
uncorrelated approximation.
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Fig. 1. An example graph used to explain the steps undertaken to find p(�|k) using

Equation (1). The degree of each node is written beside it.

links L(0)), and we omit the notational dependence on time when it is clear from the

context. Hence, we denote the expected degree distribution by p(k) = Nk/N, where

it is implied that this quantity is also time-dependent.

The growth mechanism is as follows. At each timestep, α new nodes are added

to the network and each of them attaches to β existing nodes. Hence, at time t,

there are N(0) + αt nodes and L(0) + αβt links in the network. The new node at

time t is called the child of the exiting nodes to which it attaches, and the nodes to

which it attaches are called its parents. The probability of attaching to a potential

parent node is proportional to that node’s current degree. A (k, �)-parent-child pair

is a child of degree � with a parent of degree k. Let Nk� and N�k denote the

expected number of (k, �)- and (�, k)-parent-child pairs, respectively. Let Lk� denote

the expected number of links that connect a pair of nodes with degrees k and �, so

that Lk� = L�k = Nk� +N�k .

To calculate the NNDD for a node of degree k, which we denote by p(�|k), we

proceed as follows. First, find all the nodes with degree k, and then denote the

collection of their neighbors by Vk . If a node appears as the neighbor of multiple

degree-k nodes, then it appears in Vk with the same multiplicity. The number of

elements of Vk equals kNk , because there are Nk degree-k nodes and each of them

has k neighbors. Next we count the number of nodes in Vk with degree �, which we

denote by Lk�. Then, the NNDD is given by

p(�|k) =
Lk�

kNk

=
Nk� +N�k

kNk

(1)

Example: Consider the graph depicted in Figure 1. Suppose we want to find p(1|4),

i.e., if we know some node has degree 4, what is the probability that a randomly

chosen neighbor will have degree 1? There are two nodes with degree 4 in the graph.

The one on the right has neighbors with degrees 8, 3, 4, 3, and the other one has

neighbors with degrees 4, 3, 2, 1. Only one occurrence of degree 1 exists in V4, so

p(1|4) = 1
8
.

Now let us focus on p(2|8) for the graph in Figure 1. This time, there are three

nodes with degree 8. The degree-8 node on the bottom-left has neighbors with
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degrees 1, 1, 1, 1, 1, 1, 2, 2. The degree-8 node on the top of the figure has neighbors

with degrees 1, 1, 1, 2, 2, 2, 2, 3. Note that one of the degree-2 neighbors of this node

is also adjacent to the degree-8 node on the right side. This common degree-2

neighbor must be counted for both of the degree-8 nodes that share it, so it

will appear twice in V8. The degree-8 node on the right-hand side of the figure

has neighbors with degrees 1, 1, 1, 1, 1, 2, 3, 4. So, there are a total of 7 nodes who

have degree 2 appearing in V8. There is a total of 3 × 8 = 24 nodes in V8, so

p(2|8) = 7
24

.

To find the NNDD, we undertake the following steps. First, we determine Nk(t)

as a function of time in Section 3. Then, in Section 4, we study Nk� using the master

equation approach (as in Krapivsky and Redner (2001)) and find an equation

that describes its time evolution. Then we solve this equation to find Nk� as

a function of time. Equipped with Nk�(t) and Nk(t), the NNDD follows from

Equation (1).

Notational conventions: The equations mentioned above will often involve sum-

mations. To simplify the presentation, especially in expressions involving sums over

multiple variables, we suppress the bounds of the summation when the indicated

variable ranges from −∞ to +∞. Also, let Bab denote the binomial coefficient
(
a
b

)
(i.e., the number of ways to choose b elements without repetition from a collection

of a elements). We adopt the convention that Bab = 0 when b > a and when either a

or b is negative.

3 Rate equation for Nk

In the preferential attachment model, nodes are added to the network successively,

each connecting to β existing nodes. The attachment probabilities are proportional

to the degrees of the existing nodes. Consider a node whose degree at time t is k.

When a new node is born at time t, the degree-k node receives a link from that node

with probability k∑
k kNk(t)

. The denominator is the sum of the degrees of all nodes

at time t, which is equal to two times the number of links in the network at time

t, that is, 2[L(0) + αβt]. Denote the average degree of the initial network by k(0).

Then, we have 2L(0) = N(0)k(0). Hereafter, the quantity 2L(0) will be denoted by λ.

So, the probability of receiving a link for a node of degree k becomes k
λ+2αβt

. Each

new node arrives after Δt = 1
α

time units. The following rate equation holds:

Nk(t+ Δt) −Nk(t) =
β(k − 1)Nk−1(t)

λ+ 2αβt
− βkNk(t)

λ+ 2αβt
+ δk,β (2)

The first term on the right-hand side is the expected gain in the population of

degree-k nodes when the newly born node attaches to a node of degree k − 1. The

second term accounts for the event that a degree-k node receives a link; hence,

it degree increments and is no longer k. The last term, expressed using the delta

function, simply states that each new node adds one to the population of nodes with

degree β. Using the relationship Δt = 1
α
, we can write Equation (2) equivalently as

follows:

Nk(t+ Δt) −Nk(t)

Δt
=
αβ(k − 1)Nk−1(t)

λ+ 2αβt
− αβkNk(t)

λ+ 2αβt
+ αδk,β (3)
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Now, we use the following time-continuous approximation to obtain:

∂Nk

∂t
=
αβ(k − 1)Nk−1

λ+ 2αβt
− αβkNk

λ+ 2αβt
+ αδk,β . (4)

The error of this approximation is of order Δt = 1
α
.

As we will see later in the simulations, the time-continuous approximation works

surprisingly accurately even for the case of α = 1 provided that N(0) is sufficiently

large; experiments suggest that N(0) � 20 suffices. This is a reasonable requirement,

noting that typical networks are significantly larger than this.

One can easily verify that the solution to Equation (4) with given initial conditions

is

Nk(t) =

k∑
�=1

N�(0)(1 − c)�ck−� Bk−1
�−1 +

(N(0)k0 + 2αβt)

β

β(β + 1)

k(k + 1)(k + 2)
u(k − β)

− N(0)k0

β

k∑
�=β

β(β + 1)

�(�+ 1)(�+ 2)
(1 − c)�ck−� Bk−1

�−1 (5)

where u(x) is the Heaviside step function (i.e., u(x) = 0 for x < 0, and u(x) = 1 for

x � 0), and c(t) is defined as

c(t)
def
= 1 −

√
λ

λ+ 2αβt
(6)

Note that c(t) is less than 1 for all t and it tends to 1 as t → ∞. The reader is referred

to Fotouhi and Rabbat (2013b) for the detailed derivation of this solution.

Finally, let us recall that, as shown in Bollobás et al. (2001), Dorogovtsev and

Mendes (2002), and Fotouhi and Rabbat (2013b), the asymptotic degree distribution

is given by

p(k) = lim
t→∞

Nk(t)

N(t)
=

2β(β + 1)

k(k + 1)(k + 2)
u(k − β) (7)

4 Rate equation for Nk�

In this section, we study the rate equation that describes the time evolution of Nk�.

In order for Nk� to increment, the newly added node must attach to a node with

degree k − 1 or �− 1. If the new node instead attaches to a node with degree k or

�, then Nk� will decrement. Finally, the special case of � = β must be taken into

account separately. Each new node has degree β upon birth, and if it attaches to a

node of degree k − 1, then Nkβ will increment. The following rate equation covers

all these events and gives the expected change in Nk�(t) upon the addition of a new

node:

Nk�(t+ Δt) −Nk�(t) = αβΔt

[
(k − 1)Nk−1,�(t)

λ+ 2αβt
− kNk,�(t)

λ+ 2αβt
+

(�− 1)Nk,�−1(t)

λ+ 2αβt
(8)

− �Nk,�(t)

λ+ 2αβt
+

(k − 1)Nk−1(t)

λ+ 2αβt
δ(�, β)

]
(9)
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Similar to Section 3, we employ the time-continuous approximation to obtain

∂Nk�

∂t
=

{
(k − 1)Nk−1,�

λ+ 2αβt
− kNk,�

λ+ 2αβt
+

(�− 1)Nk,�−1

λ+ 2αβt
− �Nk,�

λ+ 2αβt

+
(k − 1)Nk−1

λ+ 2αβt
δ(�, β)

}
αβ (10)

This is a differential equation in the time domain, and a difference equation in

both k and �. We use the generating function approach (analogous to the so-called

Z-transform) to proceed. Let us define the generating function

ψ(z, y, t) =
∑
k,�

Nk,�z
−ky−� (11)

We denote the generating function for Nk(t) by G(·). That is,

G(z, t)
def
=
∑
k

Nk(t)z
−k (12)

Given the generating function ψ(z, y, t) for the sequence Nk,�(t), it is straight-

forward to show that the generating function for kNk,� is −z ∂ψ(z,y,t)
∂z

. Also, the

generating function for Nk−1,� is z−1ψ(z, y, t). Similarly, the generating function for

�Nk,� is −y ∂ψ(z,y,t)
∂y

and the generating function for Nk,�−1 is y−1ψ(z, y, t). Using these

properties, from Equation (10), we obtain

∂

∂t
ψ(z, y, t) =

αβ(z − 1)

(λ+ 2αβt)

∂

∂z
ψ(z, y, t)

+
αβ(y − 1)

(λ+ 2αβt)

∂

∂y
ψ(z, y, t) − αβy−β

λ+ 2αβt

∂G(z, t)

∂z
(13)

For brevity in the following, let us define

K(z, y, t)
def
= − αβy−β

λ+ 2αβt

∂G(z, t)

∂z
(14)

An explicit expression for K(z, y, t) is obtained in Appendix A. We can rewrite

Equation (13) as follows:

∂

∂t
ψ(z, y, t) = K(z, y, t) +

αβ(z − 1)

(λ+ 2αβt)

∂

∂z
ψ(z, y, t) +

αβ(y − 1)

(λ+ 2αβt)

∂

∂y
ψ(z, y, t) (15)

Rearranging the terms in Equation (15), the differential equation we need to solve

becomes

∂

∂t
ψ(z, y, t) − αβ(z − 1)

(λ+ 2αβt)

∂

∂z
ψ(z, y, t) − αβ(y − 1)

(λ+ 2αβt)

∂

∂y
ψ(z, y, t) = K(z, y, t) (16)

We use the method of characteristics to solve this partial differential equation.3

3 The reader is referred to a textbook on linear partial differential equations, such as Zwillinger (1998,
chap. 2), for detailed discussions about the method, and to Appendix D in Fotouhi and Rabbat (2013b)
for a brief and quick introduction.
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Define

⎧⎨
⎩
C1

def
= (z − 1)2(λ+ 2αβt)

C2
def
=

z − 1

y − 1

(17)

In Appendix B, we show that the solution to Equation (16) is

ψ(z, y, t) =
−C1

αβ

∫ z K

[
x,
x− 1 + C2

C2
,

C1

2αβ(x− 1)2
− λ

2αβ

]
(x− 1)3

dx+ Φ(C1, C2) (18)

This expression for ψ(·) satisfies Equation (16) for any differentiable function Φ(·),
and Φ(·) is uniquely determined for given initial conditions. Note that inside the

integral, C1 and C2 are treated as constants and their dependence on time and z

must be ignored while performing the integration. After the integration, C1 and C2

are replaced as functions of z, y and t as given in (17).

For expository purposes, let us temporarily define

Q(z, y, t)
def
=

−C1

αβ

∫ z K

[
x,
x− 1 + C2

C2
,

C1

2αβ(x− 1)2
− λ

2αβ

]
(x− 1)3

dx (19)

so that we can equivalently express Equation (18) as

ψ(z, y, t) = Q(z, y, t) + Φ(C1, C2) (20)

Taking the inverse transform of this expression yields Nk�(t). This inversion is

carried out in Appendix C. To this end, we first find the unknown function Φ(·, ·)
by examining at Equation (20) at the outset, that is, at t = 0, and using the initial

conditions Nk�(0). Denoting the inverse transform of Q(z, y, t) by Qk�(t), and using

the definition in Equation (6) for brevity, the result is

Nk�(t) = Qk�(t) +
∑
r,s

Nrs(0)Bk−1
r−1 B

�−1
s−1

(
1 − c

c

)r+s
ck+�

− ∑
r,s

Qrs(0)Bk−1
r−1 B

�−1
s−1

(
1 − c

c

)r+s
ck+� (21)

Note that the bounds of summation are automatically imposed by the binomial

coefficients. The terms of both sums vanish for all r > k, s > � and for negative

values of r and s.

For a complete solution, we need the explicit form of Qk�(t) to insert in the last

sum on the right-hand side of Equation (21). In Appendix D, we simplify Q(z, y, t),
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arriving at the expression

Q(z, y, t) =
−2(λ+ 2αβt)

β

×
∞∑
s=β

∞∑
m=β+s+2

m−s−2∑
ν=β

ν−β∑
μ=0

B
s−β
2

s

Bm−s−ν−1
1 Bν−1

β−1 B
ν−β
μ (−1)μ

(m− 1)

(z − 1)μ+β+2

(y − 1)μ+β
z−m+1

−
√
λ+ 2αβt

λ
G′

0(z
′)

∞∑
m=β+2

m−2∑
ν=β

ν−β∑
μ=0

Bm−ν−1
1 Bν−1

β−1 B
ν−β
μ (−1)μ

(m− 1)

(z − 1)μ+β+1

(y − 1)μ+β
z−m+1

− 2(λ+ 2αβt)

β
F(z′)

∞∑
m=β+2

m−2∑
ν=β

ν−β∑
μ=0

Bm−ν−1
1 Bν−1

β−1 B
ν−β
μ (−1)μ

(m− 1)

(z − 1)μ+β+2

(y − 1)μ+β
z−m+1

+
1

β
(λ+ 2αβt)

∞∑
m=2β+4

m−β−4∑
ν=β

ν−β∑
μ=0

B
m−β−ν−1
3 Bν−1

β−1 B
ν−β
μ (−1)μ

(m− 1)

(z − 1)μ+β+2

(y − 1)μ+β
z−m+1

− λ

β

(
λ

λ+ 2αβt

) β
2

∞∑
m=β+2

m−2∑
ν=β

ν−β∑
μ=0

Bm−ν−1
1 Bν−1

β−1 B
ν−β
μ (−1)μ

(m− 1)

(z − 1)μ+β

(y − 1)μ+β
z−m+1

(z − c)β

(22)

where z′ def
= z−c

1−c , G0(z) is the generating function of the degree distribution of the

initial network, and the function F(·) is defined as
∫ z x−β

(x−1)3
dx. For easy reference, let

us also remind the reader that λ is twice the number of links in the initial network.

Now, let us define⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
f̂k

def
= −

k∑
r=β

B
r−β
2 Bk−1

r−1

r
(1 − c)rck−r

ĝk
def
= −

k∑
r=β

(r − 1)Nr−1(0)(1 − c)rck−r Bk−1
r−1

(23)

In Appendix E, we take the inverse transform of Equation (22) and find that in the

range � < β the value of Qk�(t) is zero, and for � � β, we have

Qk�(t) = −(λ+ 2αβt)

×
⎡
⎣ −β(β + 1)

k(k + 1)�(�+ 1)
+

(−1)β Bk−1
β−1

�(�+ 1)

�∑
μ=β

(−1)μ
B
μ
β B

�+1
μ+1

B
μ+k+2
k−β

⎤
⎦ u(k − β − 1)

− β
ĝk

�(�+ 1)

(√
λ+ 2αβt

λ

)
+

2(λ+ 2αβt)

�(�+ 1)

[
f̂k − f̂k+1

]

− λ

(
λ

λ+ 2αβt

) β
2 1

�(�+ 1)

k−1∑
j=β

cj−β Bj−1
β−1 (24)

The value of Qrs(0) is also obtained in Appendix E. We have to insert this into

Equation (21) to obtain Nk�. However, it is Nk� +N�k that appears as the numerator

in Equation (1), not Nk� alone. In Appendix F, we directly calculate Nk� + N�k .
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Then, after a number of simplifications, we obtain the following expression for the

numerator of Equation (1):

N�k(t) +Nk�(t)

=(N(0)k0 + 2αβt)
β(β + 1)

�k(k + 1)(k + 2)

[
k + 2

�+ 1
− B

2β+2
β+1 B

k+�−2β
�−β

Bk+�+2
�

]
u(k − β)u(�− β)

+ β

√
N(0)k0 + 2αβt

N(0)k0

k∑
r=1

(r − 1)Nr−1(0)(1 − c)rck−r Bk−1
r−1

�(�+ 1)
u(�− β)

+ β

√
N(0)k0 + 2αβt

N(0)k0

�∑
r=1

(r − 1)Nr−1(0)(1 − c)rc�−r B�−1
r−1

k(k + 1)
u(k − β)

+ 2(N(0)k0 + 2αβt)

×
⎡
⎣ k+1∑
r=β

B
r−β
2 Bkr−1

r�(�+ 1)
(1 − c)rck+1−r −

k∑
r=β

B
r−β
2 Bk−1

r−1

r�(�+ 1)
(1 − c)rck−r

⎤
⎦ u(�− β)

+ 2(N(0)k0 + 2αβt)

×
⎡
⎣ �+1∑
r=β

B
r−β
2 B�r−1

rk(k + 1)
(1 − c)rc�+1−r −

�∑
r=β

B
r−β
2 B�−1

r−1

rk(k + 1)
(1 − c)rc�−r

⎤
⎦ u(k − β)

− N(0)k0

(
N(0)k0

N(0)k0 + 2αβt

) β
2

⎡
⎣k−1∑
j=β

cj−β Bj−1
β−1

�(�+ 1)
u(�− β) +

�−1∑
j=β

cj−β Bj−1
β−1

k(k + 1)
u(k − β)

⎤
⎦

+

k∑
r=1

�∑
s=1

[
Nrs(0) +Nsr(0)

]
Bk−1
r−1 B

�−1
s−1

(
1 − c

c

)r+s
ck+�

−N(0)k0β(β + 1)

k∑
r=β

�∑
s=β

r + 2

s+ 1
− B

2β+2
β+1 B

r+s−2β
s−β

Br+s+2
s

r(r + 1)(r + 2)s
Bk−1
r−1 B

�−1
s−1

(
1 − c

c

)r+s
ck+�

+ N(0)k0β(β + 1)

k∑
r=β

�∑
s=β

2 − δr,β − δs,β

r(r + 1)s(s+ 1)
Bk−1
r−1 B

�−1
s−1

(
1 − c

c

)r+s
ck+�

− β

k∑
r=1

�∑
s=β

(r − 1)Nr−1(0)

s(s+ 1)
Bk−1
r−1 B

�−1
s−1

(
1 − c

c

)r+s
ck+�

− β

k∑
r=β

�∑
s=1

(s− 1)Ns−1(0)

r(r + 1)
Bk−1
r−1 B

�−1
s−1

(
1 − c

c

)r+s
ck+� (25)

For the denominator of Equation (1), using Equation (5), we have

kNk(t) =k

k∑
r=1

Nr(0)(1 − c)rck−r Bk−1
r−1 +

(N(0)k0 + 2αβt)(β + 1)

(k + 1)(k + 2)
u(k − β)

− N(0)k0

β

k∑
r=β

β(β + 1)

(r + 1)(r + 2)
(1 − c)rck−r Bkr (26)
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Dividing Equation (25) by Equation (26) yields the desired result, that is, p(�|k)
as a function of time. For the convenience of the reader, let us repeat the definition

of c here

c = 1 −
√

N(0)k0

N(0)k0 + 2αβt
(27)

5 The steady state

5.1 The NNDD

Dividing the result presented in Equation (25) by the one given in Equation (26)

yields the expected value of the NNDD as a function of time. The result is visibly

long and theoretically unwieldy. It might be plausible to use this theoretical expres-

sion in its present guise in numerical computations. To acquire an expression for the

NNDD to be conveniently utilized in theoretical analysis however, simplifications

appear indispensable.

Let us investigate the steady-state limit of the NNDD. Recall that p(�|k) satisfies

Equation (1). The numerator of p(�|k) is given in Equation (25), and the denominator

is given in Equation (26). First let us investigate the behavior of the denominator in

the limit as t → ∞. Note that in this limit, c → 1. Both the first and the third sums

on the right-hand side of (26) comprise terms with factors of the form (1 − c)r , with

r > 0 for all of them. Hence, these two sums vanish in the steady state, and only the

second term remains. So, we have

lim
t→∞ kNk(t) =

(N(0)k0 + 2αβt)(β + 1)

(k + 1)(k + 2)
u(k − β) (28)

Now, we turn our attention to the steady-state value of the numerator of p(�|k),
given in Equation (25). It can be easily seen that every term on the right-hand side

of Equation (25) involve nonzero powers of (1 − c), except the first term. So, in the

steady state, only the first term survives. We have

lim
t→∞N�k(t) +Nk�(t) = (N(0)k0 + 2αβt)

β(β + 1)

�k(k + 1)(k + 2)

×
[
k + 2

�+ 1
− B

2β+2
β+1 B

k+�−2β
�−β

Bk+�+2
�

]
u(k − β)u(�− β) (29)

Now, we can find the NNDD in the steady state by dividing Equation (28) by

Equation (29). The (N(0)k0 + 2αβt) factors that appear in both the numerator and

the denominator cancel out, and the final result is

lim
t→∞ p(�|k) =

β

�k

[
k + 2

�+ 1
− B

2β+2
β+1 B

k+�−2β
�−β

Bk+�+2
�

]
u(k − β)u(�− β) (30)

Note that the NNDD vanishes if either k or � are smaller than β. This is due to

the fact that in the steady state, the effects of initial conditions can be ignored. This

means that in this time regime, all nodes are those added to the network at some
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t > 0, with an initial degree β. So, every node has at least degree β in this time

limit.

Also, note that also in the special case of k = � = β, the NNDD vanishes:

lim
t→∞ p(β|β) =

β

β2

[
β + 2

β + 1
− B

2β+2
β+1 B0

0

B
2β+2
β

]
=

1

β

[
β + 2

β + 1
− B

2β+2
β+1

B
2β+2
β

]
= 0 (31)

This can be intuitively interpreted as follows. In the steady state, if a node has

degree β, it means that after it has been added to the network, it has received no

link from subsequently-added nodes. When both k and � are equal to β, this means

that we have two nodes that are adjacent and both have degree β. One of them

has to be added prior to the other one. The degree of the older node was already

at least β when the younger node was born, so the degree of the older node must

at least be β + 1 when it receives one additional link from the younger node. So

the situation where both of them have degree β cannot happen, hence the zero

probability.

Now, consider the case where k = β and � > β; a certain node with given degree

k is considered (call it node x), and the degree distribution of its neighbors is given

by p(�|β). In this case, we can immediately say that all the neighbors of x are older

than x. This is because if any of them was younger, it would have incremented the

degree of x beyond β upon attaching to x. Since the degree of x equals its initial

degree upon birth, all neighbors of x must precede it. The same argument holds for

the case of � = β and k > β. In this case, node x has degree more than β and all

of its neighbors that constitute p(β|k) are added to the network after x. Note that

this argument cannot be extended to the case where both k and � are greater than

β. A node that is younger than its neighbors might have a greater degree, if both of

them have degrees greater than β.

5.2 Vanishing Pearson coefficient in the thermodynamic limit

We demonstrate the compatibility of our result in Equation (30) with the results

obtained in Dorogovtsev et al. (2010) regarding the assortativity of the Barabási–

Albert model in the steady state. It is contended in Dorogovtsev et al. (2010) that

in the limit as t → ∞, the Pearson correlation coefficient vanishes for the Barabási–

Albert model, regardless of the value of β. Here, we confirm this result by explicitly

using the expression for the NNDD in the steady state that is given in Equation (30).

Let p(k, �) be the fraction of links that are incident to nodes of degree k and �.

In accordance with Dorogovtsev et al. (2010), the Pearson coefficient is defined as

follows:

r
def
=

[∑
k�

k�p(k, �)

]
− (k2)2

k
2

k3

k
− (k2)2

k
2

(32)

Let us denote the sum in the numerator by k�. To calculate k�, we need to have

an explicit expression for p(k, �). Using Equation (1), and noting that in the long

time limit the total number of links in the network equals Nβ, we can relate the
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joint degree distribution p(k, �) to the NNDD p(�|k) as follows:

p(k, �) =
Lk�

Nβ
=

kNkp(�|k)
Nβ

=
1

β
kp(k)p(�|k) (33)

The degree distribution of the Barabási–Albert model in the steady state is given in

Equation (7). Using the expression for p(k) given in Equation (7) and the expression

for p(�|k) from Equation (30), we can rewrite Equation (33) as follows:

p(k, �) =
1

β
k

2β(β + 1)

k(k + 1)(k + 2)

β

�k

[
k + 2

�+ 1
− B

2β+2
β+1 B

k+�−2β
�−β

Bk+�+2
�

]
u(k − β)u(�− β) (34)

Using the properties of the binomial coefficients, we can express this equivalently

as the following manifest-symmetric relation:

p(k, �) =
2β(β + 1)

k(k + 1)�(�+ 1)

[
1 − B

2β+2
β+1 B

k+�−2β
�−β

Bk+�+2
�+1

]
u(k − β)u(�− β) (35)

Equipped with this expression for p(k, �), we can calculate k�. In the limit as

t → ∞, the lower bound for the possible values of the degrees is β, but there is

no upper bound. We perform the calculations assuming a maximal degree value κ,

and then take the limit κ → ∞. So, when calculating every term in the numerator

and the denominator of Equation (32), we only retain the leading terms because the

limiting behavior is of interest.

Let us define

ωk,�
def
=

B
2β+2
β+1 B

k+�−2β
�−β

Bk+�+2
�+1

(36)

so that we can recast Equation (35) as

p(k, �) =
2β(β + 1)

k(k + 1)�(�+ 1)

(
1 − ωk�

)
u(k − β)u(�− β) (37)

In Figure 2, we plot the value of ωk� as a function of k and � for different values

of β. It can be observed that in the limit of large k and �, the value of ωk� reaches a

constant, which is small. The larger β gets, the smaller the asymptotic value of ωk�
becomes. Since the asymptotic behavior of ωk� is not close to unity, it does not alter

the overall asymptotic behavior of p(k, �). Consequently, minding only the leading

terms, we can disregard ωk� from Equation (37) and calculate k� as follows:

k� =

κ∑
k=β

κ∑
�=β

k�
2β(β + 1)

k(k + 1)�(�+ 1)
∼ log κ log κ =

(
log κ

)2
(38)
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Fig. 2. The value of ωk� for three values of β. It can be seen that as β grows, the asymptotic

value of ωk� for large values of k and � diminishes. It is the largest when β = 1, which is

still less than 0.5 (see the colorbar). This means that 1 − ωk� is not close to zero for large

values of k and �, and its order of magnitude is the same as that of unity. This means that

in asymptotic arguments, 1 − ωk� can be replaced by unity. (a) β = 1. (b) β = 10. (c) β = 20.

(Color online)

The next term that we calculate to insert into Equation (32) is k2. We have

k2 =

κ∑
k=β

k2 2β(β + 1)

k(k + 1)(k + 2)
= 2β(β + 1)

κ∑
k=β

k

(k + 1)(k + 2)

= 2β(β + 1)

κ∑
k=β

(
2

k + 2
− 1

k + 1

)

≈ 2β(β + 1) log
(κ+ 2)2

κ+ 1
≈ 2β(β + 1) log κ (39)

For k3, we have

k3 =

κ∑
k=β

k3 2β(β + 1)

k(k + 1)(k + 2)
= 2β(β + 1)

κ∑
k=β

k2

(k + 1)(k + 2)

= 2β(β + 1)

κ∑
k=β

(
1 +

1

k + 1
− 4

k + 2

)

≈ 2β(β + 1)

(
κ+ log κ

)
≈ 2β(β + 1)κ. (40)

Finally, for k it suffices to note that twice the total number of links in the

steady state equals 2Nβ, which coincides with the sum of all degrees, which is

Nk. This readily yields k = 2β. Inserting this expression for k, together with those

obtained in Equations (38)–(40) into the definition of the Pearson coefficient given

in Equation (32), we get

r ∼
(
log κ

)2 − 4β2(β+1)2
(

log κ
)2

4β2

2β(β+1)κ
2β

− 4β2(β+1)2
(

log κ
)2

4β2

(41)
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Simplifying this, we arrive at

r ∼
(
log κ

)2
κ

(42)

The asymptotic behavior of the Pearson coefficient, as given by Equation (42),

means that in the limit of infinite network size, or equivalently, in the limit as t → ∞,

we have

lim
t→∞ r = 0 (43)

This holds for all values of β. This agrees with the result obtained in Dorogovtsev

et al. (2010).

5.3 Pearson coefficient for large N

To see the asymptotic behavior of the Pearson coefficient with N, with need to know

how κ behaves for large values of N. There are two conventional estimates for κ.

The first one is the natural cutoff, which is defined as the degree beyond which the

area under the p(k) curve equals 1
N

. The second conventions is discussed in Boguná

et al. (2004b), where it is contended that if one disallows multiple links in the model,

then structural cutoff must be considered. Both the natural cutoff and the structural

cutoff for the model at hand are κ ∼ √
N, as pointed out for example in Boguná et

al. (2004b). Plugging this into (42), we arrive at

r ∼
(
logN

)2
√
N

(44)

This is inconsistent with the result presented in Newman (2002), which has the

same numerator as (44), but has N in the denominator rather than
√
N. Let us use

simulations, synthesize large networks and find the Pearson coefficient as a function

of N to ascertain the true asymptotic behavior. If (44) is true, then r×
√
N

log2 N
should

reach a horizontal asymptote for large N. If the result of Newman (2002) is true,

then r × N

log2 N
should reach a horizontal asymptote for large N.

In Figure 3(a), we have plotted r× N

log2 N
as a function of N for a growing network.

In Figure 3(b), we have plotted r×
√
N

log2 N
as a function of N. We went up to N = 106

for the network size. It is readily visible from the figures that Figure 3(b) approaches

a horizontal asymptote, while 3(a) does not.

To quantify the performance of the two predictions, we use regression. The

prediction in Newman (2002) states that r is asymptotically a linear function of the

quantity N
(logN)2

. Our prediction states that r is asymptotically a linear function of√
N

(logN)2
. So, we fit linear models in both cases and calculate the R2 coefficient. For

the prediction in Newman (2002), we have R2 = 0.923. For our prediction, we get

R2 = 0.998. This confirms that (logN)2√
N

is the correct solution.

Finally, note that the Pearson coefficient r(N) tends to zero from below as N

becomes large (by “from below” we mean that r < 0, as can be seen from Figure 3).

This is consistent with the results presented in Dorogovtsev et al. (2010).

It is imperative to note that vanishing Pearson coefficient does not justify the

uncorrelated approximation, that is, the assertion that the NNDD can be replaced by
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Fig. 3. Checking the asymptotic behavior of the Pearson correlation coefficient for large N.

The simulations are averaged over 100 Monte Carlo trials. The minimum network size is

2,000 and the maximum network size is 106. (a) The result in Newman (2002). (b) The result

in (44).

〈k2〉
〈k〉 (which would be obtained under the assumption that the network is locally tree-

like, together with the assumption that adjacent nodes are statistically independent).

The fact that two networks have equal Pearson correlation coefficients (in this case,

an Erdős–Rényi network and a Barabási–Albert network, both having r = 0 in the

thermodynamic limit) is not synonymous with the equality of their NNDDs. Both
〈k2〉
〈k〉 and the expression for the NNDD given in Equation (30) lead to r = 0. Hence,

from r = 0 one cannot aptly conclude that 〈k2〉
〈k〉 is a valid expression for the NNDD

of the underlying network.

5.4 Average nearest neighbor degree

The average nearest neighbor degree (hereinafter ANND) of nodes of degree k is

a function of k and is defined as follows. Consider all the nodes in the network

that have degree k. Call the set of neighbors of all of these nodes by Sk , accounting

for multiplicities. That is, if a node is adjacent to, say, b nodes of degree k, then

this node should appear b times in Sk . Then, we define the ANND for degree k as

the average degree of nodes in Sk . We denote the ANND by kNN(k), which can be

alternatively expressed as follows:

kNN(k)
def
=
∑
�

�p(�|k) (45)

In Barrat and Pastor-Satorras (2005), the rate equations describing degree-degree

correlations are solved in the asymptotic long-time limit, and it is shown that

kNN(k) ≈ β

2
logN (46)

We now show that our result presented in Equation (30) can be utilized to

confirm this asymptotic expression for the ANND. Let us calculate the ANND
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explicitly:

kNN(k) =

κ∑
�=β

�p(�|k) =

κ∑
�=β

�
β

�k

[
k + 2

�+ 1
− B

2β+2
β+1 B

k+�−2β
�−β

Bk+�+2
�

]

≈
κ∑

�=β

β

k

k + 2

�+ 1
≈ β

(
k + 2

k

)
log κ ≈ β log κ (47)

Where in concert with the previous section, we have used the fact that wk�, defined

in Equation (36), is negligible as compared to unity, in the limit of large k or large �.

Note that the results in Equations (47) and (46) coincide if we have κ ≈ √
N. This

is true if we assume κ to be the natural cutoff, which is defined as the degree beyond

which the area under the p(k) curve equals 1
N

. The calculation is straightforward:∫ ∞

κ

k−3dk ∼ 1

N
=⇒ κ−2 ∼ 1

N
=⇒ κ ∼ √

N (48)

In Boguná et al. (2004b), it is contended that if one disallows multiple links in the

model, then in addition to the natural cutoff, structural cutoff must be considered.

For the model considered here, the asymptotic degree distribution follows a power

law with exponent 3, and as discussed in Boguná et al. (2004b), the structural cutoff

and natural cutoff coincide for this model. So, considering either cutoff, for the

model considered in this paper, there is an agreement between Equation (46) and

our result presented in Equation (47).

6 Simulation results

Now we test the theoretical prediction of Equations (25) and (26) through simu-

lations. For all simulations, we use α = 1, so that at each timestep one new node

is added to the network. The first simulation results are presented in Figure 4. In

Figure 4(a), the value of Lk,� = Nk�(t) +N�k(t) is presented, and p(�|k) is illustrated

in Figure 4(b). The initial graph is a 10-regular ring of 50 nodes. It is obtained

by situating the nodes on a ring and then connecting each node to its second-,

third-, fourth-, and fifth-nearest-neighbor from each side. Then, the growth process

with β = 2 begins. In the figure, we show p(13|12), which provides a representative

example. At the outset, the NNDD is zero in this case, because all nodes have the

same degree and we have p(10|10) = 1 and p(�|k) = 0 for any other value of k, �. As

the new nodes are attached to the network, the degrees of the exiting nodes increase

and the adjacent nodes of degrees 13 and 12 emerge. The evolution of the system up

to t = 140 is presented. The simulation results are averaged over 2,000 Monte Carlo

trials. In Figure 5, the simulation setup is the same, and k = � = 10 is considered. It

can be seen that p(10|10) equals unity at the outset, and it monotonically decreases

as new nodes arrive and attach to nodes of degree 10, incrementing their degrees,

consequently reducing their population size. The simulation results presented in

Figure 6 pertain to the same setup, with k = 10 and � = 2. It can be seen that at the

outset, the value of p(2|10) is zero, because there is no node with degree 2, as every

node has degree 10. Each new node that arrives, increments the number of degree-2

nodes by one, and p(2|10) gradually increases.
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Fig. 4. Simulation results and theoretical predictions for NNDD and Lk,�. The initial network

is a 10-regular ring of 50 nodes. The value of β is 2, also k = 12 and � = 13. The simulation

results are averaged over 2,000 Monte Carlo trials. Theoretical predictions are obtained

using (25) and (26). (a) Lk� as a function of time. (b) p(�|k) as a function of time.
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Fig. 5. Simulation results for the same setup as in Figure 4, except that k = 10 and � = 10.

(a) Lk� as a function of time. (b) p(�|k) as a function of time.

In the simulation results presented in Figure 7, the substrate is a complete graph of

20 nodes, and we have focused on the evolution of p(8|7) as an illustrative example.

The value of β is 5. In this case, the value of the NNDD is zero at the inception.

The reason is that every node in the initial network has degree 20 at the outset, so

none of them can contribute to the constitution of the NNDD. All the contributing

nodes are those introduced during the growth process.

In the simulation whose results are depicted in Figure 8, the initial graph is a

4-regular ring, the value of β is 8, k = 7 and � = 6. In this case, every node in the

initial substrate has degree 4, and every subsequent node that joins the network has

degree 8 upon birth. So, all the nodes that constitute p(6|7) are those who were

present in the initial substrate, and later gained new links to elevate their degrees

from 4 up to 6 and 7. After a while, every node that existed in the initial substrate
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Fig. 6. Simulation results for the same setup as in Figure 4, except that k = 10 and � = 2.

(a) Lk� as a function of time. (b) p(�|k) as a function of time.
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Fig. 7. Simulation results and theoretical predictions for NNDD and Lk,�. The initial network

is a complete graph of 20 nodes. The value of β is 5, also k = 7 and � = 8. The simulation

results are averaged over 2,000 Monte Carlo trials. Theoretical predictions are obtained

from (25) and (26). (a) Lk� as a function of time. (b) p(�|k) as a function of time.

will receive enough links from the newcomer so that its degree will grow beyond

6 and 7. In fact, after a certain point, the number of nodes with degree 6 and

the number of nodes with degree 7 will both monotonically decrease, until they

both tend to zero in long times. Consequently, after some point, the value of L7,6

will also begin to decrease monotonically and vanish at long times. The simulation

results presented in Figure 9 are obtained from the same setup as that of Figure 8.

The turning point and the subsequent decrease in Figure 9(a) emerges for similar

reasons. However, there is one distinction. In the case considered in Figure 9(a), the

decrease in L6,12 occurs only due to the fact that the number of nodes of degree 6 is

diminishing monotonically. The number of nodes with degree 12 does not decrease

monotonically, and does not tend to zero for long times. Figure 10 also pertains to

the same setup, with k = 8, � = 10.
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Fig. 8. Simulation results and theoretical predictions for NNDD and Lk,�. The initial network

is a 4-regular ring of 200 nodes. The value of β is 8, also k = 7 and � = 6. The simulation

results are averaged over 2,000 Monte Carlo trials. Theoretical predictions are obtained

from (25) and (26). (a) Lk� as a function of time. (b) p(�|k) as a function of time.
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Fig. 9. Simulation results for the same setup as in Figure 8, except that k = 6 and � = 12.

(a) Lk� as a function of time. (b) p(�|k) as a function of time.

To diversify the topologies used for simulations, we present simulation results on

two other topologies. The first topology is a small-world. In Figure 11, the initial

substrate is constructed by taking a 2-regular ring of 80 nodes and establishing every

non-existing link with probability 0.05. The network begins to grow with β = 5. The

results are depicted for k = 8 and � = 6. The second topology is a complete bipartite

graph. It comprises two groups of nodes. There are 50 nodes in the first group and

20 nodes in the other. All possible inter-group links exist, while no intra-group link

exists. The values of k = 20 and � = 50 are used for simulations. The results are

depicted in Figure 12.

Let us also verify the steady-state value of the NNDD given in (30) via simulations.

The simulation results are presented in Figure 13. The initial network is a 4-regular

ring of 20 nodes. The value of β is 4, with k = 6 and � = 8. We have depicted the

evolution of the system up to time 600. It is visible from Figure 13(a) that Nk� +N�k
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Fig. 10. Simulation results for the same setup as in Figure 8, except that k = 8 and � = 10.

(a) Lk� as a function of time. (b) p(�|k) as a function of time.
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Fig. 11. Simulation results for the small-word initial network. The number of nodes in the

initial network is 80. Nodes are situated on a ring, and then each non-existing link is created

with probability 0.05. The value of β is 5, and k = 8 and � = 6 are used in simulations.

Simulation results are averaged over 2,000 Monte Carlo trials. (a) Lk� as a function of time.

(b) p(�|k) as a function of time.

is linearly growing at long times. This is because, as can be seen from (25), only the

first term on the right-hand side survives as t → ∞, and this term is linear in time.

Finally, Figures 14–17, present the simulation results along with the theoretically

predicted mean in a way that the variability of the simulations is also visible. The

variance is topology-based and time-dependent.

To further evaluate the quality of our model, we compare its predictions with

empirical observations in a citation dataset. We use the network of citations among

34,546 papers posted to the ArXiv high-energy physics phenomenology section

between January 1993 and April 2003.4 For each paper, we have the date when it

was posted as well as the list of out-going edges to other papers cited.

4 Available online at http://snap.stanford.edu/data/cit-HepPh.html
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Fig. 12. Simulation results for a bipartite graph with 20 nodes in one grouped and 50 nodes

on the other. The evolution of the NNDD and Lk� for the values of k = 20 and � = 50 is

depicted. The value of β is 2. Simulation results are averaged over 2,000 Monte Carlo trials.

(a) Lk� as a function of time. (b) p(�|k) as a function of time.
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Fig. 13. Simulation results and theoretical predictions for NNDD and Lk,�. The initial network

is a 4-regular ring of 20 nodes. The value of β is 4, also k = 6 and � = 8. The simulation results

are averaged over 2,000 Monte Carlo trials. Theoretical predictions are obtained from (30).

The convergence of the NNDD to the theoretical steady-state prediction is visible. Simulation

results are averaged over 2,000 Monte Carlo trials. (a) Lk� as a function of time. (b) p(�|k) as

a function of time, and the steady state.

To evaluate the model proposed in this paper, we perform the following experi-

ment. First, we fix a time t0 (e.g., January 1, 1995). The seed graph is formed using

all papers before that date, and then we empirically evaluate the NNDD p(�|k) for

the next 1,000 papers posted to the repository. We measure the relative error

RelErr(�|k) =
p̂(�|k) − p(�|k)

p(�|k) (49)

between the empirical quantity and the estimate p̂(�|k) from our model with α = 1

and β equal to the mean number of citations considered in the given period. Rather

than looking at errors for individual pairs, (�, k), we examine the distribution of
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Fig. 14. Theoretical predictions along with the standard deviation of the simulation results.

The value of β is 4, with k = 6 and � = 8. The substrate is a 4-regular ring. Simulation results

are averaged over 2,000 Monte Carlo trials. (a) The number of nodes in the initial network

is 5,000. (b) The number of nodes in the initial network is 300.
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Fig. 15. Theoretical predictions along with the standard deviation of the simulation results.

The value of β is 8, with k = 9 and � = 10. The substrate is a 2-regular ring. Simulation

results are averaged over 2,000 Monte Carlo trials. (a) The number of nodes in the initial

network is 5,000. (b) The number of nodes in the initial network is 200.

RelErr(�|k) over the set of pairs for k and � ranging from 2 to the 90th percentile of

the degree distribution of the seed graph (which depends on t0). We then repeat this

process for four values of t0 (from January 1, 1995, to January 1, 1998) and average

the results. The results are shown in Figure 18, where the solid line corresponds to

the median relative error, and the shaded region spans from the 25th to the 75th

percentile. As one might expect, the relative error begins small and progressively

grows over time, with the average median error remaining well below 10% even

after 1,000 papers have been added.
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Fig. 16. Theoretical predictions along with the standard deviation of the simulation results.

The value of β is 8, with k = 7 and � = 6. The substrate is a 4-regular ring. Simulation results

are averaged over 2,000 Monte Carlo trials. (a) The number of nodes in the initial network

is 5,000. (b) The number of nodes in the initial network is 500.
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Fig. 17. Theoretical predictions along with the standard deviation of the simulation results.

The value of β is 12, with k = 16 and � = 20. The substrate is a 12-regular ring. (a) The

number of nodes in the initial network is 1,000. (b) The number of nodes in the initial network

is 200.

7 Summary and discussion

This contribution answered the following question: consider a given network with a

given degree distribution and a given nearest-neighbors degree distribution. Suppose

that the network is subject to growth under the preferential attachment mechanism.

How does the nearest-neighbor degree distribution evolve over time?

There is an immense literature on the structural properties of scale-free networks.

Most of these results are restricted to the “thermodynamic limit,” i.e., when the

size of the network tends to infinity. We contended that this unrealistic assumption

can render the theory of scale-free networks unfalsifiable, while falsifiability is a

necessary property for a scientific model. We argued that the absence of an exact
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Fig. 18. Distribution of the relative error of the NNDD over a horizon of T = 1, 000

time-steps for different values of k and �, averaged over eight non-overlapping time windows

(roughly corresponding to eight different years). The solid line shows the median relative

error, and the shaded region spans from the 25th to the 75th percentile. (Color online)

expression for the nearest-neighbor degree distribution, that is invoked frequently

in the theoretical analysis of various network phenomena, has confined researches

to solutions obtained under uncorrelated approximations, reducing accuracy. Thus,

the contribution of this paper can help improve many of the existing results in the

literature, and enables us to extend them to intermediary time regimes, beyond the

steady-state limit.

There are plausible improvements and extensions to the present work, and to the

literature of network growth in general. First, conventional network growth models

(such as the one considered in this paper), consider uniform inter-arrival times. One

can construct a time-continuous analog of the growth model by modeling node

arrival times with a Poisson process.

A second, perhaps methodologically more imperative future work, would be to find

the time-evolution of the NNDD for uniformly random network growth, as opposed

to the preferential attachment model studied in this paper. When one hypothesizes

that there is an underlying mechanism driving the growth of some empirically

observable network (example hypotheses include preferential attachment, shifted-

linear and nonlinear generalizations to preferential attachment, fitness-based growth

models, copying models, etc.), one requires a null hypothesis. In this context, the null

model for network growth would be the absence of any mechanism, which would

render the growth purely random. Each new node would attach to the existing nodes

selected uniformly at random. The time-evolution of the degree distribution of the

purely-random network growth is already obtained in Fotouhi and Rabbat (2013b),

but that of the NNDD is still unsolved.

Another plausible extension would be to investigate the time-evolution of the

NNDD for shifted-linear preferential attachment, which is a generic framework

that encompasses copying and redirection models (see Dorogovtsev et al. (2000),
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Krapivsky and Redner (2001, Sections III-C and III-A3), and Newman (2010,

Section 14.5) for examples of models that reduce to shifted-linear scheme). The

shifted linear model is more versatile than the one considered in the present paper,

since it can engender networks whose asymptotic degree distributions are power

laws with exponents arbitrarily greater than 2.

Note that once the NNDD is known as a function of time, then any quantity

that is expressed in terms of the NNDD can be also found as a function of time.

For example, in Noh (2008), the number of loops of length h is found as a function

of the NNDD. Employing the NNDD obtained in the present paper, we can study

the time-dependent loop statistics of the model for a given initial network with

given loop statistics. Another example is the threshold value for the transmission

rate of pathogen in SIS and SIR models, which are related to the NNDD for

large annealed networks, as shown in Barrat et al. (2008) and Boguná et al. (2003),

for example. The network of sexual contacts is an example where infection can

spread over a growing network. Using the results of this paper, we can obtain size-

dependent epidemic thresholds. Another example of an NNDD-dependent quantity

is the critical value of the link/node failure, when studying network resilience against

random or intentional attacks. As shown in Vázquez and Moreno (2003) and Goltsev

et al. (2008), the critical value is related to the largest eigenvalue of a matrix whose

elements depend on the NNDD. So, if the network under focus is growing, the

time-dependent NNDD is required. Using the NNDD obtained in this paper, one

can find the size-dependent percolation threshold to study how network resilience

changes over time.
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Appendix A: Finding the explicit form of K(z, y, t)

Let us denote the generating function of the degree distribution of the initial network

by G0(·). As shown in Fotouhi and Rabbat (2013b), the time-dependent generating

function G(z, t) satisfies

G(z, t) = G0(z
′) − (z − 1)2(λ+ 2αβt)

β

[
F(z) − F(z′)

]
(A1)

where F(z) and z′ are defined as follows F(z) =
∫ z x−β

(x−1)3
dx, and z′ = z−c

1−c . Note that

d

dz
F

(
z − c

1 − c

)
=

1

(1 − c)

(
z−c
1−c
)−β(

z−c
1−c − 1

)3 = z−β (1 − c)β+2

(z − 1)3
(
1 − c

z

)β (A2)

Also, let us define z′ def
= z−c

1−c . Then, for any function f(z′), we will have ∂f(z′)
∂z

=
1

1−c
∂f(z′)
∂z′ . Taking the derivative of (A1) with respect to z, we obtain

∂G(z, t)

∂z
=

1

1 − c

∂

∂z′G0(z
′) − 2(z − 1)(λ+ 2αβt)

β

[
F(z) − F(z′)

]

− (z − 1)2(λ+ 2αβt)

β

[
z−β

(z − 1)3
− z−β (1 − c)β+2

(z − 1)3
(
1 − c

z

)β
]

(A3)

hich can be simplified to

∂G(z, t)

∂z
=

1

1 − c

∂

∂z′G0(z
′) − 2(z − 1)(λ+ 2αβt)

β

[
F(z) − F(z′)

]

− (λ+ 2αβt)

β(z − 1)

[
z−β − z−β (1 − c)β+2(

1 − c
z

)β
]

(A4)

Plugging the expression in (A4) into (14), we find

K(z, y, t) =
−αβy−β

(1 − c)(λ+ 2αβt)

∂

∂z′G0(z
′) + 2α(z − 1)y−β

[
F(z) − F(z′)

]

+
αy−β

(z − 1)

[
z−β − z−β (1 − c)β+2(

1 − c
z

)β
]

(A5)

Appendix B: Solving the differential equation (16)

In method of characteristics, the following system of differential equations must be

solved:
dt

1
=

dz

− αβ(z − 1)

(λ+ 2αβt)

=
dy

− αβ(y − 1)

(λ+ 2αβt)

=
dψ

K(z, y, t)
(B1)
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The first equation can be rearranged to give αβdt
(λ+2αβt)

= −dz
z−1

. Integrating both sides,

we obtain

(z − 1)2(λ+ 2αβt) = C1 (B2)

The second equation in (B1) yields dz
z−1

= dy
y−1

. This means that

(z − 1) = C2(y − 1) (B3)

The third equation that we consider from (B1) is dz

− αβ(z−1)
(λ+2αβt)

= dψ
K(z,y,t)

. This can be

expressed equivalently as follows −C1dz
αβ(z−1)3

= dψ
K(z,y,t)

. First, we have to express the

variables y, t in terms of z, to be able to integrate this equation with respect to z.

From characteristic curves (B2) and (B3), we have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y(z) =
z − 1

C2
+ 1 =

z − 1 + C2

C2

λ+ 2αβt =
C1

(z − 1)2

t(z) =
C1

2αβ(z − 1)2
− λ

2αβ

(B4)

Integrating the third equation that involved K(y, z, t) gives

ψ(z, y, t) =
−C1

αβ

∫ z K
[
x, y(x), t(x)

]
(x− 1)3

dx+ Φ(C1, C2) (B5)

Appendix C: Finding the inverse transform of (20)

Now, we can rewrite (20) as

ψ(z, y, t) − Q(z, y, t) = Φ

(
(z − 1)2(λ+ 2αβt),

z − 1

y − 1

)
(C1)

At t = 0, the above equation transforms into

Φ

(
λ(z − 1)2,

z − 1

y − 1

)
= ψ(z, y, 0) − Q(z, y, 0). (C2)

We are looking for the function Φ(·, ·). If we denote the first and second arguments

by X and Y , noting that λ is a constant, then from λ(z − 1)2 = X we have

z = 1 +
√

X
λ
, and from z−1

y−1
= Y we have y = 1 + 1

Y

√
X
λ
. To determine the form of

the function Φ(·, ·), we rewrite (C2) as

Φ(X,Y ) = ψ

(
1 +

√
X

λ
, 1 +

1

Y

√
X

λ
, 0

)
− Q
(

1 +

√
X

λ
, 1 +

1

Y

√
X

λ
, 0

)
(C3)

This will yield the last term on the right-hand side of (20). We have

Φ(C1, C2) = ψ

(
1 +

√
C1

λ
, 1 +

1

C2

√
C1

λ
, 0

)
− Q
(

1 +

√
C1

λ
, 1 +

1

C2

√
C1

λ
, 0

)
(C4)

Now, let us simplify this further. From (6) and (B2), we have 1 +
√

C1
λ

=1+ z−1
1−c=

z−c
1−c .

Also, using (B3) we get 1 + 1
C2

√
C1
λ

=1+( y−1
z−1 )(

z−1
1−c )=

y−c
1−c . So, for Φ(C1, C2) we arrive at the

following form:

Φ(C1, C2) = ψ
(z − c

1 − c
,
y − c

1 − c
, 0
)

− Q
(z − c

1 − c
,
y − c

1 − c
, 0
)

(C5)
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If we plug this in (20), we obtain

ψ(z, y, t) = ψ
(z − c

1 − c
,
y − c

1 − c
, 0
)

+
[
Q(z, y, t) − Q

(z − c

1 − c
,
y − c

1 − c
, 0
)]

(C6)

Now, we focus at finding the inverse Z-transform of each term on the right-hand side

of this equation. Consider the first term, which refers to the initial conditions. Denote

by Nk�(0) the number of links in the initial network that connect a child of degree �

to a parent of degree k. Then, by definition, we have ψ(z, y, 0) =
∑

r,s Nrs(0)z−ry−s.
The first term on the right-hand side of (C6) will be

ψ
(z − c

1 − c
,
y − c

1 − c
, 0
)

=
∑
r,s

Nrs(0)

(
1 − c

z − c

)r (
1 − c

y − c

)s
(C7)

The aim is to find the coefficients bkl which satisfy ψ
(
z−c
1−c ,

y−c
1−c , 0

)
=
∑

r,s brsz
−ry−s.

If we multiply both sides of this equation by zk−1yl−1 and integrate over the region

of convergence (any closed contour encircling the entire unit disk), we will have

bkl =

(
1

2πi

)2 ∮
Cz

∮
Cy

ψ
(z − c

1 − c
,
y − c

1 − c
, 0
)
zk−1yl−1dzdy (C8)

Using (C7), this transforms into

bkl =

(
1

2πi

)2∑
r,s

Nrs(0)

∮
Cz

(
1 − c

z − c

)r
zk−1dz

∮
Cy

(
1 − c

y − c

)r
yl−1dy (C9)

We define σrk
def
= 1

2πi

∮
Cz

(
1−c
z−c
)r
zk−1dz. Then, bkl can be expressed in the form

bkl =
∑
r,s

Nrs(0)σrkσsl (C10)

We seek to find σrk . We must evaluate the following integral 1
2πi

∮
Cz

zk−1

(z−c)r dz. It equals

the residual of the integrand at the pole z = c (Morse and Feshbach, 1953; Brown

et al., 1996). When the integrand is of the form f(z)/(z − p)q , the residual will be

the (q − 1)-th derivative of the function f(·), evaluated at z = p, divided by (q − 1)!.

So, for the residual for our integrand, which has f(z) = zk−1, we obtain

1

(r − 1)!

d(r−1)

dz(r−1)
zk−1

∣∣∣∣
z=c

=

{
0 r > k

Bk−1
r−1 c

k−r r � k
(C11)

Using this result, we find σrk . It equals σrk = Bk−1
r−1 (1 − c)rck−ru(k − r), where u(x) is

the Heaviside step function (i.e., u(x) = 0 for x < 0, and u(x) = 1 for x � 0). (Note

that the binomial coefficient Bba is zero for b < z, so it tacitly applies the Heaviside

function and the factor u(b− a) is unnecessary.) Employing this expression for σrk
in (C10), we find

bkl =
∑
r,s

Nrs(0)Bk−1
r−1 B

�−1
s−1

(
1 − c

c

)r+s
ck+� (C12)

This yields the inverse transform of ψ
(
z−c
1−c ,

y−c
1−c , 0

)
, which satisfies (C7). Now, we

focus on finding the inverse Z-transform of the second and third terms on the right-

hand side of (C6). The inverse transform of the term Q ( z−c
1−c ,

y−c
1−c , 0

)
that appears on

the right-hand side of (C6) can be obtained by undertaking identical steps to those
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that led to (C12), except that instead of Nrs(0) we must use Qrs(0). Plugging these

inverse transforms into (C6), we obtain

Nk�(t) = Qk�(t) +
∑
r,s

Nrs(0)Bk−1
r−1 B

�−1
s−1

(
1 − c

c

)r+s
ck+�

− ∑
r,s

Qrs(0)Bk−1
r−1 B

�−1
s−1

(
1 − c

c

)r+s
ck+� (C13)

It is easy to verify that at t = 0, the right-hand side becomes Nk�(0). Since c = 0 at

this time, all the terms in both sums vanish except for r = k, s = �. Thus, the first

and third terms on the right-hand side of (C13) cancel out, and the second term

produces Nk�(0).

Appendix D: Simplifying Q(z, y, t)

Let us repeat the definition of Q(z, y, t) for easy reference:

Q(z, y, t)
def
=

−C1

αβ

∫ z K

[
x,
x− 1 + C2

C2
,

C1

2αβ(x− 1)2
− λ

2αβ

]
(x− 1)3

dx (D1)

Also, the result of Appendix A, as given in (A5), is the following:

K(z, y, t) =
−αβy−β

(1 − c)(λ+ 2αβt)

∂

∂z′G0(z
′) + 2α(z − 1)y−β

[
F(z) − F(z′)

]

+
αy−β

(z − 1)

⎡
⎢⎣z−β − z−β (1 − c)β+2(

1 − c

z

)β
⎤
⎥⎦ (D2)

There are three terms. Let us simplify each term separately. For easy reference, we

define

K1(z, y, t)
def
=

−αβy−β

(1 − c)(λ+ 2αβt)

∂

∂z′G0(z
′) (D3)

K2(z, y, t)
def
= 2α(z − 1)y−β

[
F(z) − F(z′)

]
(D4)

K3(z, y, t)
def
=

αy−β

(z − 1)

[
z−β − z−β (1 − c)β+2(

1 − c
z

)β
]

(D5)

First, let us simplify K1. Note that c must be expressed in terms of z, since it is a

function of time. We have: c = 1 −
√

λ
λ+2αβt

= 1 −
√

λ
C1

(z − 1).Using this expression,

we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z − c = (z − 1)

(
1 +

√
λ

C1

)

[−10pt]1 − c = (z − 1)

√
λ

C1

[−10pt]
z − c

1 − c
= 1 +

√
C1

λ

(D6)
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Plugging these into (D3), we get

K1(z, y, t) =
−αβ
[
z−1
C2

+ 1
]−β

(z − 1)

√
λ

C1

( C1

(z − 1)2

) ∂

∂z′G0(z
′) (D7)

This can be simplified to give

K1(z, y, t) =
−αβCβ

2 (z − 1)√
λC1(z − 1 + C2)

β
G′

0

(
1 +

√
C1

λ

)
(D8)

Here, the prime on G0(·) denotes the derivative, and is used for brevity. For K2,

which is given in (D4), expressing t and y in terms of z, we get

K2(z, y, t) = 2α(z − 1)
C
β
2

(z − 1 + C2)β

[
F(z) − F

(
1 +

√
C1

λ

)]
(D9)

The Taylor expansion of the function F(·) is F(x) = −∑∞
s=β

B
s−β
2

s
z−s. So, we get

K2(z, y, t) = 2α(z − 1)
C
β
2

(z − 1 + C2)β

⎡
⎣−F

(
1 +

√
C1

λ

)
−

∞∑
s=β

B
s−β
2

s
z−s
⎤
⎦ (D10)

Finally, for K3, which is given in (D5), we have

K3(z, y, t) =
αy−β

(z − 1)

[
z−β − z−β (1 − c)β+2(

1 − c
z

)β
]

=
αC

β
2

(z − 1 + C2)βzβ(z − 1)
− αC

β
2

(z − 1 + C2)β(z − 1)

[√
λ

C1

]β+2

× (z − 1)β+2

(z − 1)β
(

1 +

√
λ

C1

)β

=
αC

β
2

(z − 1 + C2)βzβ(z − 1)
− αC

β
2

(z − 1 + C2)β

[√
λ

C1

]β+2
(z − 1)(

1 +

√
λ

C1

)β
(D11)

Now, let us define the following integral: Ipqr
def
=
∫ z 1

(x−1)p(x−1+C2)qxr
dx. Gathering the

simplified terms for K(z) that are given in (D8), (D10), and (D11), and plugging

them into (19), we get

Q(z, y, t) =
2C1C

β
2

β

∞∑
s=β

B
s−β
2

s
I2βs + C

β
2

√
C1

λ
G′

0

(
1 +

√
C1

λ

)
I2β0

+
2C1C

β
2

β
F

(
1 +

√
C1

λ

)
I2β0 − C1

β
C
β
2 I4ββ +

C1C
β
2

[√
λ

C1

]β+2

β

(
1 +

√
λ

C1

)β I2β0

(D12)
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To calculate the Ip,q,r integrals, let us first expand the following in powers of x

before integration: 1
(x−1)p(x−1+C2)qxr

=
∑∞

m=0 a
pqr
m x−m. The coefficients ak are obtained

by multiplying both sides by xk−1 and then integrating on a closed path in the

complex plane which encircles the origin. So, we have to compute

apqrm =
1

2πi

∮
xm−1

(x− 1)p(x− 1 + C2)qxr
dx (D13)

To expand the integrand in powers of z, we are actually taking the inverse Z-

transform. Since multiplication in the Z domain indicates convolution in the m-

domain, we find the inverse transforms separately, then convolve them. We have:
1

(z−1+C2)q

Z−1−−→(1−C2)
m−q Bm−1

q−1 u(m−q), and 1
(z−1)pzr

Z−1−−→Bm−r−1
p−1 u(m−p−r). So, we have

apqrm =

[
Bm−r−1
p−1 ∗ (1 − C2)

m−q Bm−1
q−1

]
= Bm−r−1

p−1 ∗
[
Bm−1
q−1

m−q∑
μ=0

Bm−q
μ (−1)μCμ

2

]
(D14)

where the asterisks denote convolution. It can be equivalently expressed as follows:

apqrm =

m−r−1∑
ν=q

Bm−ν−r−1
p−1

[
Bν−1
q−1

ν−q∑
μ=0

Bν−q
μ (−1)μCμ

2

]
(D15)

Using the expansion, we can now perform the integration and obtain: Ipqr =∑
m

a
pqr
m−m+1
z−m+1. Since p + q + r > 1 for all of the terms in (D12), there will be no

log terms as a result of integration. Now, we return to (D12) to substitute for the

pertinent integrals. After plugging in the explicit expressions for C1, C2, we arrive

at

Q(z, y, t)

=
−2(λ+ 2αβt)

β

∞∑
s=β

B
s−β
2

s

∞∑
m=β+s+2

1

(m− 1)

×
m−s−1∑
ν=β

Bm−ν−s−1
1 Bν−1

β−1

ν−β∑
μ=0

Bν−β
μ (−1)μ

(z − 1)μ+β+2

(y − 1)μ+β
z−m+1

−
√
λ+ 2αβt

λ
G′

0(z
′)

×
∞∑

m=β+2

1

(m− 1)

m−1∑
ν=β

Bm−ν−1
1

[
Bν−1
β−1

ν−β∑
μ=0

Bν−β
μ (−1)μ

(z − 1)μ+β+1

(y − 1)μ+β

]
z−m+1

− 2(λ+ 2αβt)

β
F(z′)

×
∞∑

m=β+2

1

(m− 1)

m−1∑
ν=β

Bm−ν−1
1

[
Bν−1
β−1

ν−β∑
μ=0

Bν−β
μ (−1)μ

(z − 1)μ+β+2

(y − 1)μ+β

]
z−m+1
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+
1

β
(λ+ 2αβt)

∞∑
m=2β+4

1

(m− 1)

×
m−β−1∑
ν=β

B
m−ν−β−1
3

[
Bν−1
β−1

ν−β∑
μ=0

Bν−β
μ (−1)μ

(z − 1)μ+β+2

(y − 1)μ+β

]
z−m+1

− λ

β

(
λ

λ+ 2αβt

) β
2

×
∞∑

m=β+2

1

(m− 1)

m−1∑
ν=β

Bm−ν−1
1

[
Bν−1
β−1

ν−β∑
μ=0

Bν−β
μ (−1)μ

(z − 1)μ+β

(y − 1)μ+β

]
z−m+1

(z − c)β
(D16)

We define Γmνiμ
def
= Bm−ν−1

i Bν−1
β−1 B

ν−β
μ (−1)μ for brevity. Then, (D16) can be written

as

Q(z, y, t) =
−2(λ+ 2αβt)

β

∞∑
s=β

∞∑
m=β+s+2

m−s−1∑
ν=β

ν−β∑
μ=0

B
s−β
2

s

Γ(m−s)ν
1μ

(m− 1)

(z − 1)μ+β+2

(y − 1)μ+β
z−m+1

−
√
λ+ 2αβt

λ
G′

0(z
′)

∞∑
m=β+2

m−1∑
ν=β

ν−β∑
μ=0

Γmν1μ

(m− 1)

(z − 1)μ+β+1

(y − 1)μ+β
z−m+1

− 2(λ+ 2αβt)

β
F(z′)

∞∑
m=β+2

m−1∑
ν=β

ν−β∑
μ=0

Γmν1μ

(m− 1)

(z − 1)μ+β+2

(y − 1)μ+β
z−m+1

+
1

β
(λ+ 2αβt)

∞∑
m=2β+4

m−β−1∑
ν=β

ν−β∑
μ=0

Γ(m−β)ν
3μ

(m− 1)

(z − 1)μ+β+2

(y − 1)μ+β
z−m+1

− λ

β

(
λ

λ+ 2αβt

) β
2

∞∑
m=β+2

m−1∑
ν=β

ν−β∑
μ=0

Γmν1μ

(m− 1)

(z − 1)μ+β

(y − 1)μ+β
z−m+1

(z − c)β
(D17)

Appendix E: Finding the inverse transform of Q(z, y, t)

We now begin taking the inverse transform of Q(z, y, t), which is given in (D17),

to find Qk�(t). To do so, we focus on the individual terms in the right-hand side

of (D17) and take their inverse transform one by one. Define

Q1(z, y, t)
def
=

−2(λ+ 2αβt)

β

∞∑
s=β

∞∑
m=β+s+2

m−s−1∑
ν=β

ν−β∑
μ=0

B
s−β
2

s

Γ(m−s)ν
1μ

(m− 1)

(z − 1)μ+β+2

(y − 1)μ+β
z−m+1

(E1)

Q2(z, y, t)
def
= −
√
λ+ 2αβt

λ
G′

0(z
′)

∞∑
m=β+2

m−1∑
ν=β

ν−β∑
μ=0

Γmν1μ

(m− 1)

(z − 1)μ+β+1

(y − 1)μ+β
z−m+1 (E2)

Q3(z, y, t)
def
= −2(λ+ 2αβt)

β
F(z′)

∞∑
m=β+2

m−1∑
ν=β

ν−β∑
μ=0

Γmν1μ

(m− 1)

(z − 1)μ+β+2

(y − 1)μ+β
z−m+1 (E3)
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Q4(z, y, t)
def
= +

1

β
(λ+ 2αβt)

∞∑
m=2β+4

m−β−1∑
ν=β

ν−β∑
μ=0

Γ(m−β)ν
3μ

(m− 1)

(z − 1)μ+β+2

(y − 1)μ+β
z−m+1 (E4)

Q5(z, y, t)
def
= − λ

β

(
λ

λ+ 2αβt

) β
2

∞∑
m=β+2

m−1∑
ν=β

ν−β∑
μ=0

Γmν1μ

(m− 1)

(z − 1)μ+β

(y − 1)μ+β
z−m+1

(z − c)β
(E5)

All of these terms involve factors of the form (z − 1)az−b, and one can check that

in all cases b > a, so we have a polynomial of negative powers of z, which would

be expected, since positive powers would imply negative k and �. We will use the

following general inverse transform, which can be easily verified by expanding the

(z − 1)a term and then taking the inverse term by term. We have

(z − 1)az−b Z−1−−→
a∑
θ=0

Baθ (−1)θ−aδ[k + θ − b] (E6)

Also, let us temporarily denote the inverse transform of F(z′) and G′(z′) by f̂k and ĝk ,

respectively. The explicit expression for these inverse transforms are given in (E63)

and (E64). Also, note that the inverse transform of 1
(z−c)β can be obtained from (7).

We arrive at

Q1
k�(t) =

−2(λ+ 2αβt)

β

∞∑
s=β

∞∑
m=β+s+2

m−s−1∑
ν=β

ν−β∑
μ=0

μ+β+2∑
θ=0

B
s−β
2

s

× Γ(m−s)ν
1μ

(m− 1)
B�−1
μ+β−1 B

μ+β+2
θ (−1)θ+μ+βδ[k + θ − m+ 1]

Q2
k�(t) = −

√
λ+ 2αβt

λ
ĝk ∗

∞∑
m=β+2

m−1∑
ν=β

ν−β∑
μ=0

μ+β+1∑
θ=0

× Γmν1μ

(m− 1)
B�−1
μ+β−1 B

μ+β+1
θ (−1)θ+μ+β+1δ[k + θ − m+ 1]

Q3
k�(t) = −2(λ+ 2αβt)

β
f̂k ∗

∞∑
m=β+2

m−1∑
ν=β

ν−β∑
μ=0

μ+β+2∑
θ=0

× Γmν1μ

(m− 1)
B�−1
μ+β−1 B

μ+β+2
θ (−1)θ+μ+βδ[k + θ − m+ 1]

Q4
k�(t) = +

1

β
(λ+ 2αβt)

∞∑
m=2β+4

m−β−1∑
ν=β

ν−β∑
μ=0

μ+β+2∑
θ=0

× Γ(m−β)ν
3μ

(m− 1)
B�−1
μ+β−1 B

μ+β+2
θ (−1)θ+μ+βδ[k + θ − m+ 1]

Q5
k�(t) = − λ

β

(
λ

λ+ 2αβt

) β
2

∞∑
m=β+2

m−1∑
ν=β

ν−β∑
μ=0

μ+β∑
θ=0

Γmν1μ

(m− 1)
B�−1
μ+β−1

×
[
B
μ+β
θ (−1)θ+μ+βδ[k + θ − m+ 1]

]
∗ [ck−β Bk−1

β−1

]
(E7)
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Changing the index μ to μ+β, and plugging in the explicit expression for Γ in every

occurrence, this equation transforms into

Q1
k�(t) =

−2(λ+ 2αβt)

β

∞∑
s=β

∞∑
m=β+s+2

m−s−1∑
ν=β

ν∑
μ=β

μ+2∑
θ=0

× B
s−β
2

s

Bm−s−ν−1
1 Bν−1

β−1 B
ν−β
μ−β (−1)θ+β

(m− 1)
B�−1
μ−1 B

μ+2
θ δ[k + θ − m+ 1] (E8)

Q2
k�(t) = −

√
λ+ 2αβt

λ
ĝk ∗

∞∑
m=β+2

m−1∑
ν=β

ν∑
μ=β

μ+1∑
θ=0

× Bm−ν−1
1 Bν−1

β−1 B
ν−β
μ−β (−1)θ+β+1

(m− 1)
B�−1
μ−1 B

μ+1
θ δ[k + θ − m+ 1] (E9)

Q3
k�(t) = −2(λ+ 2αβt)

β
f̂k ∗

∞∑
m=β+2

m−1∑
ν=β

ν∑
μ=β

μ+2∑
θ=0

× Bm−ν−1
1 Bν−1

β−1 B
ν−β
μ−β (−1)θ+β

(m− 1)
B�−1
μ−1 B

μ+2
θ δ[k + θ − m+ 1] (E10)

Q4
k�(t) = +

1

β
(λ+ 2αβt)

∞∑
m=2β+4

m−β−1∑
ν=β

ν∑
μ=β

μ+2∑
θ=0

× B
m−β−ν−1
3 Bν−1

β−1 B
ν−β
μ−β (−1)θ+β

(m− 1)
B�−1
μ−1 B

μ+2
θ δ[k + θ − m+ 1] (E11)

Q5
k�(t) = − λ

β

(
λ

λ+ 2αβt

) β
2

∞∑
m=β+2

m−1∑
ν=β

ν∑
μ=β

μ∑
θ=0

× Bm−ν−1
1 Bν−1

β−1 B
ν−β
μ−β (−1)θ+β

(m− 1)
B�−1
μ−1 B

μ
θδ[k + θ − m+ 1] ∗ (ck−β Bk−1

β−1

)
(E12)

We now simplify these terms separately.

E1 Simplifying Q1
k�(t)

The first term we consider for simplification is

Q1
k�(t) =

−2(λ+ 2αβt)

β

∞∑
s=β

∞∑
m=β+s+2

m−s−1∑
ν=β

ν∑
μ=β

μ+2∑
θ=0

× B
s−β
2

s

Bm−s−ν−1
1 Bν−1

β−1 B
ν−β
μ−β (−1)θ+β

(m− 1)
B�−1
μ−1 B

μ+2
θ δ[k + θ − m+ 1] (E13)

Summing over m, eliminates this index due to the existence of the delta function. Also,

all the summation bounds are automatically imposed by the binomial coefficients,

so we can ignore the limits. We have

Q1
k�(t) =

−2(λ+ 2αβt)

β

∞∑
s=β

∑
ν

∑
μ

∑
θ

B
s−β
2

s

Bm−s−ν−1
1 Bν−1

β−1 B
ν−β
μ−β (−1)θ+β

(m− 1)
B�−1
μ−1 B

μ+2
θ

(E14)

https://doi.org/10.1017/nws.2017.19 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2017.19


134 B. Fotouhi and M. Rabbat

From simple algebraic steps, it follows that

Bν−1
β−1 B

ν−β
μ−β =

(ν − 1)!

(β − 1)!(ν − β)!

(ν − β)!

(μ− β)!(ν − μ)!
=

1

(β − 1)!

μ!

ν
Bνμ

1

(μ− β)!
=
β

ν
Bνμ B

μ
β

(E15)

So, (E14) transforms into

Q1
k�(t) =

−2(λ+ 2αβt)

β

k+1∑
s=β

∞∑
ν=β

ν∑
μ=β

μ+2∑
θ=0

B
s−β
2

s

(−1)θ+β

k + θ
Bk+θ−ν−s

1

β

ν
Bνμ B

μ
β B

�−1
μ−1 B

μ+2
θ

(E16)

In Appendix M, we prove that the following holds:∑
ν

Bk+θ−s−ν
1

Bνμ

ν
=

1

μ
Bk+θ−s
μ+1 (E17)

Using this result, summing over the ν index in (E16) yields

Q1
k�(t) =

−2(λ+ 2αβt)

β

k+1∑
s=β

∞∑
μ=β

μ+2∑
θ=0

(−1)θ+β

k + θ
Bk+θ−s
μ+1 B

μ+2
θ

B
s−β
2

s

β

μ
B
μ
β B

�−1
μ−1 (E18)

In Appendix G, we perform the following summation:

∑
θ

(−1)θ

k + θ
Bk+θ−s
μ+1 B

μ+2
θ =

(−1)μ+1(μ+ 2)

k(k + 1)

B
μ+s
μ+1

B
k+μ+2
μ+1

+
(−1)μ

k
δ[s− k − 1] (E19)

This breaks (E18) into two terms:

Q1
k�(t) = −2(λ+ 2αβt)

⎡
⎣ k+1∑
s=β

∞∑
μ=β

B
s−β
2

s

(−1)μ+β+1

k(k + 1)

(μ+ 2)

μ
B
μ+s
μ+1

B
μ
β B

�−1
μ−1

B
k+μ+2
μ+1

+

k+1∑
s=β

∞∑
μ=β

B
s−β
2

s

(−1)μ+β

k
δ[s− k − 1]

1

μ
B
μ
β B

�−1
μ−1

⎤
⎦ (E20)

We define Ωμ
def
= 2β(k + 1) + (β − k)(β + k + 1)(μ+ 2) + (k − β)(k + 1 − β)(μ+ 2)2.

In Appendix H, we prove the following identity:

k+1∑
s=β

B
s−β
2

s
B
μ+s
μ+1 =

[
B
μ+k+2
μ+1

2(μ+ 1)(μ+ 2)(μ+ 3)
Ωμ − B

μ+β+2
β−1

μ+ 1

]
u(k − β − 1) (E21)

Using this identity in the first term of (E20), and eliminating the delta function in

the second term of (E20) by summing over the s index, we find that for k � β, the

value of Q1
k� is zero, and for k � β + 1, it is the following:

Q1
k�(t) = −2(λ+ 2αβt)

⎧⎨
⎩

�∑
μ=β

(−1)μ+β+1

k(k + 1)

(μ+ 2)

μ(μ+ 1)
B
μ
β B

�−1
μ−1

×
[

Ωμ

2(μ+ 2)(μ+ 3)
− B

μ+β+2
β−1

B
k+μ+2
μ+1

]
+

∞∑
μ=β

B
k+1−β
2

(−1)μ+β

k(k + 1)

1

μ
B
μ
β B

�−1
μ−1

⎫⎬
⎭ (E22)
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Using the definition of Ωμ, we can use the following decomposition:

Ωμ

μ(μ+ 1)(μ+ 3)
=

2
[
k(k + 1) − 3β(k − β)

]
3μ

− β(β + 1)

μ+ 1
+
k(k + 1)

3(μ+ 3)
(E23)

Plugging this into (E20), we arrive at

Q1
k�(t) = −(λ+ 2αβt)

�∑
μ=β

(−1)μ+β+1

k(k + 1)
B
μ
β B

�−1
μ−1

×
[
2
[
k(k + 1) − 3β(k − β)

]
3μ

− β(β + 1)

μ+ 1
+
k(k + 1)

3(μ+ 3)

]

+ 2(λ+ 2αβt)

�∑
μ=β

(−1)μ+β+1

k(k + 1)

(μ+ 2)

μ(μ+ 1)

B
μ
β B

�−1
μ−1

B
k+μ+2
μ+1

B
μ+β+2
β−1

− 2(λ+ 2αβt)

∞∑
μ=β

B
k+1−β
2

(−1)μ+β

k(k + 1)

1

μ
B
μ
β B

�−1
μ−1 (E24)

In Appendices I–K, the following identities are proven:

∑
μ

(−1)μ

μ
B�−1
μ−1 B

μ
β =

(−1)�

�
δ[�− β] (E25)

∑
μ

(−1)μ

μ+ 1
B�−1
μ−1 B

μ
β =

(−1)β+1

�(�+ 1)
u(�− β − 1) +

(−1)β

�+ 1
δ[�− β] (E26)

∑
μ

(−1)μ

μ+ 3
B�−1
μ−1 B

μ
β =

(−1)β+13(β + 1)(β + 2)

�(�+ 1)(�+ 2)(�+ 3)
u(�− β − 1) +

(−1)β

(�+ 3)
δ[�− β] (E27)

Plugging these results into (E24) leads us to

Q1
k�(t) = −(λ+ 2αβt)(β + 1)

2k(k + 1) + β(k − �− 2)(3 + k + �)

k(k + 1)�(�+ 1)(�+ 2)(�+ 3)
u(�− β − 1)

+ (λ+ 2αβt)
2β − (k − β)(β − 2) + (β + 2)(k − β)2

β(β + 3)k(k + 1)
δ[�− β]

+ 2(λ+ 2αβt)

�∑
μ=β

(−1)μ+β+1

k(k + 1)

(μ+ 2)

μ(μ+ 1)

B
μ
β B

�−1
μ−1

B
k+μ+2
μ+1

B
μ+β+2
β−1

− 2(λ+ 2αβt)Bk+1−β
2

k(k + 1)

(−1)�+β

�
δ[�− β] (E28)

After some algebraic steps, we obtain the following simplified form:

Q1
k�(t) = −(λ+ 2αβt)

[
(β + 1)

2k(k + 1) + β(k − �− 2)(3 + k + �)

k(k + 1)�(�+ 1)(�+ 2)(�+ 3)
u(�− β)

−2

�∑
μ=β

(−1)μ+β+1

k(k + 1)

(μ+ 2)

μ(μ+ 1)

B
μ
β B

�−1
μ−1

B
k+μ+2
μ+1

B
μ+β+2
β−1

⎤
⎦ (E29)

This must be also multiplied by u(k − β − 1) because Q1
k� is zero for k � β.
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E2 Simplifying Q2
k�(t)

Now, we simplify the second term that is given in (E9). We repeat it here for easy

reference:

Q2
k�(t) = −

√
λ+ 2αβt

λ
ĝk ∗

∞∑
m=β+2

m−1∑
ν=β

ν∑
μ=β

μ+1∑
θ=0

× Bm−ν−1
1 Bν−1

β−1 B
ν−β
μ−β (−1)θ+β+1

(m− 1)
B�−1
μ−1 B

μ+1
θ δ[k + θ − m+ 1] (E30)

First, summing over m and using the properties of the delta function, the index m

vanishes and every occurrence of m is replaced by k + θ + 1. The result is

Q2
k�(t) = −

√
λ+ 2αβt

λ
ĝk ∗

∞∑
ν=β

ν∑
μ=β

μ+1∑
θ=0

(−1)θ+β+1

(k + θ)
Bk+θ−ν

1 Bν−1
β−1 B

ν−β
μ−β B

�−1
μ−1 B

μ+1
θ (E31)

Using (E15), this can be equivalently expressed as follows:

Q2
k�(t) = −

√
λ+ 2αβt

λ
ĝk ∗

∞∑
ν=β

ν∑
μ=β

μ+β+1∑
θ=0

(−1)θ+β+1

(k + θ)

β

ν
Bk+θ−ν

1 Bνμ B
μ
β B

�−1
μ−1 B

μ+1
θ (E32)

Using the identity (E17) for the case of s = 0, this becomes

Q2
k�(t) = −

√
λ+ 2αβt

λ
ĝk ∗

�∑
μ=β

μ+β+1∑
θ=0

(−1)θ+β+1

(k + θ)

β

μ
Bk+θμ+1 B

μ
β B

�−1
μ−1 B

μ+1
θ (E33)

In Appendix L, we prove that∑
θ

(−1)θ

k + θ
Bk+θμ+1 B

μ+1
θ =

(−1)μ+1

(μ+ 1)
δk (E34)

thus, ĝk is convolved to a delta function at the origin, which leaves it intact (because

fk ∗ δk = fk , for any discrete function f(k)). So, (E33) simplifies to

Q2
k�(t) = −(ĝk)(−1)ββ

(√
λ+ 2αβt

λ

)
�∑

μ=β

(−1)μ

μ+ 1

1

μ
B
μ
β B

�−1
μ−1 (E35)

This can be expanded in the form of partial fractions

Q2
k�(t) = −(ĝk)(−1)ββ

(√
λ+ 2αβt

λ

)
�∑

μ=β

(−1)μ

μ
B
μ
β B

�−1
μ−1

+ (ĝk)(−1)ββ

(√
λ+ 2αβt

λ

)
�∑

μ=β

(−1)μ

μ+ 1
B
μ
β B

�−1
μ−1 (E36)

Using the identities (E25) and (E26), and following some algebraic steps, this

simplifies to

Q2
k�(t) = −β ĝk

�(�+ 1)

(√
λ+ 2αβt

λ

)
u(�− β) (E37)
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E3 Simplifying Q3
k�(t)

As given in (E10), the third term of Qk�(t) is

Q3
k�(t) = −2(λ+ 2αβt)

β
f̂k ∗

∞∑
m=β+2

m−1∑
ν=β

ν∑
μ=β

μ+2∑
θ=0

Bm−ν−1
1 Bν−1

β−1 B
ν−β
μ−β (−1)θ+β

(m− 1)
B�−1
μ−1 B

μ+2
θ δ[k + θ − m+ 1] (E38)

Eliminating m by summing over the δ function, and then using (E15), this can be

recast as

Q3
k�(t) = −2(λ+ 2αβt)

β
f̂k ∗

∞∑
ν=β

ν∑
μ=β

μ+2∑
θ=0

(−1)θ+β

(k + θ)
Bk+θ−ν

1

β

ν
Bνμ B

μ
β B

�−1
μ−1 B

μ+2
θ (E39)

In Appendix M, we show that

∑
ν

Bk+θ−ν
1

Bνμ

ν
=

1

μ
Bk+θμ+1 (E40)

Using this result, we perform the summation over ν in (E39) to obtain

Q3
k�(t) = −2(λ+ 2αβt)

β
f̂k ∗

∞∑
μ=β

μ+2∑
θ=0

(−1)θ+β

(k + θ)

β

μ
Bk+θμ+1 B

μ
β B

�−1
μ−1 B

μ+2
θ (E41)

In Appendix N, we prove that

∑
θ

(−1)θ

(k + θ)
Bk+θμ+1 B

μ+2
θ =

(−1)μ+1

μ+ 1

(
δ[k] − δ[k + 1]

)
(E42)

Now, the convolutions of f̂k to the delta functions at the origin and at k = −1

give rise to shifts of zero and negative one on the k domain, respectively. From the

properties of the delta function it is straightforward to show that for any discrete

function fk , the convolution fk ∗ δ[k + 1] equals fk+1. So, we arrive at

Q3
k�(t) =

[
f̂k − f̂k+1

]
2(λ+ 2αβt)

β

�∑
μ=β

(−1)μ+β

(μ+ 1)

β

μ
B
μ
β B

�−1
μ−1 (E43)

Expanding in the form of partial fractions, this becomes

Q3
k�(t) = 2(λ+ 2αβt)

[
f̂k − f̂k+1

]
(−1)β

⎡
⎣ �∑
μ=β

(−1)μ

μ
B
μ
β B

�−1
μ−1 −

�∑
μ=β

(−1)μ

μ+ 1
B
μ
β B

�−1
μ−1

⎤
⎦

(E44)

Using identities (E25) and (E26) to evaluate these sums, which are proven in

Appendices I and J, respectively, we obtain the following simplified expression:

Q3
k�(t) =

2(λ+ 2αβt)

�(�+ 1)

[
f̂k − f̂k+1

]
u(�− β) (E45)
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E4 Simplifying Q4
k�(t)

The fourth term is given in (E11), which is repeated here for easy reference:

Q4
k�(t) = +

1

β
(λ+ 2αβt)

∞∑
m=2β+4

m−β−1∑
ν=β

ν∑
μ=β

μ+2∑
θ=0

× B
m−β−ν−1
3 Bν−1

β−1 B
ν−β
μ−β (−1)θ+β

(m− 1)
B�−1
μ−1 B

μ+2
θ δ[k + θ − m+ 1] (E46)

Summing over m to eliminate the delta function and using (E15), this transforms

into

Q4
k�(t) = +

1

β
(λ+ 2αβt)

∞∑
ν=β

ν∑
μ=β

μ+2∑
θ=0

(−1)θ+β

(k + θ)
B
k+θ−β−ν
3

β

ν
Bνμ B

μ
β B

�−1
μ−1 B

μ+2
θ (E47)

In Appendix O, we show that

∑
ν

B
k+θ−β−ν
3

Bνμ

ν
=

B
k+θ−β
μ+3

μ
(E48)

This identity helps us sum over ν and transform (E47) into

Q4
k�(t) = +

1

β
(λ+ 2αβt)

∞∑
μ=β

μ+2∑
θ=0

(−1)θ+β

(k + θ)

β

μ
B
k+θ−β
μ+3 B

μ
β B

�−1
μ−1 B

μ+2
θ (E49)

In Appendix P, we prove that

∑
θ

(−1)θ

(k + θ)
B
k+θ−β
μ+3 B

μ+2
θ =

(−1)μ

μ+ 3

[
1 − Bk−1

β−1

B
μ+k+2
k−β

]
u(k − β − 1) (E50)

Using this identity in (E49) and then taking a partial fraction decomposition, we

obtain the following distinct sums:

Q4
k�(t)
∣∣
k�β+1

= (λ+ 2αβt)

⎡
⎣ (−1)β

3

�∑
μ=β

(−1)μ

(μ)
B
μ
β B

�−1
μ−1 − (−1)β

3

�∑
μ=β

(−1)μ

(μ+ 3)
B
μ
β B

�−1
μ−1

−
�∑

μ=β

(−1)β+μ

(μ+ 3)

1

μ
B
μ
β B

�−1
μ−1

Bk−1
β−1

B
μ+k+2
k−β

⎤
⎦ (E51)

Using identities (E25) and (E27), proven in Appendices I and K, respectively, this

can be simplified to

Q4
k�(t) = (λ+ 2αβt)

(β + 1)(β + 2)

�(�+ 1)(�+ 2)(�+ 3)
u(�− β) − (λ+ 2αβt)

×
�∑

μ=β

(−1)β+μ

(μ+ 3)

1

μ
B
μ
β B

�−1
μ−1

Bk−1
β−1

B
μ+k+2
k−β

(E52)

This must be also multiplied by the factor u(k − β − 1), because Q4
k� is zero for

k � β.
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E5 Simplifying Q5
k�

As given in (E12), the fifth term of Qk�(t) is

Q5
k�(t) = − λ

β

(
λ

λ+ 2αβt

) β
2

∞∑
m=β+2

m−1∑
ν=β

ν∑
μ=β

μ∑
θ=0

× Bm−ν−1
1 Bν−1

β−1 B
ν−β
μ−β (−1)θ+β

(m− 1)
B�−1
μ−1 B

μ
θδ[k + θ − m+ 1] ∗ (ck−β Bk−1

β−1

)
(E53)

Similar to the previous terms of Qk�(t), we begin by summing over the index m that

eliminates the delta function. Then, we use (E15) to obtain

Q5
k�(t) = − λ

β

(
λ

λ+ 2αβt

) β
2
[
ck−β Bk−1

β−1

]
∗

∞∑
ν=β

ν∑
μ=β

μ∑
θ=0

{ (−1)θ+β

(k + θ)
Bk+θ−ν

1

β

ν
Bνμ B

μ
β B

�−1
μ−1 B

μ
θ

(E54)

Using the identity (E40) and Appendix M, we sum over the index ν to obtain

Q5
k�(t) = − λ

β

(
λ

λ+ 2αβt

) β
2
[
ck−β Bk−1

β−1

]
∗

�∑
μ=β

μ∑
θ=0

(−1)θ+β

(k + θ)

β

μ
Bk+θμ+1 B

μ
β B

�−1
μ−1 B

μ
θ (E55)

In Appendix Q, we show that

∑
θ

(−1)θ

(k + θ)
Bk+θμ+1 B

μ
θ =

(−1)μ

μ+ 1
u(k − 1) (E56)

Note that this sum does not depend on k. So, in the k domain, it is a constant.

Convolving a discrete function fk by a constant is analogous to discrete integration.

For example, convolution of a discrete function fk and unity equals
∑k

n=0 fn. Using

this fact, we can rewrite (E55) in the following form:

Q5
k�(t) = −λ(−1)β

(
λ

λ+ 2αβt

) β
2

�∑
μ=β

(−1)μ

μ(μ+ 1)
B
μ
β B

�−1
μ−1

k−1∑
j=β

cj−β Bj−1
β−1 (E57)

After partial fraction decomposition of 1
μ(μ+1)

and using the identities given in (E25)

and (E26) that are proven in Appendices I and J, respectively, we obtain

Q5
k�(t) = −λ

(
λ

λ+ 2αβt

) β
2 1

�(�+ 1)
u(�− β)

k−1∑
j=β

cj−β Bj−1
β−1 (E58)

E6 Simplifying Qk�(t)

Combining the results obtained in (E29), (E37), (E45), (E52), and (E58) leads us to

the full expression for Qk�(t). Note that all terms are only nonzero for the range � � β.

For terms with u(�− β), this follows from the definition of the Heaviside function,

and for the terms with sums, since the lower summation bound is β and the upper

summation index is �, the sum vanishes if � < β. Hereafter, we will drop the u(�− β)

term for brevity, keeping in mind that Qk� is zero for all the values � < β. With this
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consideration, we have

Qk�(t) = −(λ+ 2αβt)

[
(β + 1)

2k(k + 1) + β(k − �− 2)(3 + k + �)

k(k + 1)�(�+ 1)(�+ 2)(�+ 3)

− 2

�∑
μ=β

(−1)μ+β+1

k(k + 1)

(μ+ 2)

μ(μ+ 1)

B
μ
β B

�−1
μ−1

B
k+μ+2
μ+1

B
μ+β+2
β−1

⎤
⎦

− β
ĝk

�(�+ 1)

(√
λ+ 2αβt

λ

)
+

2(λ+ 2αβt)

�(�+ 1)

[
f̂k − f̂k+1

]

− λ

(
λ

λ+ 2αβt

) β
2 1

�(�+ 1)

k−1∑
j=β

cj−β Bj−1
β−1

+ (λ+ 2αβt)
(β + 1)(β + 2)

�(�+ 1)(�+ 2)(�+ 3)

− (λ+ 2αβt)

�∑
μ=β

(−1)β+μ

(μ+ 3)

1

μ
B
μ
β B

�−1
μ−1

Bk−1
β−1

B
μ+k+2
k−β

(E59)

One can verify the following through straightforward algebraic steps:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(β + 1)
2k(k + 1) + β(k − �− 2)(3 + k + �)

k(k + 1)�(�+ 1)(�+ 2)(�+ 3)
+

(β + 1)(β + 2)

�(�+ 1)(�+ 2)(�+ 3)

=
β(β + 1)

k(k + 1)�(�+ 1)

2 1
k(k+1)

(μ+ 2)

μ(μ+ 1)

B
μ
β B

�−1
μ−1

B
k+μ+2
μ+1

B
μ+β+2
β−1 +

1

(μ+ 3)

1

μ
B
μ
β B

�−1
μ−1

Bk−1
β−1

B
μ+k+2
k−β

=
Bk−1
β−1

�(�+ 1)

B
μ
β B

�+1
μ+1

B
μ+k+2
k−β

(E60)

This helps us to simplify (E59) and obtain

Qk�(t) = −(λ+ 2αβt)

⎡
⎣ −β(β + 1)

k(k + 1)�(�+ 1)
+

(−1)β Bk−1
β−1

�(�+ 1)

�∑
μ=β

(−1)μ
B
μ
β B

�+1
μ+1

B
μ+k+2
k−β

⎤
⎦u(k−β−1)

− β
ĝk

�(�+ 1)

(√
λ+ 2αβt

λ

)
+

2(λ+ 2αβt)

�(�+ 1)

[
f̂k − f̂k+1

]

− λ

(
λ

λ+ 2αβt

) β
2 1

�(�+ 1)

k−1∑
j=β

cj−β Bj−1
β−1 (E61)

The last thing to do is to obtain explicit expressions for f̂k and ĝk . Remember that

f̂k is the inverse transform of F(z′), where F(z) is the generating function for the

function fk , defined as F(z) =
∑

k fkz
−k . If we change the argument of F(·) from z

to z−c
1−c , we have F

(
z−c
1−c
)

=
∑

r fr
(

1−c
z−c
)r

. The inverse transform is given by

1

2πi

∮ ∑
r

fr

(
1 − c

z − c

)r
zk−1dz =

∑
r

fr
(1 − c)r

2πi

∮
zk−1

(z − c)r
dz (E62)
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Note that the residue of the function h(z)
(z−c)r for a differentiable function h(·) is

given by h(r−1)

(r−1)!
, evaluated at z = c. For our problem, h(z) = zk−1. So, we have to

evaluate the (r − 1)-th derivative of the function zk−1. It is straightforward to see

that 1
(r−1)!

d(r−1)

dz(r−1) z
k−1|

z=c
=ck−r Bk−1

r−1 u(k−r). Using this, we evaluate the integrals in (E62) and

arrive at

f̂k =
1

2πi

∮ ∑
r

fr

(
1 − c

z − c

)r
zk−1dz =

k∑
r=1

fr(1 − c)rck−r Bk−1
r−1

= −
k∑
r=1

B
r−β
2 Bk−1

r−1

r
(1 − c)rck−r (E63)

Since the binomial coefficient is only nonzero for values of k no less than β + 2,

we can also change the lower bound of summation from r = 1 to r = β + 2. We

can undertake the steps identical to those above to find the inverse transform of ĝk .

Note that taking the derivative of a transform of a discrete function ak and then

taking the inverse transform is tantamount to taking the transform of the discrete

function −(k − 1)ak−1. Using this fact, we have

ĝk = −
k∑
r=1

(r − 1)Nr−1(0)(1 − c)rck−r Bk−1
r−1 (E64)

Appendix F: Obtaining the NNDD from Nk�

Now, we need to plug Nk�(t), which is obtained from (C13), and N�k(t) (which

is obtained by exchanging the indices k and �) along with Nk (which is given in

Equation (5) as a function of time) into (1) to obtain the NNDD that is desired. We

have

N�k(t) +Nk�(t) = Q�k(t) + Qk�(t) +
∑
r,s

[
Nrs(0) +Nsr(0)

]
Bk−1
r−1 B

�−1
s−1

(
1 − c

c

)r+s
ck+�

−∑
r,s

[
Qrs(0) + Qsr(0)

]
Bk−1
r−1 B

�−1
s−1

(
1 − c

c

)r+s
ck+� (F1)

In the expression for Q�k(t) + Qk�(t), the left-hand side of the following identity

appears:

Bk−1
β−1

�(�+ 1)

�∑
μ=β

(−1)μ
B
μ
β B

�+1
μ+1

B
μ+k+2
k−β

+
B�−1
β−1

k(k + 1)

k∑
μ=β

(−1)μ
B
μ
β B

k+1
μ+1

B
μ+�+2
�−β

= β(β + 1)(−1)β
(k + 2)Bk+�+2

� + (�+ 1)B2β+2
β+1 B

k+�−2β
k−β

k(k + 1)(k + 2)�(�+ 1)Bk+�+2
�

(F2)

This identity is proven in Appendix R. Using (E61), we find Qk�(0)+Q�k(0), because

it is needed to find Nk�(t)+N�k(t). When t approaches zero, the value of c approaches

zero as well. In (E61), the last term has a sum in which different powers of c appear.

The same is true in the summations in (E63) and (E64). In all these cases, only one

non-zero term exists, in which the power of c is zero, and all terms with positive
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powers of c vanish. After a few simplifications, we arrive at

Qk�(0) + Q�k(0) = −λ β(β + 1)

k(k + 1)(k + 2)�

[
k + 2

�+ 1
− B

2β+2
β+1 B

k+�−2β
�−β

Bk+�+2
�

]

− β

[
Nk(0)

�(�+ 1)
+

N�(0)

k(k + 1)

]
− λ

2β(β + 1)

k(k + 1)�(�+ 1)
(F3)

Inserting these and (E61) into Equation (F1), and after a few simplifying steps, we

arrive at (25). Finally, we must divide this equation by kNk(t) to get p(�|k). Its value

can be obtained by multiplying (5) by k.

Appendix G: Proving the identity in Equation (E19)

We want to show that∑
θ

(−1)θ

k + θ
Bk+θ−s
μ+1 B

μ+2
θ =

(−1)μ+1(μ+ 2)

k(k + 1)

B
μ+s
μ+1

B
k+μ+2
μ+1

+
(−1)μ

k
δ[s− k − 1] (F4)

Let us define hk
def
=
∑
θ

(−1)θ

k + θ
Bk+θ−s
μ+1 B

μ+2
θ , and H(x) =

∑
k

hkx
k . We have

H(x) =
∑
θ

x−θ(−1)θ Bμ+2
θ

∑
k

Bk+θ−s
μ+1

xk+θ

k + θ

=
∑
θ

x−θ(−1)θ Bμ+2
θ

∫ x∑
k

Bk+θ−s
μ+1 xk+θ−1dx

=

[∑
θ

x−θ(−1)θ Bμ+2
θ

] ∫ x

xs−1
∑
k

Bk+θ−s
μ+1 xk+θ−sdx

=

[
x− 1

x

]μ+2 ∫ x xμ+s

(1 − x)μ+2
(F5)

Now, let us define f1(x)
def
=
(
x−1
x

)μ+2
, and f2(x)

def
=
∫ x xμ+s

(1−x)μ+2 . Then, we have h(x) =

f1(x)f2(x). Now, let us take the derivative of both sides:

H′(x) = f′
1(x)f2(x) + f1(x)f

′
2(x) =

f′
1(x)

f1(x)
H(x) + f1(x)f

′
2(x) (F6)

It follows from elementary calculus that f′
1(x)f1(x) = −(μ+2)

x(1−x) , and f1(x)f
′
2(x)

= (−1)μxs−2. So, we arrive at H′(x) = f′
1(x)f2(x) + f1(x)f

′
2(x) = −(μ+2)

x(1−x) H(x)

+(−1)μxs−2. Using the power series representation for h(x) in the form of
∑

k hkx
k

in this equation, we get

(k + 1)hk+1 = −(μ+ 2)u(k + 1) ∗ hk + (−1)μδk+2−s (F7)

The convolution with the step function is equivalent to discrete integration, so we

get

(k + 1)hk+1 = −(μ+ 2)

k+1∑
−∞

hk + (−1)μδk+2−s (F8)
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Writing down this equation fork, we get (k)hk = −(μ + 2)
∑k

−∞ hk + (−1)μδk+1−s.
Subtracting these two equations, we get (k + 1)hk+1 − khk = −(μ + 2)hk+1 + (−1)μ[
δk+2−s − δk+1−s

]
. This can be rearranged and expressed as follows:

hk+1 =
k

μ+ k + 3
hk +

(−1)μ

μ+ k + 3
[δk+2−s − δk+1−s] (F9)

It is seen from (F4) that for k = s− 2 the sum is zero. For the next one, we have

hs−1 = (−1)μ

μ+s+1
. For the next term, we plug s− 1 for k in (F9) and obtain

hs =
s− 1

μ+ s+ 2

(−1)μ

μ+ s+ 1
− (−1)μ

μ+ s+ 2
=

(−1)μ

μ+ s+ 2

( s− 1

μ+ s+ 1
− 1
)

= (−1)μ+1(μ+ 2)
1

(μ+ s+ 1)(μ+ s+ 2)
(F10)

rom the next term onward, the deltas vanish. We get the recurrence hk+1 =
k

μ+k+3
hk, k > s. So, we get the result through successive multiplications: hk =

hs
∏k−1

i=s
i

μ+i+3
. This can be equivalently expressed as follows:

hk = (−1)μ+1 (μ+ 2)

(μ+ s+ 1)(μ+ s+ 2)

Bk−1
s−1

B
μ+k+2
μ+s+2

(F11)

By expanding the binomial coefficients, it can be readily verified that

(μ+ 2)

(μ+ s+ 1)(μ+ s+ 2)

Bk−1
s−1

B
μ+k+2
μ+s+2

=
(μ+ 2)

k(k + 1)

B
μ+s
μ+1

B
k+μ+2
μ+1

(F12)

So, we arrive at

hk =
(−1)μ+1(μ+ 2)

k(k + 1)

B
μ+s
μ+1

B
k+μ+2
μ+1

(F13)

The case of s = k + 1 is peculiar. In this case, we only have one term, which

equals (−1)μ

μ+k+2
, while (F13) returns: μ+2

k
(−1)μ+1

μ+k+2
. The difference is (−1)μ

μ+k+2
− μ+2

k
(−1)μ+1

μ+k+2
=

(−1)μ

k
. We add this to compensate for the singular case of s = k + 1, and obtain

hk =
(−1)μ+1(μ+ 2)

k(k + 1)

B
μ+s
μ+1

B
k+μ+2
μ+1

+
(−1)μ

k
δ[s− k − 1] (F14)

which is the desired result.

Appendix H: Proving the identity in Equation (E21)

The identity we intend to prove is the following:

k+1∑
s=β

B
s−β
2

s
B
μ+s
μ+1 =

[
B
μ+k+2
μ+1

2(μ+ 1)(μ+ 2)(μ+ 3)
Ωμ − B

μ+β+2
β−1

μ+ 1

]
u(k − β − 1) (H1)

with Ωμ
def
= 2β(k + 1) + (β − k)(β + k + 1)(μ+ 2) + (k − β)(k + 1 − β)(μ+ 2)2. The

step function is justified by noting that in order for the sum to have at least one

nonzero term, the binomial coefficient Bs−β2 imposes the condition that smax � β + 2.

Since smax = k + 1, this readily translates into k � β + 1, hence the step function.
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We use mathematical induction on k, for the case of k = β + 1. In this case, only

one term in the summation is nonzero, which is s = β + 2, and the left-hand side

becomes
B
μ+β+2
μ+1

β+2
. Also, we have

Ωμ = 2β(β + 2) − (2β + 2)(μ+ 2) + 2(μ+ 2)2 = 2

[
(μ+ 1)(μ+ 2) − β(μ− β)

]
(H2)

Plugging this into the right-hand side of (H1) yields

B
μ+β+3
μ+1

2(μ+ 1)(μ+ 2)(μ+ 3)
2

[
(μ+ 1)(μ+ 2) − β(μ− β)

]
− B

μ+β+2
β−1

μ+ 1

=

[
(μ+ 1)(μ+ 2) − β(μ− β)

]
(μ+ β + 3)!

(μ+ 1)(μ+ 2)(μ+ 3)(μ+ 1)!(β + 2)!
− (μ+ β + 2)!

(μ+ 1)(β − 1)!(μ+ 3)!

=
(μ+ β + 2)!

(μ+ 3)!(μ+ 1)(β + 2)!

×
[[

(μ+ 1)(μ+ 2) − β(μ− β)
]
(μ+ β + 3) − β(β + 1)(β + 2)

]

=
(μ+ β + 2)!

(μ+ 3)!(μ+ 1)(β + 2)!

[
(μ+ 1)(μ+ 2)(μ+ 3)

]
=

(μ+ β + 2)!

(μ+ 1)!(β + 2)!
=

B
μ+β+2
μ+1

β + 2
(H3)

So, the initial step of induction is proven. Now, we focus on the inductive step,

namely, showing that if (H1) holds for k, then it will also hold for k + 1. The

left-hand side of (H1) for k + 1 equals

(k+1)+1∑
s=β

B
s−β
2

s
B
μ+s
μ+1 =

k+1∑
s=β

B
s−β
2

s
B
μ+s
μ+1 +

B
k+2−β
2

k + 2
B
μ+k+2
μ+1 (H4)

The sum can be replaced by the right-hand side of (H1). We get

(k+1)+1∑
s=β

B
s−β
2

s
B
μ+s
μ+1 =

[
B
μ+k+2
μ+1

2(μ+ 1)(μ+ 2)(μ+ 3)
Ωμ − B

μ+β+2
β−1

μ+ 1

]
+
B
k+2−β
2

k + 2
B
μ+k+2
μ+1 (H5)

Using the explicit form of Ωμ, the induction step reduces to proving the validity of

the following:

B
μ+k+2
μ+1

[
2β(k + 1) + (β − k)(β + k + 1)(μ+ 2) + (k − β)(k + 1 − β)(μ+ 2)2

]
2(μ+ 1)(μ+ 2)(μ+ 3)

− B
μ+β+2
β−1

μ+ 1
+
B
k+2−β
2 B

μ+k+2
μ+1

k + 2

=
B
μ+k+3
μ+1

[
2β(k+2) + (β−k−1)(β+k+2)(μ+2) + (k+1 − β)(k + 2 − β)(μ+ 2)2

]
2(μ+ 1)(μ+ 2)(μ+ 3)

− B
μ+β+2
β−1

μ+ 1
(H6)
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This can be simplified to

B
μ+k+2
μ+1

[
2β(k + 1) + (β − k)(β + k + 1)(μ+ 2) + (k − β)(k + 1 − β)(μ+ 2)2

]
2(μ+ 1)(μ+ 2)(μ+ 3)

+
B
k+2−β
2 B

μ+k+2
μ+1

k + 2

=
B
μ+k+3
μ+1

[
2β(k+2) + (β−k−1)(β + k + 2)(μ+ 2) + (k + 1 − β)(k + 2 − β)(μ+ 2)2

]
2(μ+ 1)(μ+ 2)(μ+ 3)

(H7)

Note that we have B
μ+k+3
μ+1 =

B
μ+k+2
μ+1 (μ+k+3)

(k+2)
. Multiplying both sides of (H7) by

2(μ + 1)(μ + 2)(μ + 3)(k + 2) and dividing both sides by B
μ+k+2
μ+1 , we arrive at the

following, whose validity we must prove in order for the induction step to be

concluded:[
2β(k + 1) + (β − k)(β + k + 1)(μ+ 2) + (k − β)(k + 1 − β)(μ+ 2)2

]
(k + 2)

+ B
k+2−β
2 2(μ+ 1)(μ+ 2)(μ+ 3) − (μ+ k + 3)

[
2β(k + 2)

+ (β − k − 1)(β + k + 2)(μ+ 2) + (k + 1 − β)(k + 2 − β)(μ+ 2)2
]

= 0 (H8)

Let us find the coefficients of different powers of μ. We will show that all these coef-

ficients are zero. Starting with μ3, the coefficient is 2Bk+2−β
2 − (k + 1 − β)(k + 2 − β),

which equals zero. The coefficient of μ2 is

[
(k − β)(k + 1 − β)(k + 2)

]
+

[
12Bk+2−β

2

]

−
[
(β − k − 1)(β + k + 2) − (k + 3)(k + 1 − β)(k + 2 − β)

]
= (k + 1 − β)

[
(k − β)(k + 2) + 6(k + 2 − β) − (k + 2 + β) − (k + 3)(k + 2 − β)

]
= (k + 1 − β)

[
k2 + 2k − βk − 2β + 12 − 6β + 6k − 12 + 8β − 8k + βk − k2

]
= 0

(H9)

The coefficient of μ is

(−6β + 10β2 + 6k − 19βk + 5β2k + 9k2 − 8βk2 + 3k3)

+ (22 − 33β + 11β2 + 33k − 22βk + 11k2)

+ (−22 + 39β − 21β2 − 39k + 41βk − 5β2k − 20k2 + 8βk2 − 3k3) = 0 (H10)

Finally, the coefficient of μ0 equals

(12β2 + 4k − 12βk + 6β2k + 6k2 − 6βk2 + 2k3)

+ (12 − 18β + 6β2 + 18k − 12βk + 6k2)

+ (−12 + 18β − 18β2 − 22k + 24βk − 6β2k − 12k2 + 6βk2 − 2k3) = 0 (H11)

So, the coefficients of every power of μ is zero. This means that (H8) holds. Hence,

the induction step is concluded, and the proof is complete.
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Appendix I: Proving the identity in Equation (E25)

We want to show that ∑
μ

(−1)μ

μ
B�−1
μ−1 B

μ
β =

(−1)�

�
δ[�− β] (I1)

The left-hand side is a special case of the following sum:
∑

μ
xμ

μ
B�−1
μ−1 B

μ
β , evaluated

at x = −1. Note that this sum is equivalent to
∫ x∑

μ x
μ−1 B�−1

μ−1 B
μ
βdx.

Let us define fβ
def
=
∫ x∑

μ x
μ−1 B�−1

μ−1 B
μ
βdx, and F(w)

def
=
∑

β fβw
β . We can find f(w)

by interchanging the order of summation as follows:

F(w) =

∫ x∑
μ

xμ−1 B�−1
μ−1

∑
β

B
μ
βw

βdx =

∫ x∑
μ

xμ−1 B�−1
μ−1(1 + w)μdx

= (1 + w)

∫ x∑
μ

B�−1
μ−1

[
x(1 + w)

]μ−1
dx = (1 + w)

∫ x [
1 + x(1 + w)

]�−1
dx

=

[
1 + x(1 + w)

]�
�

(I2)

Evaluating this at x = −1 to get the original sum, we get F(w) = (−1)�

�
w�. This

means that the power series representation of this function only has one term,

and the other coefficients are zero. So fβ is only nonzero if β = �. So, we have

fβ = (−1)β

�
δ[�− β].

Appendix J: Proving the identity in Equation (E26)

We want to show that∑
μ

(−1)μ

μ+ 1
B�−1
μ−1 B

μ
β =

(−1)β+1

�(�+ 1)
u(�− β − 1) +

(−1)β

�+ 1
δ[�− β] (J1)

Let us define fβ
def
=
∑

μ
(−1)μ

μ+1
B�−1
μ−1 B

μ
β , and F(w)

def
=
∑

β fβw
β . We can find f(w) by

interchanging the order of summation as follows:

F(w)=
∑
μ

∑
β

(−1)μ

μ+ 1
B�−1
μ−1 B

μ
βw

β=
∑
μ

(−1)μ

μ+ 1
B�−1
μ−1(1 + w)μ=

∑
μ

[
− (1 + w)

]μ
μ+ 1

B�−1
μ−1

(J2)

Let us define z
def
= −(1 + w). Then, we have

F(w) =
∑
μ

zμμ+ 1B�−1
μ−1 =

∑
μ

zμμ+ 1B�−1
μ−1 = z−1

∫ z

z
∑
μ

zμ B�−1
μ−1

= z−1

[
(1 + z)�+1 − 1

�+ 1
− (1 + z)� − 1

�

]
=

(−1)�

1 + w

[
w�+1

�+ 1
+
w�

�
− (−1)�

�(�+ 1)

]
(J3)
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Expanding this results in powers of w is straightforward. The result is

F(w) =
(−1)�

�+ 1
w�+1

∑
j

(−1)jwj +
(−1)�

�
w�
∑
j

(−1)jwj − 1

�+ 1
w�(�+1)

∑
j

(−1)jwj

(J4)

The overall coefficient of exponents of w that are less than β vanishes. We get:

fβ = (−1)β+1

�(�+1)
for � > β, and fβ = (−1)β

�+1
for � = β, which is equivalent to (J1).

Appendix K: Proving the identity in Equation (E27)

We want to show that∑
μ

(−1)μ

μ+ 3
B�−1
μ−1 B

μ
β =

(−1)β+13(β + 1)(β + 2)

�(�+ 1)(�+ 2)(�+ 3)
u(�− β − 1) +

(−1)β

(�+ 3)
δ[�− β] (K1)

Let us define fβ
def
=
∑

μ
(−1)μ

μ+3
B�−1
μ−1 B

μ
β , and F(w)

def
=
∑

β fβw
β . By interchanging the

summation order, we have

F(w) =
∑
μ

(−1)μ

μ+ 3
B�−1
μ−1

∑
β

B
μ
βw

β =
∑
μ

(−1)μ

μ+ 3
B�−1
μ−1(1 + w)μ

=
∑
μ

[−(1 + w)]μ

μ+ 3
B�−1
μ−1 (K2)

Now let us define z
def
= −(1 + w). Then, we have

F(w) =
∑
μ

zμ

μ+ 3
B�−1
μ−1 = z−3

×∑
μ

zμ+3

μ+ 3
B�−1
μ−1 = z−3

∫ z∑
μ

zμ+2 B�−1
μ−1 = z−3

∫ z

z3(1 + z)�−1

=
(z + 1)�

z3

[
z3

�
− 3z2(1 + z)

�(�+ 1)
+

6z(1 + z)2

�(�+ 1)(�+ 2)
− 6(1 + z)3

�(�+ 1)(�+ 2)(�+ 3)

]

+
6

z3�(�+ 1)(�+ 2)(�+ 3)
(K3)

Expressing this in terms of w, we get

F(w) =
(−w)�+1

(1 + w)3

[ −(1 + w)3

�
+

3(1 + w)2w

�(�+ 1)
− 6(1 + w)w2

�(�+ 1)(�+ 2)

+
6w3

�(�+ 1)(�+ 2)(�+ 3)

]

− 6

(1 + w)3�(�+ 1)(�+ 2)(�+ 3)
(K4)

Expanding this in powers of w is straightforward. So, we arrive at fβ = (−1)�

�+3
for

β = �, and fβ = (−1)β+13(β+1)(β+2)
�(�+1)(�+2)(�+3)

for � > β; hence, the proof is concluded.
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Appendix L: Proving the identity in Equation (E34)

We want to show that ∑
θ

(−1)θ

k + θ
Bk+θμ+1 B

μ+1
θ =

(−1)μ+1

(μ+ 1)
δk (L1)

Let us define hk
def
=
∑
θ

(−1)θ

k + θ
Bk+θμ+1 B

μ+1
θ , and H(x) =

∑
k

hkx
k . We have

H(x) =
∑
θ

x−θ(−1)θ Bμ+1
θ

∑
k

Bk+θμ+1

xk+θ

k + θ
=
∑
θ

x−θ(−1)θ Bμ+1
θ

∫ x∑
k

Bk+θμ+1x
k+θ−1dx

=

[∑
θ

x−θ(−1)θ Bμ+1
θ

] ∫ x

x−1
∑
k

Bk+θμ+1x
k+θdx =

(
x− 1

x

)μ+1 ∫ x xμ

(1 − x)μ+2

(L2)

Performing the integration, we have
∫ x xμ

(1−x)μ+2 = xμ+1

(1+μ)(1−x)μ+1 . So, we get

H(x) =

(
x− 1

x

)μ+1
xμ+1

(1 + μ)(1 − x)μ+1
=

(−1)μ

μ+ 1
(L3)

So, the result does not depend on x, which means that there only is a delta function

at the origin, multiplying by x0 in the power series. We get hk = (−1)μ

μ+1
δk , so the proof

is completed.

Appendix M: Proving the identity in Equation (E40)

We want to show that ∑
ν

B
ξ−ν
1

Bνμ

ν
=

1

μ
B
ξ
μ+1 (M1)

Let us define h(ξ)
def
=
∑

ν B
ξ−ν
1

Bνμ
ν

, and H(x) =
∑

ξ h(ξ)x
ξ . We have

H(x) =
∑
ν,ξ

B
ξ−ν
1

Bνμ

ν
xξ =

∑
ν

Bνμ

ν
xν
∑
ξ

B
ξ−ν
1 xξ−ν =

[∑
ν

Bνμ

ν
xν
]

x

(1 − x)2

=
x

(1 − x)2

[ ∫ x∑
ν

Bνμx
ν−1dx

]
=

x

(1 − x)2

[ ∫ x 1

x

∑
ν

Bνμx
νdx

]

=
x

(1 − x)2

∫ x xμ−1

(1 − x)μ+1
=

1

μ

[
x

(1 − x)2

][
xμ

(1 − x)μ

]

=
1

μ

[∑
ξ

ξxξ
][∑

ξ

B
ξ−1
μ−1

]
=
∑
ξ

1

μ

[∑
ρ

ρB
ξ−1−ρ
μ−1

]
xξ (M2)

Now let us find the sum π(μ)
def
=
∑

ρ ρB
ξ−1−ρ
μ−1 . Also, define π(x)

def
=
∑

μ π(μ)xμ. We

have

π(x) =
∑
ρ

ρx
∑
μ

B
ξ−1−ρ
μ−1 xμ−1 =

∑
ρ

ρx(1 + x)ξ−1−ρ = x(1 + x)ξ−2
∑
ρ

ρ

[
1

1 + x

]ρ−1

= x(1 + x)ξ−2 1[
(1 − 1

1+x
)
]2 =

(1 + x)ξ

x
=
∑
ρ

B
μ+1
ξ xμ (M3)
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So, we have found that π(μ) = B
μ+1
ξ . Plugging this in the last line of (M2), we get

h(ξ) = 1
μ
B
μ+1
ξ . Hence, the proof is complete.

Appendix N: Proving the identity in Equation (E42)

We want to show that∑
θ

(−1)θ

k + θ
Bk+θμ+1 B

μ+2
θ =

(−1)μ+1

(μ+ 1)

[
δk − δk+1

]
(N1)

Every step up to (L2) is identical to those in Appendix L.

H(x) =
∑
θ

x−θ(−1)θ Bμ+2
θ

∑
k

Bk+θμ+1

xk+θ

k + θ
=
∑
θ

x−θ(−1)θ Bμ+2
θ

∫ x∑
k

Bk+θμ+1x
k+θ−1dx

=

[∑
θ

x−θ(−1)θ Bμ+2
θ

] ∫ x

x−1
∑
k

Bk+θμ+1x
k+θdx =

(
x− 1

x

)μ+2 ∫ x xμ

(1 − x)μ+2

(N2)

The result is

H(x) =

(
x− 1

x

)μ+2
xμ+1

(1 + μ)(1 − x)μ+1
=

(−1)μ+1

μ+ 1

(
1 − x−1

)
(N3)

which means that hk = (−1)μ+1

μ+1

[
δk − δk+1

]
, as desired.

Appendix O: Proving the identity in Equation (E48)

We want to show that
∑

ν B
ξ−ν
3

Bνμ
ν

=
B
ξ
μ+3

μ
. Let us define h(ξ)

def
=
∑

ν B
ξ−ν
3

Bνμ
ν

, and

also the generating function H(x)
def
=
∑

ξ h(ξ)x
ξ . Then, we have

H(x) =
∑
ξ

∑
ν

xν B
ξ−ν
3

Bνμ

ν
xξ−ν =

∑
ν

xν
Bνμ

ν

∑
ξ−ν

B
ξ−ν
3 xξ−ν =

∑
ν

xν
Bνμ

ν

x3

(1 − x)4

=
x3

(1 − x)4

∑
ν

Bνμ
xν

ν
=

x3

(1 − x)4

∫ x∑
ν

Bνμx
ν−1dx=

x3

(1 − x)4

∫ x 1

x

∑
ν

Bνμx
νdx

=
x3

(1 − x)4

∫ x 1

x

xμ

(1 − x)μ+1
dx =

x3

(1 − x)4
1

μ

xμ

(1 − x)μ
=

1

μ

x3+μ

(1 − x)μ+4

=
∑
ξ

1

μ
B
ξ
μ+3︸ ︷︷ ︸

=h(ξ)

xξ (O1)

Appendix P: Proving the identity in Equation (E50)

We want to show that∑
θ

(−1)θ

k + θ
B
k+θ−β
μ+3 B

μ+2
θ =

(−1)μ

μ+ 3

[
1 − Bk−1

β−1

B
μ+k+2
k−β

]
u(k − β − 1) (P1)
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Let us define h(k)
def
=
∑

θ
(−1)θ

k+θ
B
k+θ−β
μ+3 B

μ+2
θ , and H(x)

def
=
∑

k hkx
k. Then we have

H(x) =
∑
θ

(−1)θ Bμ+2
θ x−θ∑

k

xk+θ

k + θ
B
k+θ−β
μ+3

=
∑
θ

(−1

x

)θ
B
μ+2
θ

∫ x∑
k

B
k+θ−β
μ+3 xk+θ−1dx

=
∑
θ

(−1

x

)θ
B
μ+2
θ

∫ x

xβ−1
∑
k

B
k+θ−β
μ+3 xk+θ−βdx

=

[∑
θ

(−1

x

)θ
B
μ+2
θ

] ∫ x

xβ−1 xμ+3

(1 − x)μ+4
dx

=

(
1 − 1

x

)μ+2 ∫ x xμ+β+2

(1 − x)μ+4
dx =

(
x− 1

x

)μ+2 ∫ x xμ+β+2

(1 − x)μ+4
dx (P2)

Now, the objective is to find the coefficients of xk in the power series expansion of

the last term above, in terms of x. Let us define f1(x)
def
=
(
x−1
x

)μ+2
, and f2(x)

def
=∫ x xμ+β+2

(1−x)μ+4 dx. We have: H(x) =
∑

k hkx
k = f1(x)f2(x). Taking the derivative from

both sides, we get

∑
k

(k + 1)hk+1x
k = f′

1(x)f2(x) + f1(x)f
′
2(x) =

f′
1(x)

f1(x)
H(x) + f1(x)f

′
2(x) (P3)

It is elementary to show that the following holds:
f′

1(x)

f1(x)
= −(μ+2)

x(1−x) . Substituting

this into the right-hand side of (P3), and also noting that the derivative in f′
2(x)

eliminates the integration sign, we get
∑

k(k + 1)hk+1x
k = f′

1(x)f2(x) + f1(x)f
′
2(x) =

−(μ+2)
x(1−x) H(x)+ (−1)μxβ

(1−x)2 . Expanding the right-hand side in powers of x, and then equating

the coefficients of each power, gives

(k + 1)hk+1 = −(μ+ 2)u(k + 1) ∗ hk + (k + 1 − β)u(k − β)

= −(μ+ 2)

k+1∑
j=−∞

hj + (−1)μ(k + 1 − β)u(k − β) (P4)

Writing down the same equation for k − 1 rather than k gives

khk = −(μ+ 2)

k∑
j=−∞

hj + (−1)μ(k − β)u(k − 1 − β) (P5)

Subtracting this from (P4), we get (k + 1)hk+1 − khk = −(μ + 2)hk+1 + (−1)μ. This

can be rearranged to give

hk+1 =

[
k

μ+ k + 3

]
hk +

(−1)μ

μ+ k + 3
(P6)

This is a first-order linear inhomogeneous difference equation, whose formal closed-

form solution is known (Bender and Orszag, 1978). However, let us write the first

few terms and find the solution through speculation. From (P1), it can be readily
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seen that hβ = 0. Also, hβ+1 = (−1)μ

μ+β+3
. For the next term, we have

hβ+2 = (−1)μ
[

β + 1

(μ+ β + 4)(μ+ β + 3)

]
+

(−1)μ

μ+ β + 4
=

(−1)μ

μ+ 3

[
1 − B

β+1
β−1

B
μ+β+4
2

]
(P7)

For the next term hβ+3, we have

hβ+3 =

[
β + 2

μ+ β + 5

]
(−1)μ

μ+ 3

[
1 − B

β+1
β−1

B
μ+β+4
2

]
+

(−1)μ

μ+ β + 5
=

(−1)μ

μ+ 3

[
1 − B

β+2
β−1

B
μ+β+5
3

]
(P8)

We recognize that for hk the general expression is

hk =
(−1)μ

μ+ 3

[
1 − Bk−1

β−1

B
μ+k+2
k−β

]
u(k − β − 1) (P9)

The step function exists because for k � β, the two binomial factors in the

original summand cannot be simultaneously nonzero. That is, the B
μ+2
θ factor im-

poses θmax = μ+ 2. The Bk+θ−β
μ+3 factor is nonzero only when θ � μ+ 3 + β − k. This

is synonymous with θmin = μ+ 3 + β − k. We must have θmax � θmin for the original

sum to have at least one nonzero term. So, we must have μ+ 2 � μ+ 3 + β − k, or

equivalently k � β + 1. Now, we check that according to (P6), the following holds:

(μ+ k + 3)hk+1 − khk = (−1)μ. Calculating the left-hand side, we get

(μ+ k + 3)
(−1)μ

μ+ 3

⎡
⎢⎢⎣1 −

k!

(β − 1)!(k + 1 − β)!
(μ+ k + 3)!

(μ+ β + 2)!(k + 1 − β)!

⎤
⎥⎥⎦

− k
(−1)μ

μ+ 3

⎡
⎢⎢⎣1 −

(k − 1)!

(β − 1)!(k − β)!
(μ+ k + 2)!

(μ+ β + 2)!(k − β)!

⎤
⎥⎥⎦

= (μ+ 3)
(−1)μ

μ+ 3
− k!(μ+ β + 2)!

(β − 1)!(μ+ k + 2)!

[
(k + 1 − β)!

(k + 1 − β)!
− (k − β)!

(k − β)!

]
= (−1)μ (P10)

which concludes the proof.

Appendix Q: Proving the identity in Equation (E56)

We want to show that ∑
θ

(−1)θ

k + θ
Bk+θμ+1 B

μ
θ =

(−1)μ+1

(μ+ 1)
, ∀k (Q1)

Every step up to (L2) is identical to those in Appendix L:

H(x) =
∑
θ

x−θ(−1)θ Bμθ

∑
k

Bk+θμ+1

xk+θ

k + θ
=
∑
θ

x−θ(−1)θ Bμθ

∫ x∑
k

Bk+θμ+1x
k+θ−1dx

=

[∑
θ

x−θ(−1)θ Bμθ

] ∫ x

x−1
∑
k

Bk+θμ+1x
k+θdx =

(
x− 1

x

)μ ∫ x xμ

(1 − x)μ+2

(Q2)
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The result is

H(x) =

(
x− 1

x

)μ
xμ+1

(1 + μ)(1 − x)μ+1
=

(−1)μ+1

μ+ 1

( x

1 − x

)
=

(−1)μ+1

μ+ 1

∑
k

xk (Q3)

which means that hk = (−1)μ+1

μ+1
∀k, as we intended to prove.

Appendix R: Proving the identity in Equation (F2)

In this appendix, we want to ascertain the validity of an identity that we have used

in the evaluation of Qk�(t) + Q�k(t) in Appendix F. As given in (F2), the identity is

Bk−1
β−1

�(�+ 1)

�∑
μ=β

(−1)μ
B
μ
β B

�+1
μ+1

B
μ+k+2
k−β

+
B�−1
β−1

k(k + 1)

k∑
μ=β

(−1)μ
B
μ
β B

k+1
μ+1

B
μ+�+2
�−β

= β(β + 1)(−1)β
(k + 2)Bk+�+2

� + (�+ 1)B2β+2
β+1 B

k+�−2β
k−β

k(k + 1)(k + 2)�(�+ 1)Bk+�+2
�

(R1)

We prove this by finding the generating function of both sides of (R1), and

showing that the generating functions are identical. Since the inversion is one to

one, this will conclude the proof.

First, we simplify the left-hand side of (R1). We have

(−1)μ
Bk−1
β−1

�(�+ 1)

B
μ
β B

�+1
μ+1

B
μ+k+2
k−β

= (−1)μ
(k − 1)!

(β − 1)!(k − β)!�(�+ 1)

μ!(�+ 1)!(k − β)!(μ+ β + 2)!

β!(μ− β)!(μ+ 1)!(�− μ)!(μ+ k + 2)!

= (−1)μ
(k + 1)!(�+ 1)!

(β − 1)!β!k(k + 1)�(�+ 1)(μ+ 1)

(μ+ β + 2)!

(μ− β)!(�− μ)!(μ+ k + 2)!

× (2β + 2)!(k + �+ 2)!

(2β + 2)!(k + �+ 2)!

= (−1)μ
(2β + 2)! Bμ+β+2

2β+2 B�+k+2
μ+k+2

k(k + 1)�(�+ 1)(β − 1)!β!(μ+ 1)Bk+�+2
k+1

= (−1)μ
β(β + 1)2 B2β+2

β+1

k(k + 1)�(�+ 1)Bk+�+2
k+1

B
μ+β+2
2β+2 B�+k+2

μ+k+2

μ+ 1
(R2)

Inserting this into the left-hand side of (R1), multiplying both sides by

k(k + 1)�(�+ 1), and dividing both sides by β(β + 1), we arrive at the following

equivalent expression:

(β + 1)B2β+2
β+1

Bk+�+2
�+1

⎡
⎣ �∑
μ=β

(−1)μ
B
μ+β+2
2β+2 B�+k+2

μ+k+2

μ+ 1
+

k∑
μ=β

(−1)μ
B
μ+β+2
2β+2 B�+k+2

μ+�+2

μ+ 1

⎤
⎦

= (−1)β
(k + 2)Bk+�+2

� + (�+ 1)B2β+2
β+1 B

k+�−2β
k−β

(k + 2)Bk+�+2
�

(R3)
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Now, using the fact that Bk+�+2
�+1 = k+2

�+1
Bk+�+2
� , this can be transformed into

�∑
μ=β

(−1)μ
B
μ+β+2
2β+2 B�+k+2

μ+k+2

μ+ 1
+

k∑
μ=β

(−1)μ
B
μ+β+2
2β+2 B�+k+2

μ+�+2

μ+ 1

= (−1)β
Bk+�+2
�+1 + B

2β+2
β+1 B

k+�−2β
k−β

(β + 1)B2β+2
β+1

(R4)

Since (R4) and (R1) are equivalent, we will prove the validity of (R4). Then, the

validity of (R1) will follow. To proceed, we show that the generation functions

of the two sides of (R4) are identical. Since the inversion is one to one, it will

be synonymous with the equality of two sides of (R4). Note that the upper

bounds of both sums in (R1) can be replaced by infinity, because the bounds

are automatically imposed by the binomial coefficients in the summands. Similarly,

the lower bounds can be set to −∞. Thus, the summation bounds are redundant

and will be skipped hereafter. In the next steps, we use the following elementary

identity:

∑
j

B
j
i x

j =
xi

(1 − x)i+1
(R5)

This readily follows by Taylor expanding the right-hand side. Let us multiply both

sides of (R4) by y� and sum over all values of �. Let us denote the generating

functions of the left- and right-hand sides by HL and HR , respectively. The

goal is to prove that HL and HR are identical. For the left-hand side, we will

have

HL
def
=
∑
μ

∑
�

(−1)μ
B
μ+β+2
2β+2 B�+k+2

μ+k+2

μ+ 1
y� +

∑
μ

∑
�

(−1)μ
B
μ+β+2
2β+2 B�+k+2

μ+�+2

μ+ 1
y�

=
∑
μ

(−1)μ
B
μ+β+2
2β+2

μ+ 1

∑
�

B�+k+2
μ+k+2y

� +
∑
μ

(−1)μ
B
μ+β+2
2β+2

μ+ 1

∑
�

B�+k+2
μ+�+2y

�

=
∑
μ

(−1)μ
B
μ+β+2
2β+2

μ+ 1
y−k−2

∑
�

B�+k+2
μ+k+2y

k+�+2

+
∑
μ

(−1)μ
B
μ+β+2
2β+2

μ+ 1
y−k−2

∑
�

B�+k+2
k−μ yk+�+2

=
∑
μ

(−1)μ
B
μ+β+2
2β+2

μ+ 1
y−k−2

∑
θ

Bθμ+k+2y
θ +
∑
μ

(−1)μ
B
μ+β+2
2β+2

μ+ 1
y−k−2

∑
θ

Bθk−μyθ

=
∑
μ

(−1)μ
B
μ+β+2
2β+2

μ+ 1
y−k−2 yμ+k+2

(1 − y)μ+k+3
+
∑
μ

(−1)μ
B
μ+β+2
2β+2

μ+ 1
y−k−2 yk−μ

(1 − y)k−μ+1

(R6)
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where in the last step we have used (R5). Now, we undertake the following

rearranging steps:

HL =
∑
μ

(−1)μ
B
μ+β+2
2β+2

μ+ 1
y−k−2 yμ+k+2

(1 − y)μ+k+3
+
∑
μ

(−1)μ
B
μ+β+2
2β+2

μ+ 1
y−k−2 yk−μ

(1 − y)k−μ+1

=
1

(1 − y)k

[∑
μ

(−1)μ
B
μ+β+2
2β+2

μ+ 1

yμ

(1 − y)μ+3
+
∑
μ

(−1)μ
B
μ+β+2
2β+2

μ+ 1

y−μ−2

(1 − y)−μ+1

]

=
1

(1 − y)k

[
−∑

μ

(−1)μ+1
B
μ+β+2
2β+2

μ+ 1

y−1

(1 − y)2

(
y

1 − y

)μ+1

− ∑
μ

(−1)μ+1
B
μ+β+2
2β+2

μ+ 1

y−1

(1 − y)2

(
y

1 − y

)−μ−1
]

(R7)

Let us denote −y
1−y by x and denote 1

x
by w. Then, we have

HL =
y−1

(1 − y)k+2

[
−∑

μ

B
μ+β+2
2β+2

xμ+1

μ+ 1
− ∑

μ

B
μ+β+2
2β+2

wμ+1

μ+ 1

]

=
y−1

(1 − y)k+2

[
−
∫ x

0

∑
μ

B
μ+β+2
2β+2 vμdv −

∫ w

0

∑
μ

B
μ+β+2
2β+2 vμdv

]

=
y−1

(1 − y)k+2

[
−
∫ x

0

v−β−2
∑
μ

B
μ+β+2
2β+2 vμ+β+2dv

−
∫ w

0

v−β−2
∑
μ

B
μ+β+2
2β+2 vμ+β+2dv

]

=
y−1

(1 − y)k+2

[
−
∫ x

0

v−β−2
∑
θ

Bθ2β+2v
θdv −

∫ w

0

v−β−2
∑
μ

Bθ2β+2 v
θdv

]

=
y−1

(1 − y)k+2

[
−
∫ x

0

v−β−2 v2β+2

(1 − v)2β+3
dv −

∫ w

0

v−β−2 v2β+2

(1 − v)2β+3
dv

]
(R8)

where in the last step again we have used the identity given in (R5). We can

simplify the integrands further: HL = y−1

(1−y)k+2

[
− ∫ x

0
vβ

(1−v)2β+3 dx− ∫ w0 vβ

(1−v)2β+3 dv
]
. It

can be easily verified by taking the derivative that the result of the integral is∫ x

0

xβ

(1 − x)2β+3
dx =

−(−1)β

(β + 1)B2β+2
β+1

1

(x− 1)2β+2

2β+2∑
j=β+1

B
2β+2
j (−x)j (R9)

The sum on the right-hand side is the last β + 2 terms of the expansion of (1 − x)2β+2.

Using this result and replacing x by its definition, which is −y
1−y , we have

HL =
y−1

(1 − y)k+2

(−1)β

(β + 1)B2β+2
β+1

×
⎡
⎣ 2β+2∑
j=β+1

B
2β+2
j yj(1 − y)2β+2−j +

2β+2∑
j=β+1

B
2β+2
j (1 − y)jy2β+2−j

⎤
⎦ (R10)
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Looking at the two sums, it can be easily seen that if one expands
[
(1 − y) + y

]2β+2
,

which would have 2β + 3 terms, then the last β + 2 terms are given by the first sum

and the last β + 2 of them are given by the second sum. So, the middle term, which

has the coefficient B2β+2
β+1 , has been repeated twice. So, instead of the two sums, we

can write 1, which is the result of
[
(1 − y) + y

]2β+2
, plus the degenerate term, which

is B2β+2
β+1 y

β+1(1 − y)β+1. So, we obtain

HL =
y−1

(1 − y)k+2

(−1)β

(β + 1)B2β+2
β+1

[
1 + B

2β+2
β+1 y

β+1(1 − y)β+1
]

(R11)

Now, we return to (R4) and take the generating function of the right-hand side.

We have

HR
def
=

∞∑
�=0

(−1)β
Bk+�+2
�+1 + B

2β+2
β+1 B

k+�−2β
k−β

(β + 1)B2β+2
β+1

y�

=
(−1)β

β + 1

[
y−k−2

B
2β+2
β+1

∞∑
�=0

Bk+�+2
k+1 yk+�+2 + y2β−k

∞∑
�=0

B
k+�−2β
k−β yk+�−2β

]

=
(−1)β

β + 1

[
y−k−2

B
2β+2
β+1

∑
θ

Bθk+1y
θ + y2β−k ∑

θ

Bθk−βyθ
]

(R12)

Now, in both sums, we can use (R5) to obtain

HR =
(−1)β

β + 1

[
y−k−2

B
2β+2
β+1

∑
θ

Bθk+1y
θ + y2β−k ∑

θ

Bθk−βyθ
]

=
(−1)β

β + 1

[
y−k−2

B
2β+2
β+1

yk+1

(1 − y)k+2
+ y2β−k yk−β

(1 − y)k−β+1

]

=
(−1)β

β + 1

[
1

B
2β+2
β+1

y−1

(1 − y)k+2
+

yβ

(1 − y)k−β+1

]

=
(−1)β

β + 1

y−1

(1 − y)k+2

[
1

B
2β+2
β+1

+ yβ+1(1 − y)β+1

]

=
(−1)β

β + 1

y−1

(1 − y)k+2

[
1 + B

2β+2
β+1 y

β+1(1 − y)β+1
]

B
2β+2
β+1

(R13)

Since (R13) and (R11) are identical, the proof is concluded.
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