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Università di Trieste, Dipartimento di Matematica e Geoscienze, via Valerio 12/1, 34127,

Trieste, Italy.
AND

Université de Genève, Section des Mathématiques, rue de Conseil General 7, 1206,
Genève, Switzerland.

e-mail: danilo.lewanski@ihes.fr

(Received 17 January 2022; revised 13 December 2022; accepted 13 December 2022)

Abstract

We address Hodge integrals over the hyperelliptic locus. Recently Afandi computed, via
localisation techniques, such one-descendant integrals and showed that they are Stirling
numbers. We give another proof of the same statement by a very short argument, exploit-
ing Chern classes of spin structures and relations arising from Topological Recursion in the
sense of Eynard and Orantin.

These techniques seem also suitable to deal with three orthogonal generalisations: (1)
the extension to the r-hyperelliptic locus; (2) the extension to an arbitrary number of non-
Weierstrass pairs of points; (3) the extension to multiple descendants.

2020 Mathematics Subject Classification: 14N10 (Primary); 14H10, 05A15 (Secondary)

1. Introduction

Moduli spaces of curves have been proved in the last decades to be of great interest not
only for pure Algebraic Geometry, but a key element at the crossroad of Gromov–Witten
theory, Integrable Systems, Random Matrix Models, Topological Recursion, and more.

An important task is the computation of intersection numbers. To fix the ideas, one could
think of intersection numbers as integrals packed in polynomials P of the following form:

P(x1, . . . , xn) =
∫
M(g,n)

C∏
j (1 −ψjxj)

· [�] ∈Q[x1, . . . , xn], deg P ≤ dimM(g, n).

(1·1)
Here M(g, n) is some moduli space of curves

1
, either compact or with a virtual fun-

damental class, C is a cohomology class of M(g, n)
2
, [�] is a locus of curves of

1 typically the Deligne–Mumford moduli space of stable curves Mg,n, but also moduli spaces with enriched
structure, such as the space of r-spin curves, of admissible curves, of stable maps to a specific target. Other
examples of compactifications for smooth curves are provided by Hassett moduli spaces, which specialise
both to the Deligne–Mumford and to the Losev–Manin compactification.
2 typically Cohomological Field Theories (CohFTs) [19] or top Chern classes of those, or partial CohFTs,
F-CohFTs, and so on. Few examples are: Hodge classes, �-classes, Witten classes, double ramification
cycle, classes of holomorphic differentials.
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M(g, n)
3
, ψ-classes are building blocks of H∗(M(g, n)) of complex degree one, and xi

are formal variables.
We study the following intersection numbers, expressable in three different but equivalent

ways. We refer to [2, 5, 17] and references therein for an exhaustive state-of-the-art.

(1) In terms of the hyperelliptic locus Hg,2g+2,a ⊆Mg,2g+2 of algebraic curves admitting
a degree 2 map to P1, with 2g + 2 marked Weierstrass points and a pairs conjugated
by the involution, and λi = ci(E) the ith Chern class of the Hodge bundle (see [1] for
more details):

∫
Hg,2g+2,2a

λi br∗
⎛
⎝2g+2+a∏

j=1

1

(1 −ψjxj)

⎞
⎠ , (1·2)

where br is the map associating to each hyperelliptic curve its target.

(2) In terms of admissible covers and the Hodge class (see [15] for more details):∫
M0,∅−(12g+2,0a) (BZr)

λi,∏2g+2+a
j=1 (1 − xjψj)

, for r = 2. (1·3)

(3) In terms of the moduli space of stable curves and the �-CohFT (see [18] and
Section 2):

∫
M0,2g+2+a

[ degH∗ = i].�(r, 0;

2g+2+a︷ ︸︸ ︷
1, . . . , 1,

a︷ ︸︸ ︷
0, . . . , 0 )∏2g+2

j=1 (1 −ψjxj)
, for r = 2. (1·4)

The equivalence between the first and the second is well known, the equivalence between
the second and the third, for arbitrary r, is achieved in [18]. This restatement was then
employed to address a problem by Goulden–Jackson–Vakil over the existence of an ELSV
formula for double Hurwitz numbers with one total ramification [8]. A really useful Sage
package has recently been developed to perform intersection theoretic calculations otherwise
by far out of reach with traditional methods [7].

1·1. Results

Progress on the evaluation of these integrals was recently made in the following formula:

THEOREM 1·1 ([1]). Linear-Hodge one-descendant integrals over the hyperelliptic locus
evaluate to:∫

Hg,2g+2

br∗
(
ψ

2g−1−i
1

)
λi = 1

2
· ei (0 + 1/2, 1 + 1/2, . . . , g − 1 + 1/2) ,

3 for instance the locus of hyperelliptic curves and their generalisations, or partial compactification of the
space M(g, n), such as the locus of rational tails or of compact type curves inside the Deligne–Mumford
compactification.
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Hg,2g+2,2

br∗
(
ψ

2g−i
2g+3

)
λi = 1

2
· ei(1, 2, . . . , g).

Here ei(x1, . . . , xn) is the ith elementary symmetric polynomial.4

The theorem is achieved via virtual localisation techniques. We provide a very short new
proof in Section 3, exploiting �-classes and certain vanishings arising from the theory of
Topological Recursion in the sense of Eynard and Orantin, introduced in Section 2.

This result opens up natural questions about its generalisations in at least three
‘orthogonal’ directions:

(Q1) What happens to the integrals over hyperelliptic loci with an arbitrary number of
non-Weierstrass pairs of points Hg,2g+2,2a?

(Q2) The hyperelliptic locus Hg,2g+2 naturally corresponds to r-admissible covers to the
classifying space BZr for r = 2. How do these integrals behave for higher r?

(Q3) How does the theory with multiple descendants behave?

We address all three questions with the same techniques with which we give a new proof
of the theorem above. We provide and prove answers in certain regimes.

The answer to (Q1) is readily obtained.

PROPOSITION 1·2. The integrals do not depend on the additional number a of non-
Weierstrass pairs marked:∫

Hg,2g+2,2a

br∗
(
ψ

2g−1−i+a
1

)
λi = 1

2
· ei (0 + 1/2, 1 + 1/2, . . . , g − 1 + 1/2) ,

∫
Hg,2g+2,2a+1

br∗
(
ψ

2g−i+a
2g+3

)
λi = 1

2
· ei(1, 2, . . . , g).

The answer to Q2 is obtained under certain restrictions on the parametrisations, which we
show to be in general sharp.

THEOREM 1·3. For arbitrary r and one descendant, if

max
i�=j

(bi + bj) ≤ r, (1·5)

then ∫
M0,1+�

[ degH∗ = i].�[−1]
0,n (r, 0; −μ1, b1, . . . , b�)ψ

�−2−j
1 =

1

r
ei

( 〈μ〉
r

,
〈μ〉

r
+ 1, . . . ,

〈μ〉
r

+ [b] − 1

)
. (1·6)

4 These evaluations are in fact half of (−1)gs(g, g − i, 1/2) and of (−1)g+1s(g + 1, g + 1 − i, 0) respectively,
the generalised Stirling numbers of the first kind.
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Here
∑

j bj = b = [b]r + 〈b〉, with 0 ≤ 〈b〉 ≤ r − 1 by Euclidean division, similarly for μ.

Moreover, −μi is the only representative of −μi modulo r between zero and r − 1.5

The answer to (Q3) can be given for both generalisations at the same time – that is,
for arbitrarily many descendants and for arbitrary r – but imposing b = ∅. The formula to
compute these integrals is achieved simply by chaining together several existing results, and
then simplifying the outcome by the genus-zero restriction. We explain and combine these
results in Section 3. Meanwhile we give here a temporary statement.

PROPOSITION 1·4. Let 2g − 2 + n> 0 and let r be a positive integer. Fix remainder
classes

−μ1, . . . , −μn ∈ {0, . . . , r − 1}.
Then for μi = 〈μi〉 + r[μi] with 〈μi〉 = r − (−μi) we have:

∫
M0,n

�0,n(r, 0; −μ1, . . . , −μn)∏
i (1 − μi

r ψi)
=

(
n∏

i=1

(
μi
r

)[μi]

[μi]!

)−1

· c
finite∑
P∈CP

finite∏
l=1

(|IP
l ||LP

l | − |JP
l ||KP

l |).
(1·7)

Here c is an explicit combinatorial prefactor, and |IP
l | := ∑

μil for il belonging to the subset
IP
l ⊂ {1, . . . , n}.

Moreover, there exists a polynomial Pμ(x1, . . . , xn) of degree n − 3 depending on the
remainder classes μi such that the evaluation Pμ(μ1, . . . ,μn) recovers the expression
above.

1·2. Plan of the paper

In the next section we provide the necessary background on �-classes and in Section 3
we prove the four statements above. In Section 4 we provide examples and counterexamples
of the statements above.

2. Background

In [20], Mumford derived a formula for the Chern character of the Hodge bundle on the
moduli space of curves Mg,n in terms of tautological classes and Bernoulli numbers. Such
class appears in the celebrated ELSV formula [10], named after its four authors Ekedahl,
Lando, Shapiro, Vainshtein, that is an equality between simple Hurwitz number and an
integral over the moduli space of stable curves.

A generalisation of Mumford’s formula was computed in [6]. The moduli space Mg,n is
substituted by the proper moduli stack Mr,s

g; a of rth roots of the line bundle

ω⊗s
log

(
−

n∑
i=1

aipi

)
, (2·1)

5 Again, the RHS can be given in terms of Stirling numbers of the first kind as 1/r(−1)[b]s([b], [b] − i,
〈μ〉/r).
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where ωlog =ω(
∑

i pi) is the log-canonical bundle, r and s are integers with r positive, and
a = (a1, . . . , an) ∈ {0, . . . , r − 1}n is an integral n-tuple satisfying the modular constraint

a1 + a2 + · · · + an ≡ (2g − 2 + n)s (mod r). (2·2)

This condition guarantees the existence of a line bundle whose r-th tensor power is iso-
morphic to ω⊗s

log(−∑
i aipi). Let π : Cr,s

g; a →Mr,s
g; a be the universal curve, and L→ Cr,s

g; a the
universal rth root. In complete analogy with the case of moduli spaces of stable curves, one
can define ψ-classes and κ-classes. There is moreover a natural forgetful morphism

ε : Mr,s
g; a −→Mg,n (2·3)

which forgets the line bundle, otherwise known as the spin structure. It can be turned into
an unramified covering in the orbifold sense of degree 2g − 1 by slightly modifying the
structure of Mg,n, introducing an extra Zr stabilizer for each node of each stable curve
(see [13]).

Let Bm(x) denote the mth Bernoulli polynomial, that is the polynomial defined by the
generating series

tetx

et − 1
=

∞∑
m=0

Bm(x)
tm

m! . (2·4)

The evaluations Bm(0) = (−1)mBm(1) = Bm recover the usual Bernoulli numbers. The
following formula provides an explicit formula for the Chern characters of the derived push-
forward of the universal rth root chm (r, s; a) = chm (R•π∗L). The formula was obtained by
Mumford for r = 1 and s = 1 [3], then generalised by Bini to arbitrary integers s [3], then
generalised by Chiodo to arbitrary positive integers r.

THEOREM 2·1 ([6]). The Chern characters chm (r, s; a) of the derived pushforward of the
universal rth root have the following explicit expression in terms ofψ-classes, κ-classes, and
boundary divisors:

chm (r, s; a) = Bm+1( s
r )

(m + 1)!κm −
n∑

i=1

Bm+1( ai
r )

(m + 1)! ψ
m
i + r

2

r−1∑
a=0

Bm+1( a
r )

(m + 1)! ja,∗
(ψ ′)m − (−ψ ′′)m

ψ ′ +ψ ′′ .

(2·5)
Here ja is the boundary morphism that represents the boundary divisor with multiplicity
index a at one of the two branches of the corresponding node, and ψ ′,ψ ′′ are the ψ-classes
at the two branches of the node.

We can then consider the family of Chern classes pushforwarded on the moduli spaces of
stable curves

�[x]
g,n(r, s; �a) = ε∗ exp

( ∞∑
m=1

(−1)mxm(m − 1)! chm (r, s; �a)

)
∈ Heven(Mg,n). (2·6)

We will omit the variable x when x = 1.
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COROLLARY 2·2. [13] The class �[x]
g,n(r, s; �a) is equal to

∑
�∈Gg,n

∑
w∈W�,r,s

r2g−1−h1(�)

| Aut (�)| ξ�∗

[ ∏
v∈V(�)

e
− ∑

m=1
(−1)m−1xm Bm+1(s/r)

m(m+1) κm(v)
·

n∏
i=1

e

∑
m=1

(−1)m−1xm Bm+1(ai/r)
m(m+1) ψm

i ·

∏
e∈E(�)
e=(h,h′)

1 − e

∑
m≥1

(−1)m−1xm Bm+1(w(h)/r)
m(m+1) [(ψh)m−(−ψ

h
′ )m]

ψh +ψh′

]
.

Here Bm+1(y) are Bernoulli polynomials, Gg,n is the finite set of stable graphs of genus g
with n legs, W�,r,s is the finite set of decorating the leg i with ai and any other half-edge with
an integer in {0, . . . , r − 1} in such a way that decorations of half-edges of the same edge
(e ∈ E(�)) sum up to r and locally on each vertex (v ∈ V(�)) the sum of all decorations is
congruent to (2g − 2 + n)s modulo r.

Remark 2·3. By looking at the formula above is it easy to deduce a few properties of
the classes �, see [12] for a more exhausive list. For instance, �[x](r, r; �a) =�[x](r, 0; �a),
as Bernoulli polynomials satisfy Bm+1(0) = Bm+1(1) = Bm+1. Similarly by Bm+1(1 − X) =
(−1)m+1Bm+1(X) and Newton identities one can show that �[x](r, s; a1, . . . , ai +
r, . . . , an) =�[x](r, s; a1, . . . , an) · (

1 + ai
r ψi

)
.

2·1. Riemann–Roch for �-classes

The Riemann–Roch theorem for an r-th root L of ω⊗s
log(−∑

i aipi) provides the following
relation:

(2g − 2 + n)s − ∑
i ai

r
− g + 1 = h0(C, L) − h1(C, L). (2·7)

In some cases, i.e. for particular parametrisations of r, s, ai and for topologies (g,n), it
can happen that either h0 or h1 vanish, turning � into an actual total Chern class of a vector
bundle, so that the Riemann–Roch equation provides the rank of this bundle. If that happens,
the Riemann–Roch equation provides a bound for the complex cohomological degree of�:

[degH∗ = k].�g,n(r, s; �a) = 0, for k> rank (R•π∗L), (2·8)

which are usually trivial or not depending on whether the rank < 3g − 3 + n. One of these
instances of parametrisations is provided by the following result of Jarvis, Kimura, and
Vaintrob.

THEOREM 2·4 ([14, proposition 4.4]). Let g = 0, let s = 0, let n ≥ 3, consider ai all
strictly positive except at most a single aj which can be positive, or zero, or equal to −1.
Then the rth universal root does not have any global section, that is, we have

h0 = 0.
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Under the condition of the theorem above, the rank of R•π∗L equals h1, and therefore one
gets:

[ degH∗ = k].�0,n(r, s; �a) = 0, for k>

∑
i ai

r
− 1. (2·9)

2·2. String equation for �-classes

It is known [12, 18] that if 0 ≤ s ≤ r then

�(r, s; a1, . . . , an, an+1 = s) = π∗�(r, s; a1, . . . , an). (2·10)

By projection formula, this implies the string equation:∫
Mg,n+1

�(r, s; a1, . . . , an, an+1 = s)∏n
i=1 (1 − xiψi)

= (x1 + · · · + xn)
∫
Mg,n

�(r, s; a1, . . . , an)∏n
i=1 (1 − xiψi)

. (2·11)

By Remark 2·3, s = r and s = 0 are interchangeable.

2·3. Relations for integrals of �-classes arising from Topological recursion

Topological recursion is a universal recursive procedure that produces solutions of enu-
merative geometric problems (see e.g. [11] for an introduction). Let us very briefly mention
how this can be useful to produce relations between integrals of the �-classes. In [4],
this machinery was employed to generate double Hurwitz numbers. Although they are by
definition polynomials in some formal variables q1, . . . , qr taking care of ramification con-
ditions, what is generated by topological recursion are formal power series containing poles
in exactly one of these variables, namely qr. Polynomiality implies that the coefficient of q−k

r
for k> 0, which can be expressed as linear combinations of �-classes integrals, vanishes.
For more details on why �-classes integrals appear in double Hurwitz numbers (rela-
tion known as ELSV-type formulae) see e.g. [18]. These vanishing result in the following
statement.

THEOREM 2·5 ([4]). Let 2g − 2 + n + � > 0 and let r be a positive integer, and s = 0.

(i) Let 1 ≤μ1, . . . ,μn ≤ r, and let μ be their sum.

(ii) Let 1 ≤ b1, . . . , b� ≤ r − 1, and let b be their sum.

(iii) Impose b ≡μ (mod r). Then we can write b =μ+ r · δ for some integer δ.

If

μ< b, or equivalently, δ > 0 (negativity), (2·12)

then the following finite linear combination of �-integrals vanishes:

�∑
t=1

(−1)�−t

t!
∑

ρ∈(P̃r−1)k

�κρ(κ)=b∨

t∏
κ=1

[ r−|ρ(κ)|
r

]
�(ρ(κ))−1

| Aut ρ(κ)|

∫
Mg,n+t

�(r, 0; −μ1, . . . , −μn, . . . , r − |ρ(1)|, . . . , r − |ρ(t)|)∏n
i=1

(
1 − μi

r ψi
) = 0. (2·13)
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Here P̃r−1 is the set of partitions of size at most r − 1, the Pochhammer symbol [x]a :=
x(x − 1) · · · (x − a + 1) stands for the descending factorial, and b∨ = (r − b1, . . . , r − b�).

In particular, if the condition

max
i�=j

(bi + bj) ≤ r (boundedness) (2·14)

is satisfied, then all summands but a single one (the term for t = � and for |ρ(κ)| = 1 for
κ = 1, . . . , �) straighforwardly disappear in the relation above. In this case we obtain:6∫

Mg,n+�

�(r, 0; −μ1, . . . , −μn, b1, . . . , b�)∏n
i=1 (1 − μi

r ψi)
= 0. (2·16)

2·3·1. The r = 2 case

Let us briefly discuss the specialisation of the result above to r = 2.

(1) All bj must equal to one, and therefore b = �.

(2) The boundedness condition is always satisfied.

(3) The negativity condition reads μ< �.

(4) The strong negativity condition reads μ+ δ < �

(5) Strong negativity and negativity are equivalent, as δ = (�−μ)/2.

If (3) or equivalently (4) are satisfied, we have∫
Mg,n+�

�(2, 0; −μ1, . . . , −μn, 1, 1, . . . , 1)∏n
i=1 (1 − μi

2 ψi)
= 0, (2·17)

where −μi in this case simplifies to the parity of μi (it is one if μi odd, else zero).

3. Proofs

We are now armed to prove the statements presented in the introduction.

3·1. New proof of Theorem 1·1
Proof. Let us first recast Theorem 1·1 as in form of Equation (1.4).

LEMMA 3·1. Let x be a formal variable. Theorem 1·1 is equivalent to the following
statements.

6 Some time before Theorem 2·5, a shadow of this statement – already degenerated under both the negativity
and the boundedness condition – was derived in [15, theorem 2]. The entire relation in (2·13) does not make
its appearance. On the other hand, [19, theorem 2) carries another sufficient condition for (2·16) to hold:
this condition is

μ+ δ < �, or equivalently, μ<

∑�

j=1 (r − bj)

(r − 1)
(strong negativity). (2·15)

Strong negativity, as the name suggests, implies negativity. However, strong negativity is not weaker nor
stronger than the combination of boundedness and negativity: one can find counterexamples of both phe-
nomena, as well as examples of parametrisations satisfying all three conditions. In fact, for the purpose
of this work strong negativity does not provide any new information: whenever strong negativity occurs,
boundedness also does, therefore Theorem 2·5 suffices.
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∫
M0,2g+2

�(2, 2;

2g+2︷ ︸︸ ︷
1, 1, . . . , 1)

(1 − x
2ψ1)

= xg−1

22g

g∏
k=1

(x − (2k − 1)), (3·1)

∫
M0,2g+3

�(2, 2; 0,

2g+2︷ ︸︸ ︷
1, . . . , 1 )

(1 − x
2ψ1)

= xg

22g+1

g∏
k=1

(x − 2k). (3·2)

Proof. Simply multiply both sides of both statements of Theorem 1·1 by (−1)ixi and
sum over i, then use the general fact for polynomial roots

∏d
j=1 (x − αj) = ∑d

j=0 xjed−j(αi)

(−1)d−j, and recast the obtained statements in terms of moduli space of stable curves (from
integrals in (1·2) to integrals in (1·4)). This concludes the proof of the Lemma.

Let us now prove Equation (3·1). The LHS in (3·1) is a polynomial P(x) = c · ∏2g−1
i=1 (x −

αi), where αi are the roots. The constant c is immediately computed as c = [x2g−1].P(x) =
2−(2g−1)

∫
M0,2g+2

ψ
2g−1
1 2−1 = 2−2g. It remains to show that zero is a zero of P(x) of order

g − 1 and that 2k − 1 is a simple zero of P(x) for k = 1, . . . , g. The first condition is equiv-
alent to the fact that � has non-trivial cohomological degree at most g. This is indeed true
and proved by the Riemann-Roch computation for � in genus zero performed in (2·9):
(2g + 2)/2 − 1 = g. It only remains to show that P(2k − 1) = 0 for all k = 1, . . . , g (in fact,
if so, their multiplicity cannot be greater than one by degree constraint). Explicitly, the proof
boils down to the following g relations:

∫
M0,2g+2

�(2, 2;

2g+2︷ ︸︸ ︷
1, 1, . . . , 1)

(1 − 2k−1
2 ψ1)

= 0, for k = 1, . . . , g. (3·3)

These relations are immediately implied by Theorem 2·5 specialised as in
Equation (2·17), then further specialised to n = 1: the vanishing holds for positive odd
μ1 < 2g + 1, or in other words, for μ1 = 2k − 1 for k = 1, . . . , g.

7
Equation (3·2) is proved

similarly. This concludes the proof of Theorem 1·1.
8

7 In fact more is true: the relations produced by Theorem 2·5 specialised this way are all and only the
relations needed to determine P(x) completely. In order terms, we have just proved that Theorem 1·1 and
the specialisation of Theorem 2·5 to the case r = 2, n = 1, and � odd, are completely equivalent statements,
this way reproving Theorem 1·1.
8 As a curiosity, we report on a different proof for the first zero of P(x) different from zero. The first
vanishing is in some sense geometrically stronger than the subsequent ones. For example:

P(1) =
∫
M0,2g+2

�(2, 2;

2g+2︷ ︸︸ ︷
1, 1, . . . , 1)

(1 − 1
2
ψ1)

=
∫
M0,2g+2

�(2, 2;

2g+2︷ ︸︸ ︷
−1, 1, . . . , 1) = 0. (3·4)

The first equality is by definition, the second is by first property of the �-classes in Remark 2·3, the third is
by Riemann–Roch as in (2·9). The vanishing occurs by integrating the pure Chern class of a vector bundle
with rank strictly smaller than the dimension of the space. The following zero does not enjoy this property
as a1 = −3 falls outside of the hypotheses of Jarvis, Kimura and Vaintrob in Theorem 2·4.
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3·2. Proofs of Proposition 1·2, Theorem 1·3 and Proposition 1·4
Proof of Proposition 1·2. Again, we start by recasting the result.

LEMMA 3·2. Let x be a formal variable. Proposition 1.2 is equivalent to the following
statements:

∫
M0,2g+2+a

�(2, 2;

2g+2︷ ︸︸ ︷
1, . . . , 1,

a︷ ︸︸ ︷
0, . . . , 0 )

(1 − x
2ψ1)

= xg−1+a

4g

g∏
k=1

(x − (2k − 1)), (3·5)

∫
M0,2g+3+a

�(2, 2; 0,

2g+2︷ ︸︸ ︷
1, . . . , 1,

a︷ ︸︸ ︷
0, . . . , 0 )

(1 − x
2ψ1)

= xg+a

22g+1

g∏
k=1

(x − 2k). (3·6)

Both expressions are polynomials in x of degree equal to the dimension of the moduli spaces,
that is, of degree 2g − 1 + a and 2g + a respectively.

Proof. The proof is the same as in Lemma 3·1. This concludes the proof of the Lemma.

Now it suffices to apply String Equation (2·11) to each of the last a marked points:

∫
M0,2g+2+a

�(2, 2;

2g+2︷ ︸︸ ︷
1, . . . , 1,

a︷ ︸︸ ︷
0, . . . , 0 )

(1 − x
2ψ1)

= xa ·
∫
M0,2g+2

�(2, 2;

2g+2︷ ︸︸ ︷
1, . . . , 1 )

(1 − x
2ψ1)

. (3·7)

This concludes the proof of the Proposition.

Proof of Theorem 1·3. Consider the polynomial

P(x) :=
∫
M0,1+�

�0,n(r, 0; −μ1, b1, . . . , b�)

(1 − x
rψ1)

= c ·
∏

i

(x − αi). (3·8)

It is a polynomial of degree deg (P) = dimC (M0,1+�) = �− 2, and its leading coefficient
can be easily computed as

c =
∫
M0,1+�

�0,n(r, 0; −μ1, b1, . . . , b�)
ψ�−2

1

r�−2
= 1

r�−2 · r

∫
M0,1+�

ψ�−2
1 = 1

r�−1
.

Since μ1 =μ≡ b modulo r, we must have that 〈μ〉 = 〈b〉, and therefore ¯−μ1 = r − 〈μ〉.
The lowest degree in x of P(x) can be computed as

deg (P) − maxdegH∗ �0,n(r, 0; −μ1, b1, . . . , b�) = �− 2 −
(

r − 〈μ〉 + [b]r + 〈b〉
r

− 1

)
= �− 2 − [b].

So far we achieved to show that P has the form

P(x) = x�−2−[b]

r�−1

[b]∏
i=1

(x − αi).
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for some suitable roots αi. The question is whether the TR vanishing (2·16) can guarantee
at least (and therefore all) [b] roots.9 Assuming boundedness, we only have to worry about
negativity μ< b holding true, which means that

〈μ〉 + rk< 〈b〉 + r[b]

for a few possible non-negative integers k. As 〈μ〉 = 〈b〉, negativity holds true for the values
k = 0, . . . , [b] − 1, which amounts to [b] different values of μ providing [b] simple roots
P(〈μ〉 + rk) = 0 as required. This concludes the proof of the Theorem.

Proof of Proposition 1·4. As anticipated in the introduction, the proposition is simply
obtained by a chain of several known results, simplified in genus zero.

(1) By [18, section 5] we have:∫
Mg,n

�g,n(r, 0; −μ1, . . . , −μn)∏
i (1 − μi

r ψi)
=

∫
Mg,∅−μ(BZr)

∑
i=0 (−1)iλU

i∏
i (1 − μi

r ψ̄i)

for U the representation of the cyclic group Zr sending 1 to e2π i/r.

(2) By [15, theorem 1] we have:

h(r),◦
g,μ = r2g−2+n+ |μ|

r

(
n∏

i=1

(
μi
r

)[μi]

[μi]!

)
·
∫
Mg,∅−μ(BZr)

∑
i=0 (−1)iλU

i∏
i (1 − μi

r ψ̄i)
,

where h(r),◦
g,μ are Hurwitz numbers enumerating connected genus g degree d = |μ|

ramified covers of the Riemann sphere with b = b(g) = 2g − 2 + |μ|/r + n simple
ramifications, except the ramification with profile (r, r, . . . , r) above zero and the
ramification with profile (μ1, . . . ,μn) above infinity, with n = �(μ). Moreover, the
integral is a polynomial of degree 3g − 3 + n in the μi depending on the remainder
classes 〈μi〉 modulo r, whereas the exponential prefactor is manifestly not polynomial
in the parts μi. This property is known as quasi-polynomiality, and has been shown
independently in [9] in the framework of Topological Recursion.

(3) By Okounkov [12] and Okounkov and Pandharipande [21], we have that Hurwitz
numbers can be efficiently written as vacuum expectation of operators in the Fock
space, which in this case form a handy algebra closed under commutation relations:

h(r),◦
g,μ = [z2

1 · · · z2
b(g)]∏

μi · rd/r

〈
Eμ1 (0) . . . Eμn(0)E0(z1) . . . E0(zb(g))E−r(0)d/r

〉◦
, (3·9)

where [xa]f (x) selects the coefficient of xa in the formal power series f (x), b(g) = 2g −
2 + n + d/r is the Riemann–Hurwitz count of simple ramifications, and the following

9 One could wonder whether strong negativity μ+ δ < � can also grant a sufficient condition to determine
P completely. Curiously, one finds that in this case strong negativity implies boundedness, therefore not
providing anything additional. To see this, expand strong negativity as k< (�− 〈b〉 − [b])/(r − 1). The best
possible case is given for 〈b〉 = 0, for which P is determined if the first b values of μ for k ∈ {0, 1, . . . , [b] −
1} give vanishing. Substituting the highest k = [b] − 1 one finds b ≤ �+ r − 2. As the parts of b are at least
one, write b = �+ |α| for |α| the size of a partition of length up to � to be distributed over the bi = 1 + αi.
Then |α| ≤ r − 2, sharply implying boundedness.
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relations hold:

[Ea(z), Eb(w)] = 2 sinh

(
aw − bz

2

)
Ea+b(z + w),

and 〈
E0(z)

〉
= 1

2 sinh (z/2)
, Ek

〉
= 0 =

〈
E−k, for k> 0. (3·10)

(4) By [16] we have an algorithm that computes the vacuum expectation explicitly, itera-
tively commuting the operators E with negative indices from left to right until they hit
the vacuum

〉
and vanish. Along the way, they generate a large amount of summands

from the commutation relation (intuitively speaking, the number of summands “dou-
bles” at every commutation, although many terms end up vanishing at some further
iteration of the algorithm). The algorithm defines a finite sum over P running over the
set of Commutation Patterns CP (see [16]), obtaining

h(r)
g,μ = [u2g−2+n+d/r]∏

μi · rd/r

1

2 sinh (u · d/2)

∑
P∈CP

n−1+d/r∏
l=1

2 sinh
(
(u/2)(|IP

l ||LP
l | − |JP

l ||KP
l |))

(3·11)
Here each IP

t , JP
t , KP

t , IP
t is a sum of a certain subset of the μi.

(5) Restricting to genus zero forces to collect the minimal power of u, that is, to substitute
all sinh (X) simply with their arguments X. We obtain:

h(r)
0,μ = 1∏

μi · rd/r · d

∑
P∈CP

n−1+d/r∏
l=1

(|IP
l ||LP

l | − |JP
l ||KP

l |). (3·12)

Putting everything together, one obtains

∫
M0,n

�(r, 0; −μ1, . . . , −μn)∏
i (1 − μi

r ψi)
=

(
r−1

)2g−2+n+2 |μ|
r∏

μi · d(
n∏

i=1

(μi
r

)[μi]

[μi]!

)−1∑
P∈CP

n−1+d/r∏
l=1

(|IP
l ||LP

l | − |JP
l ||KP

l |).

This concludes the proof fo the Proposition.
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Appendix A. Examples and counterexamples

The following computations have been run through the ADMCYCLES Sage package.
10

A·1. Theorem 1·1 and Question Q1

For r = 2 and μ= 1 + 2k we have:

10 For g = 2 (i.e. n = 6), we have run Lagrange interpolation in x using integer values of x in the right
modular residue class, and only after computing enough evaluations and interpolating one is allowed to
consider the expression as an abstract polynomial, remembering its residue class dependence.
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1

x

∫
M0,7

�[2](2, 0; 1, 1, 1, 1, 1, 1, 0)

(1 − xψ1)
=

∫
M0,6

�[2](2, 0; 1, 1, 1, 1, 1, 1)

(1 − xψ1)
= 1

2
x(x − 1)(x − 3).

Note that in general one can reabsorb several powers of r on both sides of Theorem 1·1 and
of Proposition 1·2, by rescaling x �→ rx and activating the degree parameter of the�-classes.

A·2. Question Q2

We have seen that for n = 1 there is enough room for negativity to be satisfied so that
enough evaluations of μ provide vanishing for P to be determined. We want here to test
boundedness condition.

Let us for instance choose a prime number r = 13, so that it does not possibly fac-
torise with anything else. For 〈μ1〉 = 9 we have −μ1 = 13 − 9 = 4 and picking a vector
b = (4, 3, 6, 2, 7) sharply hitting boundedness (6 + 7 = r) we see a confirmation of our
expectations:∫

M0,1+5

�(13, 0; 4, 4, 3, 6, 2, 7)

(1 − x
13ψ1)

= x2

134
(x − α), α = 9 = 〈μ1〉.

We now wiggle a bit the vector b outside boundedness (though preserving both its size
and 〈μ1〉), and the theorem immediately fails:∫

M0,1+5

�(13, 0; 4, 4, 3, 6, 1, 8)

(1 − x
13ψ1)

= x2

134
(x − 8),

∫
M0,1+5

�(13, 0; 4, 1, 2, 9, 2, 7)

(1 − x
13ψ1)

= x2

134
(x − 6).

Other curious things can happen. Here we pick r = 3 and we again exceed boundedness.
For 〈μ1〉 = 1 and b high enough to produce two non-zero roots, we find that one is expected
and the other is not: ∫

M0,1+5

�(3, 0; 2, 1, 2, 2, 1, 1)

(1 − x
3ψ1)

= x1

34
(x − 1)(x − 3).

Here for 〈μ1〉 = 2 and b high enough to produce two non-zero roots, we find one expected
root, but with unexpected multiplicity:∫

M0,1+5

�(3, 0; 1, 2, 2, 2, 1, 1)

(1 − x
3ψ1)

= x1

34
(x − 2)2

Also, when δ is high enough for μ1 = 〈μ1〉, it is possible that P does not even factorise in
R anymore:∫

M0,1+5

�(3, 0; 1, 2, 2, 2, 2, 2)

(1 − x
3ψ1)

= x0

34
(x − 1)

(
x − 1

2
+ i

√
11

2

) (
x − 1

2
− i

√
11

2

)
.
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