SHILNIKOV TYPE SOLUTIONS UNDER STRONG NON-AUTONOMOUS PERTURBATION

Elías Tuma

Abstract

We study the behaviour of solutions in a neighbourhood of the origin for a certain type of non-autonomous system of partial differential equations whose linear approximation is non autonomous.

1. Introduction

To study either the bifurcation which arises from a homoclinic orbit Γ, when a system of differential equations is perturbed, or the behaviour of solutions close to Γ, it is necessary to know the Poincare map defined in a transversal section of Γ, with some precision. The Poincare map is defined as a combination of two dynamics, one of them in a neighbourhood of the origin and the other in a tubular neighbourhood of the orbit Γ.

Far away from the origin we may appeal to the continuity of the solution with respect to the initial data. So we consider the solutions in a neighbourhood of the origin $[1,5]$.

This paper focuses on the derivation of exponential expansions (Deng [3], BlázquezTuma [2]) for solutions of systems of the type employed in the Shilnikov theorem [5], with a non linear, non autonomous perturbation and with a non-autonomous linear part.

Let us consider the equation

$$
\begin{equation*}
\dot{z}+A z=f(t, z) \tag{1.1}
\end{equation*}
$$

where A is a sectorial operator in a Banach space X and f is both locally Holder in t and $f \in C^{k}\left(X^{\alpha}, X\right), k>2,0 \leqslant \alpha<1$, in z. The equation (1.1) has a local solution.

We assume that the origin is a hyperbolic equilibrium point, that is, $f(t, 0)=0$, $\forall t \in \mathbb{R}$ and the linearisation about the origin is:

$$
\begin{equation*}
\dot{z}+A z=B z+C(t) z+g(t, z) \tag{1.2}
\end{equation*}
$$

where the non linear part $g(t, z)=z g_{1}(t, z)$ with $\left\|g_{1}(t, z)\right\|=0\left(\|z\|^{a}\right)$, some $a>0$, or

$$
\left\|g\left(t, z_{1}\right)-g\left(t, z_{2}\right)\right\|<k(p)\left\|z_{1}-z_{2}\right\|_{\alpha}, \quad \forall t \in \mathbb{R}
$$

Received 16th November, 2004
Financed partially by: Universidad Técnica Federico Santa María Grant No. 120361.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.
with $\left\|z_{i}\right\|_{\alpha}<p, i=1,2$ and $\lim _{s \rightarrow+\infty} k(s)=0$ Let us denote by $L=A-B$ and $L(t)=A-B-C(t)$ and we assume

H1. $\quad \sigma(L)=\sigma_{1} \bigcup \sigma_{2}$ where
(i) $\sigma_{1}=\sigma(L) \cap\{\lambda / \operatorname{Re}(\lambda)>0\}$, and there exists a simple, real eigenvalue $\beta \in \sigma_{1}$ such that $\operatorname{Re} \lambda>\beta>0, \quad \forall \lambda \in \sigma_{1}-\{\beta\}$.
(ii) $\sigma_{2}=\sigma(L) \cap\{\lambda / \operatorname{Re} \lambda<0\}$, and there exist two complex conjugate eigenvalues $\rho \pm i \omega \in \sigma_{2}$ such that $0>\rho>\operatorname{Re}(\lambda) ; \forall \lambda \in \sigma_{2}, \operatorname{Re} \lambda \neq \rho$;
(iii) $\rho+\beta>0$

Under some conditions on $C(t)$, we prove that the solution $z(t)$ of the non autonomous system (1.2) has an exponential expansion in a neighbourhood of the origin. That is, for small $\left\|z_{0}\right\|_{\alpha}=\|z(0)\|_{\alpha}$, there exist $0<\varphi<q$, such that

$$
z\left(t, t_{0}, z_{0}\right)=K\left(z_{0}, t_{0}\right) e^{-\varphi\left(t-t_{0}\right)}+\varepsilon\left(t, t_{0}\right)
$$

with $\left\|\varepsilon\left(t, t_{0}\right)\right\|_{\alpha}<C\left\|z_{0}\right\|_{\alpha} e^{-q(t-t)}$ and $K\left(z_{0}, t_{0}\right) \in \operatorname{ker}(L-\beta I)$.
The Banach space X^{α} can be written locally as $X^{\alpha}=X_{1}^{\alpha} \oplus X_{2}^{\alpha}$ where $X_{i}^{\alpha}, i=1,2$ are invariant sub manifolds associated to the spectral sets σ_{i} with projections $E_{i}, i=1,2$. If $L_{i}=L / X_{i}^{\alpha}$, we have that $\sigma\left(L_{i}\right)=\sigma_{i}$ and the bounds ([4]).

$$
\begin{array}{ll}
\left\|e^{-L_{1} t} E_{1} z\right\| \leqslant M e^{-\beta t}\left\|E_{1} z\right\|_{\alpha} \leqslant M e^{-\beta t} t^{-\alpha}\left\|E_{1} z\right\| ; & t>0 \tag{1.3}\\
\left\|e^{-L_{2} t} E_{2} z\right\| \leqslant M e^{-\rho t}\left\|E_{2} z\right\|_{\alpha} \leqslant M e^{-\rho t}\left\|E_{2} z\right\| ; & t<0
\end{array}
$$

Let $x=E_{1} z$, and $y=E_{2} z$. Then equation (1.1) can be written as

$$
\begin{align*}
\dot{x}+L_{1}(t) x & =E_{1} g(x, y, t)
\end{align*}=g_{1}(x, y, t), ~=g_{2}(x, y, t) . ~ \$
$$

Let us assume either one of the following conditions on $C(t)$
H2.1 $\int_{\mathbb{R}}|C(t)|^{2} d t<P^{2}<\infty$.
$\mathrm{H} 2.2 \mathbf{C}(\mathrm{t})$ is bounded that is $\|\mathbf{C}(\mathrm{t})\|<\mathrm{k}$ some $\mathrm{k}>0$.
We know that the linear systems $\dot{x}+L_{1}(t) x=0$, and $\dot{y}+L_{2}(t) y=0$, have unique solutions $x(t)=x\left(t ; t_{0}, x_{0}\right) ; y(t)=y\left(t ; t_{0}, y_{0}\right)$ such that $x\left(t_{0}\right)=x_{0}, y\left(t_{0}\right)=y_{0}$. These solution generate a family of evolution operator $\left\{T_{1}(t, s) / t>s\right\}$ and $\left\{T_{2}(t, s) / t<s\right\}$ such that

$$
x\left(t ; t_{0}, x_{0}\right)=T_{1}\left(t, t_{0}\right) x_{0} ; y\left(t ; t_{0}, y_{0}\right)=T_{2}\left(t, t_{0}\right) y_{0}
$$

Using Gronwall's inequality [4, Lemma 7.11], we obtain the following.
Lemma 1. Under the hypothesis H 1 , we have:
(i) If $C(t)$ satisfies H 2.1 then for $0<\alpha<1 / 2$ there exist a constant K such that

$$
\begin{array}{ll}
\left\|T_{1}(t, s)\right\|<K e^{-\beta_{1}(t-s)} ; & t>s \\
\left\|T_{2}(t, s)\right\|<K e^{-\rho(t-s)} ; & t<s
\end{array}
$$

with $\beta_{1}=\beta-P M / \sqrt{(1-2 \alpha)>0}$.
(ii) If $C(t)$ satisfies H 2.2 then there exists a constant K such that

$$
\begin{array}{ll}
\left\|T_{1}(t, s)\right\| \leqslant K e^{-\left(\beta-(k M \Gamma(1-\alpha))^{1 / 1-\alpha}\right)(t-s)} ; & t \geqslant s \\
\left\|T_{2}(t, s)\right\| \leqslant K e^{\delta(t-s)} ; & t<s
\end{array}
$$

with $\delta=\beta-k M>0$
Proof: Let us prove the bounds for $T_{1}(t, s)$:
(i)

$$
\begin{aligned}
x(t) & =e^{-L(t-s)} x(s)+\int_{s}^{t} e^{-L(t-r)} C(r) x(r) d r\|x(t)\|_{\alpha} \\
& \leqslant M e^{-\beta(t-s)}\|x(s)\|_{\alpha}+\int_{s}^{t} M e^{-\beta(t-r)}(t-r)^{-\alpha}\|C(r)\|\|x(r)\|_{\alpha} d r \Rightarrow\|x(t)\|_{\alpha} e^{\beta(t-s)} \\
& \leqslant M\|x(s)\|_{\alpha}+\int_{s}^{t} M e^{\beta(r-s)}(t-r)^{-\alpha}\|C(r)\|\|x(r)\|_{\alpha} d r
\end{aligned}
$$

using Gronwall's inequality [4]

$$
\|x(t)\|_{\alpha} e^{\beta(t-s)} \leqslant M\|x(s)\|_{\alpha} e^{M \int_{s}^{t}(t-r)^{-\alpha}|C(r)| d r}
$$

Since for $0<\alpha<1 / 2$

$$
\begin{aligned}
\int_{s}^{t}(t-r)^{-\alpha}\|C(r)\| d r & \leqslant\left(\int_{s}^{t}(t-r)^{-2 \alpha} d r\right)^{1 / 2}\left(\int_{s}^{t}\|C(r)\|^{2} d r\right)^{1 / 2} \\
& \leqslant\left[P / \sqrt{\left.(1-2 \alpha)](t-s)^{(} 1 / 2-\alpha\right)}\right.
\end{aligned}
$$

the result follows.
(ii)

$$
\|x(t)\|_{\alpha} \leqslant M \bar{e}^{\beta(t-s)}\|x(s)\|_{\alpha}+\int_{s}^{t} M e^{-\beta(t-r)}(t-r)^{-\alpha}\|C(r)\|\|x(r)\|_{\alpha} d r
$$

then

$$
\|x(t)\|_{\alpha} e^{\beta(t-s)} \leqslant M\|x(s)\|_{\alpha}+\int_{s}^{t} M e^{\beta(r-s)}(t-r)^{-\alpha}\|C(r)\|\|x(r)\|_{\alpha} d r
$$

Using Gronwall's inequality [4]

$$
\|x(t)\|_{\alpha} e^{\beta(t-s)} \leqslant K\|x(s)\|_{\alpha} E_{1-\alpha}(\Theta(t-s))
$$

where

$$
\Theta=(k M \Gamma(1-\alpha))^{1 / 1-\alpha} ; E_{1-\alpha}(\Theta(t-s)) \approx 1 /(1-\alpha) e^{\Theta(t-s)}
$$

Hence we have

$$
\begin{equation*}
\left\|T_{1}(t, s) x(s)\right\|_{\alpha} \leqslant K\|x(s)\|_{\alpha} e^{-\left(\beta-\left(\kappa M \Gamma(1-\alpha)^{1 / 1-\alpha}\right)(t-s)\right.} . \tag{0}
\end{equation*}
$$

Inmediately, from the lemma, we have.
Theorem 1. There exist local stable (W^{s}) and unstable (W^{u}) manifolds of (1.4).
Proof: Let

$$
S=\left\{z_{0} /\left\|E_{1} z_{0}\right\|<p / K,\left\|z\left(t, t_{0}, z_{0}\right)\right\|_{\alpha}\langle p, t\rangle t_{0}\right\}
$$

If $z_{0} \in S$ then

$$
z(t)=x(t)+y(t) \in X_{1}^{\alpha} \oplus X_{2}^{\alpha}
$$

where

$$
y(t)=T_{2}\left(t, t_{0}\right) E_{2} z_{0}+\int_{t_{0}}^{t} T_{2}(t, s) E_{2} g(s, z(s)) d s
$$

Hence

$$
T_{2}(0, t) y(t)=T_{2}\left(0, t_{0}\right) E_{0} z_{0}+\int_{t_{0}}^{t} T_{2}(0, s) E_{2} g(s, z(s)) d s
$$

But

$$
\begin{aligned}
\left\|T_{2}(0, t) y(t)\right\|_{\alpha} & \leqslant K e^{-\delta t}\|y(t)\|_{\alpha} \rightarrow 0, \text { as } t \rightarrow \infty \Rightarrow T_{2}\left(0, t_{0}\right) E_{2} z_{0} \\
& =-\int_{t_{0}}^{\infty} T_{2}(0, s) E_{2} g(s, z(s)) d s \Rightarrow E_{2} z_{0} \\
& =-\int_{t_{0}}^{\infty} T_{2}(0, s) E_{2} g(s, z(s)) d s, \quad t \geqslant t_{0} \Rightarrow z(t) \\
& =T_{1}\left(t, t_{0}\right) a+\int_{\mathbf{t}_{0}}^{t} T_{1}(t, s) E_{1} g(s, z(s)) d s-\int_{\mathbf{t}}^{\infty} T_{2}(t, s) E_{2} g(s, z(s)) d s \unlhd R(z)
\end{aligned}
$$

say.
Similary if $a \in X_{1}$ with $\|a\|<p / 2 K$ then we shall prove that there exists a unique solution, $z\left(t, t_{0}, a\right)$, with $E_{1} z_{0}=E_{1}\left(z\left(t_{0}, t_{0}, a\right)\right)=a$, and $\|z\|_{\alpha}<p, \forall t>t_{0}$. In fact

$$
\begin{aligned}
\|z\|_{\alpha} & \leqslant K e^{-\beta_{1}\left(t-t_{0}\right)}\|a\|+\int_{t_{0}}^{t} K e^{-\beta_{1}(t-s)}\left\|E_{1} g(s, z(s))\right\| d s+\int_{t}^{\infty} K e^{\delta(t-s)}\left\|E_{2} g(s, z(s))\right\| d s \\
& \leqslant p / 2+K k(p)\left(\left\|E_{1}\right\| \int_{0}^{\infty} e^{-\beta_{1} u} d u+\left\|E_{2}\right\| \int_{0}^{\infty} e^{-\delta u} d u\right)<p
\end{aligned}
$$

so $R(z)$ is a contraction map, in the space of continuous functions with sup $\|z\|_{\alpha}<p$ and satisfying $E_{1} z\left(t_{0}\right)=a$. Hence there exist a unique fixed point $z\left(t ; t_{0}, a\right)$. Furthermore, from the integral representation it follows that the application $t \rightarrow z\left(t, t_{0}, a\right)$ is Holder continuous. Therefore if z is a solution of the equation (1.2) with initial conditions.

$$
h(a) \equiv z\left(t_{0}, t_{0}, a\right)=a-\int_{t_{0}}^{\infty} T_{2}\left(t_{0}, s\right) E_{2} g(s, z(s)) d s
$$

then $E_{1} h(a) \equiv a$ Morover

$$
S=\left\{h(a) / a \in X_{1}^{\alpha},\|a\|_{\alpha} \leqslant p / 2 K\right\}
$$

and $\|h(a)-a\|_{\alpha}=0\left(\|a\|_{\alpha}\right)$. Similarly

$$
S=W^{u}(0)=\left\{h(a) / a \in X_{2}^{\alpha},\|a\|_{\alpha} \leqslant p / 2 K\right\}
$$

Remark. The stable and unstable manifolds are given locally by

$$
W_{\mathrm{loc}}^{s}: y=h(x, t) ; \quad W_{\mathrm{loc}}^{u}: x=k(y, t)
$$

Letting

$$
x \rightarrow x-k(y, t), \quad y \rightarrow y-h(x, t)
$$

then

$$
W_{\text {loc }}^{s}: y=0 ; \quad W_{\text {loc }}^{u}: x=0
$$

and thus equation (1.4) becomes

$$
\begin{align*}
\dot{x}+L_{1}(t) x & =f_{1}(x, y, t) x \\
\dot{y}+L_{2}(t) y & =f_{2}(x, y, t) y \tag{1.5}
\end{align*}
$$

with $f_{i}(0,0, t)=0 \quad \forall t>0$ The integral form of (1.5) is given by

$$
\begin{aligned}
& x(t)=T_{1}\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} T_{1}(t, s) f_{1}(s, x(s), y(s)) x(s) d s \\
& y(t)=T_{2}\left(t, t_{1}\right) y_{1}+\int_{t_{1}}^{t} T_{2}(t, s) f_{2}(s, x(s), y(s)) y(s) d s
\end{aligned}
$$

for any t_{0} and t_{1}.
Lemma 2. For $\left\|x_{0}\right\|_{\alpha},\left\|y_{1}\right\|_{\alpha}$ sufficiently small there exist a unique solution of (1.5) in a neighbourhood of the origin for $0<t_{0}<t_{1}$

Proof: Let

$$
H=\left\{(x, y) /\|x(t)\|_{\alpha^{\prime}},\|y(s)\|_{\alpha}<K_{1}<\infty\right\}
$$

H is a complete metric space with the norm:

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left\|x_{2}-x_{1}\right\|_{\alpha}+\left\|y_{2}-y_{1}\right\|_{\alpha}
$$

Let $T(x, y)=\left(T_{1}(x, y), T_{2}(x, y)\right)$ where T_{1} and T_{2} are given a the right hand side of (1.6). Then $T: H \rightarrow H$ is a contraction map:

$$
\begin{aligned}
\left\|T_{1}(x, y)\right\|_{\alpha} & \leqslant K e^{-\beta\left(t-t_{0}\right)}\left\|x_{0}\right\|_{\alpha}+\int_{t_{0}}^{t} K e^{-\beta(t-s)} k(p)\|x(s)\|_{\alpha} d s \Rightarrow\left\|T_{1}(x, y)\right\|_{\alpha} e^{\beta\left(t-t_{0}\right)} \\
& \leqslant K\left\|x_{0}\right\|_{\alpha}+K \int_{t_{0}}^{t} e^{\beta\left(s-t_{0}\right)} k(p)\|x(s)\|_{\alpha} d s \\
& \leqslant K\left\|x\left(t_{0}\right)\right\|_{\alpha}\left(1+\int_{t_{0}}^{t} k(p) d s\right) \leqslant p
\end{aligned}
$$

Similarly

$$
\left\|T_{2}(x, y)\right\|_{\alpha} \leqslant K e^{\delta\left(t-t_{1}\right)}\left\|y_{1}\right\|_{\alpha}+\int_{t}^{t_{1}} K e^{\delta(t-s)} k(p)\|y(s)\|_{\alpha} d s \leqslant p
$$

Furthermore

$$
\left\|T_{1}(x, y)-T_{1}\left(x_{1}, y_{1}\right)\right\|_{\alpha} \leqslant \int_{t_{0}}^{t} K e^{-\beta(t-s)} k(p)\left\|x(s)-x_{1}(s)\right\|_{\alpha} d s \leqslant q\left\|x-x_{1}\right\|_{\alpha}
$$

and

$$
\left\|T_{2}(x, y)-T_{2}\left(x_{1}, y_{1}\right)\right\|_{\alpha} \leqslant \int_{t}^{t_{1}} K e^{\delta(t-s)} k(p)\left\|x(s)-x_{1}(s)\right\|_{\alpha} d s \leqslant q\left\|y-y_{1}\right\|_{\alpha}
$$

with $q<1$, for small $k(p)$.
Then the result follows by the fixed point theorem.
Lemma 3. The solution of (1.1) under the hypothesis H1-H2.1 satisfies

$$
\|z(t)\|_{\alpha} \leqslant K_{3} e^{-\beta_{1}(t-s)}\|z(s)\|_{\alpha}
$$

Proof: Let

$$
H=\left\{z(t) /\|z(t)\|_{\alpha} \leqslant K_{3} e^{-\beta_{1}(t-s)}\|z(s)\|_{\alpha}\right\}
$$

and define on H

$$
F(z)=T(t, s) z(s)+\int_{s}^{t} T(t, r) g_{1}(r, z) z(r) d r
$$

Then

$$
\begin{aligned}
\|F(z)\|_{\alpha} & \leqslant K e^{-\beta_{1}(t-s)}\|z(s)\|_{\alpha}+\int_{s}^{t} K e^{-\beta_{1}(t-r)}\left\|g_{1}(r, z)\right\|\|z(r)\|_{\alpha} d r \quad \Rightarrow\|F(z)\|_{\alpha} e^{\beta_{1}(t-s)} \\
& \leqslant K\|z(s)\|_{\alpha}+\int_{s}^{t} K K_{3} e^{\beta_{1}(r-s)}\left\|g_{1}(r, z)\right\|\|z(s)\|_{\alpha} e^{-\beta(r-s)} d r \\
& \leqslant K\|z(s)\|_{\alpha}\left(1+\int_{s}^{t} K_{3}\left\|g_{1}(r, z)\right\| d r\right) \leqslant K_{1}
\end{aligned}
$$

but

$$
\int_{s}^{t}\left\|g_{1}(r, z)\right\| d r \leqslant \int_{s}^{t} K_{3}\left(e^{-\beta_{1}(t-s)}\|z(s)\|\right)^{a} d r<K_{2}
$$

Then $F(z) \in H$ and F is a contraction. In effect

$$
\|F(u)-F(v)\|_{\alpha} \leqslant \int_{s}^{t}\|T(t, r)(g(r, u)-g(r, v))\|_{\alpha} d r \leqslant \int_{s}^{t} K e^{-\beta_{1}(t-r)} k(p) \mid, d r\|u-v\|_{\alpha}
$$

For small $k(p)$ we have

$$
\|F(u)-F(v)\|_{\alpha} \leqslant q\|u-v\|_{\alpha} \quad \mathrm{q}<1 .
$$

Theorem 2. Under the conditions of the lemma the solution $z(t)$ has an exponential expansion (taking $\varphi=\beta_{1}$) if

$$
(2 \beta)^{1-2 \alpha}>4 P^{2} M^{2} \Gamma(1-2 \alpha)
$$

Proof: Let $X=X_{1}^{\alpha} \oplus X_{2}^{\alpha}$ where $X_{1}^{\alpha}=\operatorname{ker}(L-\beta I) ; X_{2}^{\alpha}=\Im(L-\beta I)$ and $L_{i}=L / X_{i}^{\alpha}$ and E_{i} be projections, $i=1,2$. Then $z=u+v \in X^{\alpha}$. Then

$$
v(t)=e^{-L_{2}\left(t-t_{0}\right)} E_{2}\left(z_{0}\right)+\int_{t_{0}}^{t} e^{-L_{2}(t-s)}\left(C(s)+E_{2} g(t, z)\right) v(s) d s
$$

Let γ, σ such that $0<\beta<\sigma<\gamma$. Then we have

$$
\|v(t)\|_{\alpha} \leqslant K e^{-\sigma\left(t-t_{0}\right)}\left\|E_{2}\left(z_{0}\right)\right\|_{\alpha}
$$

Let

$$
H=\left\{v(t) /\|v(t)\|_{\alpha} \leqslant K_{3} e^{-\sigma\left(t-t_{0}\right)}\left\|E_{2}\left(z_{0}\right)\right\|_{\alpha}\right\}
$$

Then if $F(v)$ is the right hand side of the integral equation, we have

$$
\begin{array}{rl}
\|F(v)\|_{\alpha} \leqslant M e^{-\gamma\left(t-t_{0}\right)}\left\|E_{2}\left(z_{0}\right)\right\|_{\alpha}+\int_{t_{0}}^{t} & K e^{-\gamma(t-s)}(t-s)^{-\alpha}\left(\left\|E_{2} g(s, z)\right\|\right. \\
& +\|C(s)\|)\|v(s)\|_{\alpha} d s \\
\leqslant M e^{-\gamma\left(t-t_{0}\right)}\left\|E_{0} z_{0}\right\|_{\alpha}+M e^{-\gamma\left(t-t_{0}\right)} \int_{t_{0}}^{t}(t-s)^{-\alpha}(\|C(s)\| \\
& \left.\quad+\left\|E_{2} g(s, z)\right\|\right) e^{-(\gamma-\sigma)(t-s)}\left\|E_{2} z_{0}\right\|_{\alpha} d s \\
\leqslant M e^{-\sigma\left(t-t_{0}\right)}\left\|E_{2} z_{0}\right\|_{\alpha}\left(1+\int_{t_{0}}^{t}(t-s)^{-\alpha}\|C(s)\| e^{-(\gamma-\sigma)(t-s)} d s\right. \\
\leqslant M e^{-\sigma\left(t-t_{0}\right)}\left\|E_{2} z_{0}\right\|_{\alpha}\left(1+\left[\int_{t_{0}}^{t}\|C(s)\|^{2} d s\right]^{1 / 2}\left[\int_{t_{0}}^{t}(t-s)^{-2 \alpha} e^{-2(\gamma-\sigma)(t-s)} d s\right]^{1 / 2}\right. \\
& \left.\quad \int_{t_{0}}^{t}(t-s)^{-\alpha}\left\|E_{2} g\right\| e^{-(\gamma-\sigma)(t-s)} d s\right) \\
& \left.+k(p) \int_{i_{0}}^{t}(t-s)^{-\alpha} e^{-(\gamma-\sigma)(t-s)} d s\right) \leqslant K e^{-\sigma\left(t-t_{0}\right)}
\end{array}
$$

Furthermore F is a contraction, since

$$
\begin{aligned}
\| F\left(v_{1}\right) & -F\left(v_{2}\right) \|_{\alpha} \\
& \left.\leqslant M \int_{t_{0}}^{t} e^{-\gamma(t-s)}(t-s)^{-\alpha}\left(\|C(s)\|+\left\|E_{2} g\right\|\right)\left\|v_{1}-v_{2}\right\|_{\alpha} d s\right) \\
& \leqslant M\left(\int_{t_{0}}^{t} e^{-\gamma(t-s)}(t-s)^{-\alpha}\left(\|C(s)\| d s+\int_{t_{0}}^{t} e^{-\gamma(t-s)}(t-s)^{-\alpha} k(p) d s\right)\left\|v_{1}-v_{2}\right\|_{\alpha}\right) \\
& \leqslant M\left(P\left[\int_{t_{0}}^{t} e^{-2 \gamma(t-s)}(t-s)^{-2 \alpha} d s\right]^{1 / 2}+k(p) \int_{t_{0}}^{t} e^{-\gamma(t-s)}(t-s)^{-\alpha} d s\right)\left\|v_{1}-v_{2}\right\|_{\alpha} \\
& \leqslant M\left(P\left[\frac{\Gamma(1-2 \alpha)}{(2 \gamma)^{I-2 \alpha}}\right]^{1 / 2}+L k(p)\right)\left\|v_{1}-v_{2}\right\|_{\alpha} \\
& \leqslant\left(P\left[\frac{\Gamma(1-2 \alpha)}{(2 \beta)^{I-2 \alpha}}\right]^{1 / 2}+L k(p)\right)\left\|v_{1}-v_{2}\right\|_{\alpha}
\end{aligned}
$$

So let us choose p such that $M L k(p)<1 / 2$, and taking

$$
P^{2} M^{2}\left[\frac{\Gamma(1-2 \alpha)}{(2 \beta)^{1-2 \alpha}}\right]<1 / 4
$$

it follows that F is a contraction as required.
On the other hand

$$
\begin{aligned}
& \int_{t_{0}}^{\infty}(t-s)^{-\alpha} e^{\beta_{1}\left(t-t_{0}\right)} e^{-\beta(t-s)}\left(\|C(s)\|+\left\|E_{1} g\right\|\right)\|z(s)\|_{\alpha} d s \\
& \leqslant \int_{t_{0}}^{\infty}(t-s)^{-\alpha} e^{-\beta(t-s)} e^{\beta_{2}\left(t-t_{0}\right)}\left(\|C(s)\|+\left\|E_{1} g\right\|\right) K e^{-\beta_{1}\left(s-t_{0}\right)} E_{1} z_{0} d s \\
& \leqslant K \int_{t_{0}}^{\infty}(t-s)^{-\alpha} e^{-(P M / \sqrt{(1-2 \alpha)(t-s)}}\left(\|C(s)\|+\left\|E_{1} g\right\|\right) E_{1} z_{0} d s<\infty
\end{aligned}
$$

then

$$
\begin{align*}
K\left(z_{0}, t_{0}\right) & =\lim _{t \rightarrow \infty} z(t) e^{\beta_{1}\left(t-t_{0}\right)} \\
& =E_{1} z_{0}+\lim _{t \rightarrow \infty} \int_{t_{0}}^{t} e^{-\beta\left(s-t_{0}\right)} e^{\beta_{1}\left(t-t_{0}\right)}\left(C(s)+E_{1} g\right) z(s) d s \tag{0}
\end{align*}
$$

and $E_{2} K\left(z_{0}, t_{0}\right)=0$.
Lemma 4. The solution of (1.1) under the hypothesis H1-H2 (b) satisfies

$$
\|z(t)\|_{\alpha} \leqslant K_{1} e^{-\left(\beta-(k M \Gamma(1-\alpha))^{1 / 1-\alpha}\left(t-t_{0}\right)\right)}\|z(t)\|_{\alpha}
$$

Proof:

$$
\begin{aligned}
&\|z(t)\|_{\alpha} \leqslant M e^{-\beta\left(t-t_{0}\right)}\left\|z\left(t_{0}\right)\right\|_{\alpha} \\
&+M \int_{s}^{t} e^{-\beta(t-s)}(t-s)^{-\alpha}\left(\|C(s)+\| g(s, u(s))\| \|_{\alpha}\right)\|z(s)\|_{\alpha} d s
\end{aligned}
$$

Then, using the inequality of [4, Lemma 7.11], we have

$$
\|z(t)\|_{\alpha} e^{\beta\left(t-t_{0}\right)} \leqslant M\|z(t)\|_{\alpha} E_{1-\alpha}\left(\Theta\left(t-t_{0}\right)\right) \leqslant M\left\|z\left(t_{0}\right)\right\|_{\alpha} e^{-(\beta-\theta)\left(t-t_{0}\right)}
$$

where

$$
\theta=(M(k+k(p)) \Gamma(1-\alpha))^{1 / 1-\alpha}
$$

and the result follows.

Theorem 3. Under the condition of the lemma the solution $z(t)$ has an exponential expansion taking

$$
\varphi=\beta-(k M \Gamma(1-\alpha))^{1 / 1-\alpha}>0
$$

Proof: As in Theorem 2 let us put $X^{\alpha}=X_{1}^{\alpha} \oplus X_{2}^{\alpha}, z(t)=u(t)+v(t) \in X^{\alpha}$ Then

$$
\|v(t)\|_{\alpha} \leqslant M e^{-\delta\left(t-t_{0}\right)}\left\|E_{2} z\left(t_{0}\right)\right\|_{\alpha}+M \int_{s}^{t} e^{-\delta(t-s)}(t-s)^{-\alpha}\left(\|C(s)\|+\left\|E_{2} g\right\|\right)\|v(s)\|_{\alpha} d s
$$

So that

$$
\|v(t)\|_{\alpha} e^{\delta\left(t-t_{0}\right)} \leqslant M\left\|E_{2} z\left(t_{0}\right)\right\|_{\alpha}+M \int_{t_{0}}^{t} e^{\delta\left(t-t_{0}\right)}(t-s)^{-\alpha}(k+k(p))\|v(s)\|_{\alpha} d s
$$

Using Gronwall's inequality, we have:

$$
\|v(t)\|_{\alpha} \leqslant M\left\|E_{2} z\left(t_{0}\right)\right\|_{\alpha} e^{\left[-\delta+(M(k+k(p)) \Gamma(1-\alpha))^{1 / 1-\alpha}\right]\left(t-t_{0}\right)} .
$$

On the other hand

$$
u(t)=T\left(t, t_{0}\right) E_{1} z_{0}+\int_{t_{0}}^{t} T(t, s) E_{1} g(s, z(s)) u(s) d s
$$

so

$$
\begin{aligned}
& \|u(t)\|_{\alpha} \leqslant K\left\|E_{1} z\left(t_{0}\right)\right\|_{\alpha} e^{-\left[\beta-(k M \Gamma(1-\alpha))^{1} / 1-\alpha\right]\left(t-t_{0}\right)} \\
& \\
& \quad+K \int_{t_{0}}^{t} e^{-\left[\beta-(k M \Gamma(1-\alpha))^{1 / 1-\alpha](t-s)}(t-s)^{-\alpha}\left\|E_{1} g\right\|\|u(s)\|_{\alpha} d s .\right.} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \|u(t)\|_{\alpha} e^{\left[\beta-(k M \Gamma(1-\alpha))^{1 / 1-\alpha}\right]}\left(t-t_{0}\right) \leqslant K\left\|E_{1} z\left(t_{0}\right)\right\|_{\alpha} \\
& \quad+K \int_{t_{0}}^{t} e^{\left[\beta-(k M \Gamma(1-\alpha))^{1 / 1-\alpha}\right]\left(s-t_{0}\right)}(t-s)^{-\alpha} e^{(-a-1)\left[\beta-(M(k+k(p)) \Gamma(1-\alpha))^{1 / 1-\alpha}\right]\left(s-t_{0}\right)} d s
\end{aligned}
$$

Choosing $k(p)$ small enough the integral is bounded and

$$
0<\beta-\left(k M \Gamma(1-\alpha)^{1 / 1-\alpha}<\delta-\left(M(k+k(p) \Gamma(1-\alpha))^{1 / 1-\alpha}\right) .\right.
$$

Then

$$
K\left(z_{0}, t_{0}\right)=\lim _{t \rightarrow \infty} z(t) e^{-\left(\beta-(k M \Gamma(1-\alpha))^{1 / 1-\alpha}\left(t-t_{0}\right)\right.}
$$

References

[1] M. Blázquez and E. Tuma, 'Bifurcation from homoclinic orbits to saddle-saddle point in Banach space', World Sci. Ser. Appl. Anal. 4 (1995), 91-99.
[2] M. Blázquez and E. Tuma, 'Shil'nikov's type solutions under non linear non autonomous pertubation', Proyecciones 15 (1996), 101-110.
[3] B. Deng, 'Exponential expansion with Shil'nikov's saddle focus', J. Differential Equations 82 (1989), 156-173.
[4] D. Henry, Geometric Theory of semi linear parabolic equations, Lectures Notes 840 (Springer-Verlag, Berlin, Heidelberg, New York, 1981).
[5] L.P. Shil'nikov's, 'A contribution to the problem of the structure of an extended neigbourhood of a rough equilibrium state of saddle-focus type', Math. Sbornik 10 (1970), 90-102.

Department of Mathematics
Santa Maria University
PO Box $110-\mathrm{V}$
Valparaiso
Chile
e-mail: elias.tuma@usm.cl

