INVERSE IMAGES OF SECTORS BY FUNCTIONS IN WEIGHTED BERGMAN-ORLICZ SPACES

FERNANDO PÉREZ-GONZÁLEZ[™] and JULIO C. RAMOS FERNÁNDEZ

(Received 24 July 2007; accepted 12 December 2007)

Communicated by P. C. Fenton

Abstract

For $\varepsilon > 0$, let $\Sigma_{\varepsilon} = \{z \in \mathbb{C} : |\arg z| < \varepsilon\}$. It has been proved (D. E. Marshall and W. Smith, *Rev. Mat. Iberoamericana* **15** (1999), 93–116) that $\int_{f^{-1}(\Sigma_{\varepsilon})} |f(z)| dA(z) \simeq \int_{\mathbb{D}} |f(z)| dA(z)$ for every $\varepsilon > 0$, uniformly for every univalent function f in the classical Bergman space A^1 that fixes the origin. In this paper, we extend this result to those conformal maps on \mathbb{D} belonging to weighted Bergman–Orlicz classes such that f(0) = |f'(0)| - 1 = 0.

2000 *Mathematics subject classification*: primary 30C25; secondary 30F45, 46E30. *Keywords and phrases*: univalent function, Bergman–Orlicz classes, modulus function.

1. Introduction and main results

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C} . For p > 0 and $\alpha > -1$, the weighted Bergman space A_{α}^{p} is defined as the class of all holomorphic functions f in \mathbb{D} for which

$$\|f\|_{\alpha,p}^{p} = \int_{\mathbb{D}} |f(z)|^{p} dA_{\alpha}(z) < \infty, \qquad (1.1)$$

where $dA_{\alpha}(z) = (\alpha + 1)(1 - |z|^2)^{\alpha} dA(z)$ and $dA(z) = (1/\pi) dx dy = (r/\pi) dr d\theta$ is the normalized two-dimensional Lebesgue measure, and $z = x + iy = re^{i\theta}$. Notice that dA_{α} is a probability measure. It is well known that, if $p \ge 1$, A_{α}^p is a Banach space with the norm defined in (1.1) while, for $p \in (0, 1)$, A_{α}^p becomes a quasi-Banach space. For the classical and modern theory of Bergman spaces, we refer to the monographs [2, 6, 18].

In [7], Marshall and Smith, trying to solve a conjecture by Ortel and Smith [9] concerning extremal dilations for quasiconformal mappings, proved that the inverse

The first author has been supported in part by the grant of MEC-Spain MTM2005-07347. Both authors are members of the Spanish Thematic Network MTM2006-26627-E.

^{© 2009} Australian Mathematical Society 1446-7887/2009 \$16.00

images of sectors $\Sigma_{\varepsilon} = \{w \in \mathbb{C} : |\arg w| < \varepsilon\}$ where $\varepsilon > 0$, by univalent functions $f \in A_0^1$ with f(0) = 0 have mass enough so that the norms $||f||_{1,0}$ can be reached essentially, in a uniform way, by integration over $f^{-1}(\Sigma_{\varepsilon})$. More precisely we have the following result.

THEOREM A. Given any $\varepsilon > 0$ there exists a constant $\delta > 0$ such that

$$\int_{f^{-1}(\Sigma_{\varepsilon})} |f(z)| \, dA(z) > \delta \int_{\mathbb{D}} |f(z)| \, dA(z), \tag{1.2}$$

for any univalent function f in A_0^1 fixing the origin.

In [11], we proved that Theorem A does hold for weighted Bergman spaces A_{α}^{p} , whenever $p \ge 1$ and $\alpha > 2p - 1$, and an example was given there showing that estimate (1.2) is not true for any $\varepsilon > 0$ and $\alpha < 2p - 2$. We do not know what happens for values of α between 2p - 2 and 2p - 1. It is another open question to see whether or not the univalence hypothesis in Theorem A can be dropped.

Our aim in this paper is to extend Theorem A to weighted Bergman–Orlicz classes. Following the classical paper by Mazur and Orlicz [8], for $\varphi : [0, \infty) \to [0, \infty)$ a continuous increasing function such that $\varphi(0) = 0$ and $\lim_{t\to\infty} \varphi(t) = \infty$, we define the set $\mathcal{L}^{\varphi}_{\alpha}$ of all measurable functions f on \mathbb{D} such that

$$\int_{\mathbb{D}} \varphi(\lambda | f(z)|) \, dA_{\alpha}(z) < \infty,$$

for some $\lambda > 0$ depending on f. It is easy to see that $\mathcal{L}^{\varphi}_{\alpha}$ is a linear space. A good reference for the theory of Orlicz spaces is the book by Rao and Ren [14]. Let $H(\mathbb{D})$ denote the space of all holomorphic functions in \mathbb{D} ; we say that $A^{\varphi}_{\alpha} := \mathcal{L}^{\varphi}_{\alpha} \cap H(\mathbb{D})$ is the *Bergman–Orlicz class associated to* φ .

It is natural to assume that the symbol φ enjoys some reasonable properties in such a way that the classes A^{φ}_{α} contain classical weighted Bergman spaces A^{p}_{α} , p > 0, as particular cases. This leads us to consider two types of symbols, corresponding to the settings $1 \le p < \infty$ and 0 .

Hence, for $\psi : [0, \infty) \to [0, \infty)$ a strictly increasing convex function satisfying $\psi(0) = 0$, we will say that ψ satisfies the Δ_2 condition near infinity if there exist constants $t_0 \ge 0$ and $K_{\Delta} > 1$ such that

$$\psi(2t) \le K_{\Delta}\psi(t),$$

for all $t \ge t_0$. In the case $t_0 = 0$ we will say that ψ satisfies the global Δ_2 condition. The Δ_2 condition plays an important role in the theory of A_{α}^{ψ} spaces. Furthermore, if we define

$$M_{\alpha,\psi}(f) := \int_{\mathbb{D}} \psi(|f(z)|) \, dA_{\alpha}(z),$$

then A^{ψ}_{α} is a Banach space equipped with the Luxemburg norm

$$||f||_{\alpha,\psi} = \inf\{k > 0 : M_{\alpha,\psi}(f/k) \le 1\},\$$

[3]

and A^{ψ}_{α} coincides with the class of all holomorphic functions f in \mathbb{D} for which $M_{\alpha,\psi}(f) < \infty$, if and only if ψ satisfies the Δ_2 condition near infinity.

Bergman–Orlicz spaces with symbol satisfying these properties have been considered by He [5] and by Wang and Xu [17] to study problems of different nature. Examples of such symbol functions ψ are: $\psi_1(t) = t^p$, $p \ge 1$; $\psi_2(t) = \exp[\log(t+1)^{3/2}] - 1$; and $\psi_3(t) = \exp[\log(t+2)\log\log(t+2)] - 2^{\log\log 2}$.

Our first result extends Theorem A to this type of weighted Bergman–Orlicz space.

THEOREM 1.1. Let $\psi : [0, \infty) \to [0, \infty)$ be a strictly increasing convex function satisfying $\psi(0) = 0$ and the global Δ_2 condition, and suppose that $\alpha > 2K_{\Delta} - 1$. Then, given $\varepsilon > 0$, there exists a constant $\delta > 0$, depending on ψ and α , such that

$$\int_{f^{-1}(\Sigma_{\varepsilon})} \psi(|f(z)|) \, dA_{\alpha}(z) \ge \delta \varepsilon \|f\|_{\alpha,\psi},$$

for any univalent function $f \in A_{\alpha}^{\psi}$ satisfying f(0) = |f'(0)| - 1 = 0.

If we ask for an *appropriate* symbol φ so that the corresponding A^{φ}_{α} space behaves as the classical Bergman space A^{p}_{α} , $0 , one may consider <math>\varphi$ to be a *modulus function*, that is a nonnegative function defined on $[0, \infty)$ that is a strictly increasing, subadditive, right-continuous at t = 0, and such that $\varphi(t) = 0$ if and only if t = 0. Given a modulus function φ and $\alpha > -1$, we define the *weighted Bergman–Orlicz space* A^{φ}_{α} associated to φ to be the class of all holomorphic functions f on the unit disk \mathbb{D} such that

$$\|f\|_{\alpha,\varphi} := \int_{\mathbb{D}} \varphi(|f(z)|) \, dA_{\alpha}(z) < \infty.$$

Then A_{α}^{φ} is a metric topological space with metric given by $d(f, g) = ||f - g||_{\alpha,\varphi}$ (see [15, 16]). Furthermore, if $\varphi(|f|)$ is subharmonic in \mathbb{D} for every $f \in A_{\alpha}^{\varphi}$, then A_{α}^{φ} is a complete metric space.

For this last type of symbol function, we prove the following result.

THEOREM 1.2. Let $\varphi : [0, \infty) \to [0, \infty)$ be a concave modulus function and $\alpha \ge 0$. Then, given $\varepsilon > 0$, there exists a constant $\delta > 0$, depending on α , φ and ε , such that

$$\int_{f^{-1}(\Sigma_{\varepsilon})} \varphi(|f(z)|) \, dA_{\alpha}(z) \ge \delta \|f\|_{\alpha,\varphi},$$

for any conformal function $f \in A^{\varphi}_{\alpha}$ satisfying f(0) = |f'(0)| - 1 = 0.

Simple examples of functions φ satisfying the statements in Theorem 1.2 are $\varphi_1(t) = t^p$, $0 , and <math>\varphi_2(t) = \log(1 + t)$. Moreover, if φ_1 and φ_2 are modulus functions, it is easy to see that $\varphi_1 \circ \varphi_2$ is also a modulus function, whence new examples of such functions can be explicitly found.

As a consequence of Theorem 1.2 we can write the following result.

COROLLARY 1.3. Let $p \in (0, 1]$. Given $\varepsilon > 0$, there exists a constant $\delta > 0$ such that

$$\int_{f^{-1}(\Sigma_{\varepsilon})} |f(z)|^p \, dA(z) > \delta \int_{\mathbb{D}} |f(z)|^p \, dA(z),$$

for any univalent function in A_0^p satisfying f(0) = 0.

Notice that Corollary 1.3 gives a genuine extension of Theorem A for any p, $0 , a setting that has not been considered so far. Observe also that, in particular, for <math>\varphi(t) = t$, $t \ge 0$ and $\alpha = 0$, Theorem A follows since, in this case, the restriction |f'(0)| = 1 can be omitted.

The paper is organized as follows. In Section 2, we explain a construction due to Marshall and Smith [7], which provides a covering of the domain image of a conformal map f from the unit disk \mathbb{D} onto $\Omega = f(\mathbb{D})$, such that f(0) = 0 and |f'(0)| = 1. Such a covering and other auxiliary results in this section are needed for the proofs of Theorems 1.1 and 1.2 that occupy Sections 3 and 4, respectively.

Finally, let us point out that, throughout this work, *C* and *K* will denote constants whose value can change in each appearance. Many times we will write $C(\varepsilon, \alpha, ...)$ and $K_i(\varepsilon, \alpha, \varphi, ...)$ to highlight that these constants depend on the parameters within parentheses.

2. A covering for the domain image

For the proofs of our principal results, we need certain very precise estimates involving the hyperbolic distance and the harmonic measure. Recall that the *hyperbolic metric* on \mathbb{D} is defined as

$$\beta(z_1, z_2) = \inf \left\{ \int_{\gamma} \frac{2 |dz|}{1 - |z|^2} : \gamma \text{ is an arc in } \mathbb{D} \text{ from } z_1 \text{ to } z_2 \right\} \quad \forall z_1, z_2 \in \mathbb{D}.$$

Since the shortest distance from 0 to any point $z \in \mathbb{D}$ is the radius [0, z], in particular we have

$$\beta(0, z) = \log\left(\frac{1+|z|}{1-|z|}\right).$$
(2.1)

The hyperbolic metric is invariant under conformal self-maps of \mathbb{D} and we can also define it on any simple connected proper domain Ω of \mathbb{C} as $\beta_{\Omega}(w_1, w_2) := \beta(z_1, z_2)$, where $w_i = h(z_i), i = 1, 2, \text{ and } h : \mathbb{D} \to \Omega$ is any conformal map. An exhaustive study of the hyperbolic metric on \mathbb{D} can be found, for example, in [12]. Analogously, the *quasihyperbolic* metric on Ω is defined as

$$k_{\Omega}(w_1, w_2) = \inf \left\{ \int_{\gamma} \frac{|dw|}{\delta_{\Omega}(w)} : \gamma \text{ is an arc in } \Omega \text{ from } w_1 \text{ to } w_2 \right\}$$

where $\delta_{\Omega}(w)$ denotes the Euclidean distance from w to the boundary $\partial \Omega$ of Ω . As shown in [4], the hyperbolic and quasihyperbolic metrics are comparable. In fact,

$$\frac{1}{2}\beta_{\Omega}(w_1, w_2) \le k_{\Omega}(w_1, w_2) \le 2\beta_{\Omega}(w_1, w_2),$$
(2.2)

for all $w_1, w_2 \in \Omega$.

Also, we will use some well-known results on distortion of conformal maps, which we collect in Theorem B below and which can be seen in [12].

THEOREM B. Let f be a conformal map from \mathbb{D} onto $\Omega = f(\mathbb{D}) \subset \mathbb{C}$. Then for any $z \in \mathbb{D}$ the following estimates hold:

(i)
$$|f'(0)| \frac{|z|}{(1+|z|)^2} \le |f(z) - f(0)| \le |f'(0)| \frac{|z|}{(1-|z|)^2};$$

(ii)
$$|f'(0)| \frac{1-|z|}{(1+|z|)^3} \le |f'(z)| \le |f'(0)| \frac{1+|z|}{(1-|z|)^3};$$

(iii)
$$\frac{1}{4}(1-|z|^2)|f'(z)| \le \delta_{\Omega}(f(z)) \le (1-|z|^2)|f'(z)|;$$

(iv)
$$|f(z) - f(z_0)| \le 4\delta_{\Omega}(f(z_0))e^{2\beta(z,z_0)}, z_0 \in \mathbb{D};$$

(v)
$$\delta_{\Omega}(f(0))e^{-\beta(0,z)} \le (1+|z|)^2 |f'(z)| \le 4\delta_{\Omega}(f(0))e^{3\beta(0,z)}.$$

Let *E* be a closed subset of \mathbb{C} with $\Omega \cap E \neq \emptyset$ and let Γ be the component of $\partial(\Omega \setminus E)$ contained in *E*; suppose that Γ is a finite union of Jordan arcs. We will denote by $\omega_{\Omega}(z, E)$ the harmonic measure of *E* evaluated at *z*. It is, by definition, the unique bounded harmonic function in $\Omega \setminus E$ that is identically 1 on *E* and vanishes on $\partial(\Omega \setminus E) \setminus E$. An excellent reference to study the harmonic measure is the recent monograph by Garnett and Marshall [3].

Next, we summarize a very clever analytic-geometric construction due to Marshall and Smith (see [7]), which provides a covering for the domain image $\Omega = f(\mathbb{D})$, where f is a conformal map on \mathbb{D} with f(0) = 0. Notice that part (iii) of Theorem B implies that |f'(0)| is comparable with $\delta_{\Omega}(0)$. Therefore, from now on, we will suppose that $\delta_{\Omega}(0) = 1$. Without loss generality, we will also assume that $\varepsilon < 1/10$.

We set $A_0 = \mathbb{D}$ and for $n \ge 1$ we put

$$A_n = \{ w \in \mathbb{C} : (1+\varepsilon)^{n-1} < |w| < (1+\varepsilon)^n \}.$$
 (2.3)

For each $n \in \mathbb{N} \cup \{0\}$, we choose, if possible, a Euclidean square $Q_n \subset A_n \cap \Sigma_{\varepsilon} \cap \Omega$ satisfying

$$\begin{cases} (i) & \operatorname{diam}(Q_n) \ge \frac{\varepsilon}{4} (1+\varepsilon)^{n-1}, \\ (ii) & \frac{1}{2} \le \frac{\operatorname{dist}(Q_n, \partial(A_n \cap \Sigma_{\varepsilon} \cap \Omega))}{\operatorname{diam}(Q_n)} \le 2. \end{cases}$$
(2.4)

Notice that the condition $\delta_{\Omega}(0) = 1$ implies that there is a square $Q_0 \subset \mathbb{D} \cap \Sigma_{\varepsilon}$ satisfying (i) and (ii) in (2.4). We will write $w_n = f(z_n)$ to denote the center of Q_n . For those $n \in \mathbb{N}$ for which we can construct a square Q_n satisfying properties in (2.4), we define the set

$$N(Q_n) = \{ w \in \mathbb{C} : \beta_{\Omega}(w, w_n) < 100/\varepsilon \}.$$

Here $N(Q_n)$ is a hyperbolic neighborhood of Q_n and note that $0 \in N(Q_0)$. For any $w \in \Omega$ we denote by γ_w the hyperbolic geodesic from w to 0; then we will say that w

is an element of Ω_n if $N(Q_n)$ is the first hyperbolic neighborhood that γ_w finds when crossing from w to 0, that is $w \in \Omega_n$ if and only if:

- (a) $\beta_{\Omega}(\gamma_w, w_n) < 100/\varepsilon$; and
- (b) if γ_w^n is the component of $\gamma_w \setminus N(Q_n)$ containing w, then either $\gamma_w^n = \emptyset$ or else $\beta_\Omega(\gamma_w, w_m) \ge 100/\varepsilon$ for all $n \ne m$.

If there is no Q_n in A_n satisfying the properties in (2.4), then we set $\Omega_n = \emptyset$. It is clear that $N(Q_n) \subset \Omega_n$, and since $0 \in N(Q_0)$, then the family $\{\Omega_n\}$ is a covering of Ω .

The sets Q_n and Ω_n enjoy some special properties that appear in [7, pp. 104–110]. For later reference, we include two results.

PROPOSITION C. Let f be a conformal map from \mathbb{D} onto the domain Ω such that f(0) = 0. Let the A_j , Q_n and Ω_n be as constructed above. Then, there exist positive constants C and $C(\varepsilon)$ such that

$$e^{-\beta_{\Omega}(w_n,\Omega_n\cap A_j)}\omega_{\Omega}(w_n,\Omega_n\cap A_j) \le C(\varepsilon)(1+\varepsilon)^{-|j-n|(1+C\varepsilon)},$$
(2.5)

for all $j \in \mathbb{N} \cup \{0\}$ and for any $n \in \mathbb{N}$. When n = 0, we replace w_n by 0.

In the following proposition $C(\varepsilon)$ will denote a positive constant depending only on ε whose value can change from one line to another. The proof of Proposition D below appears in [7] (see also [10]).

PROPOSITION D. Let f be a conformal map from \mathbb{D} onto the domain Ω such that f(0) = 0. Let the A_j , Q_n and Ω_n be as constructed above. Then, there exists a constant $C(\varepsilon) > 0$ such that for every $j \in \mathbb{N} \cup \{0\}$ and each $n \in \mathbb{N}$ we have the following:

- (i) Area $(f^{-1}(Q_n)) \leq C(\varepsilon)e^{-\beta_{\Omega}(0,Q_n)}\omega_{\Omega}(0,Q_n);$
- (ii) Area $(f^{-1}(\Omega_n \cap A_i)) \leq C(\varepsilon)e^{-\beta_{\Omega}(0,\Omega_n \cap A_j)}\omega_{\Omega}(0,\Omega_n \cap A_i);$
- (iii) $e^{-\beta_{\Omega}(0,\Omega_n\cap A_j)} < C(\varepsilon)e^{-\beta_{\Omega}(0,Q_n)}e^{-\beta_{\Omega}(w_n,\Omega_n\cap A_j)}$; and
- (iv) $\omega_{\Omega}(0, \Omega_n \cap A_j) \leq C(\varepsilon)\omega_{\Omega}(0, Q_n)\omega_{\Omega}(w_n, \Omega_n \cap A_j).$

LEMMA 2.1. Let $\varphi : [0, \infty) \to [0, \infty)$ be an increasing function, $\alpha \ge 0$ and $\varepsilon > 0$. Then there exists a constant C > 0, depending only on φ , α and ε , such that

$$\int_{f^{-1}(Q_0)} \varphi(|f|) \, dA_\alpha \ge C,$$

for any conformal map f from \mathbb{D} onto Ω satisfying f(0) = 0 and |f'(0)| = 1.

PROOF. First, notice from (2.4) that, if $z \in f^{-1}(Q_0)$, then

$$|f(z)| \ge \operatorname{dist}(Q_0, \,\partial(A_0 \cap \Sigma_{\varepsilon} \cap \Omega)) \ge \frac{\varepsilon}{8(1+\varepsilon)}.$$
(2.6)

Inverse images of sectors by functions in weighted Bergman–Orlicz spaces

We also observe that, if $w = f(z) \in Q_0$, then

[7]

$$\delta_{\Omega}(w) = \operatorname{dist}(w, \partial \Omega) \ge \operatorname{dist}(Q_0, \partial (A_0 \cap \Sigma_{\varepsilon})) \ge \varepsilon/10.$$

Consequently, $\delta_{\Omega}(s) \ge \varepsilon/10$ for any $s \in [0, w]$, the ray from 0 to w. Now, by the comparison between the hyperbolic metric and the quasihyperbolic metric in (2.2), we get

$$\beta_{\Omega}(0, f(z)) \le 2k_{\Omega}(0, w) \le 2\int_{[0,w]} \frac{|ds|}{\delta_{\Omega}(s)} \le \frac{20}{\varepsilon} \quad \forall z \in f^{-1}(Q_0).$$
(2.7)

Thus, from (2.1) we can find a constant $C(\varepsilon, \alpha) > 0$ such that

$$(1 - |z|^2)^{\alpha} \ge C(\varepsilon, \alpha) \quad \forall z \in f^{-1}(Q_0).$$

$$(2.8)$$

On the other hand, since f(0) = 0 and $\delta_{\Omega}(0) = 1$, the estimate (v) in Theorem B and (2.7) yield

$$|f'(z)| \le 4e^{3\beta_{\Omega}(0, f(z))} \le 4e^{60/\varepsilon} \quad \forall z \in f^{-1}(Q_0).$$
(2.9)

Finally, from estimates (2.8), (2.6) and (2.9) we obtain

$$\begin{split} \int_{f^{-1}(Q_0)} \varphi(|f|) \, dA_\alpha &\geq \frac{1}{16} C(\varepsilon, \alpha) e^{-120/\varepsilon} \varphi\left(\frac{\varepsilon}{8(1+\varepsilon)}\right) \int_{f^{-1}(Q_0)} |f'|^2 \, dA \\ &= \frac{1}{16} C(\varepsilon, \alpha) e^{-120/\varepsilon} \varphi\left(\frac{\varepsilon}{8(1+\varepsilon)}\right) \operatorname{Area}(Q_0), \end{split}$$

and, since diam $(Q_0) \ge \varepsilon/[4(1+\varepsilon)]$ (see (2.4)), we conclude that there exists a constant $C(\varepsilon, \alpha, \varphi) > 0$ such that

$$\int_{f^{-1}(Q_0)} \varphi(|f|) \, dA_{\alpha} \ge C(\varepsilon, \, \alpha, \, \varphi),$$

as we wished to show.

3. Proof of Theorem 1.1

To prove Theorem 1.1 we will need some prior results. First, we give a simple technical lemma.

LEMMA 3.1. Suppose that ψ is a function as in Theorem 1.1 and let $\alpha > -1$. Then there exists a constant $C_1(\alpha) > 0$, depending only on α , such that

$$\int_{\mathbb{D}} \psi(|f|) \, dA_{\alpha} \leq C_1(\alpha) \int_{\{z \in \mathbb{D} : |z| > \frac{1}{2}\}} \psi(|f|) \, dA_{\alpha},$$

for any function $f \in A^{\psi}_{\alpha}$.

PROOF. Take a function $f \in A_{\alpha}^{\psi}$. Then |f| is subharmonic in \mathbb{D} and, since ψ is an increasing convex function, $\psi(|f|)$ is also subharmonic in \mathbb{D} . Now, since the averages of subharmonic functions increase with radius,

$$\frac{16}{9} \int_{D(0,\frac{3}{4})} \psi(|f|) \, dA \ge 4 \int_{D(0,\frac{1}{2})} \psi(|f|) \, dA. \tag{3.1}$$

Write $D(0, \frac{3}{4}) = D(0, \frac{1}{2}) \cup \{\frac{1}{2} \le |z| < \frac{3}{4}\}$. It follows from (3.1) that

$$\int_{\{\frac{1}{2} < |z| < \frac{3}{4}\}} \psi(|f|) \, dA \ge \frac{5}{4} \int_{D(0,\frac{1}{2})} \psi(|f|) \, dA.$$

Let $K_1(\alpha)$ and $K_2(\alpha)$ be two positive constants, depending on α , such that $(1-|z|^2)^{\alpha} \ge K_1(\alpha)$, $|z| < \frac{3}{4}$, and $(1-|z|^2)^{\alpha} \le K_2(\alpha)$, $|z| < \frac{1}{2}$. Substituting into (3.1) we get

$$\frac{1}{K_1(\alpha)} \int_{\{\frac{1}{2} < |z| < \frac{3}{4}\}} \psi(|f|) \, dA_\alpha \ge \frac{5}{4K_2(\alpha)} \int_{D(0,\frac{1}{2})} \psi(|f|) \, dA_\alpha,$$

and since $\{\frac{1}{2} < |z| < \frac{3}{4}\} \subset \{|z| > \frac{1}{2}\}$ the conclusion follows.

Next, we will adapt arguments from [1, 13] to prove the following theorem, which could have independent interest.

THEOREM 3.2. Let ψ be a function as in Theorem 1.1 and let $\varepsilon > 0$. Then there exists $\delta > 0$, depending on α and ψ , such that

$$\int_{f^{-1}(\Sigma_{\varepsilon})} \psi(|f(z)|) \, dA_{\alpha}(z) \ge \delta |f'(0)|^2 \psi(|f'(0)|)\varepsilon,$$

for any function $f \in A_{\alpha}^{\psi}$ with f(0) = 0 and $||f||_{\alpha,\psi} \le 1$.

PROOF. Let $f \in A_{\alpha}^{\psi}$ satisfy f(0) = 0 and $||f||_{\alpha,\psi} \le 1$. We will assume that $f'(0) \ne 0$; otherwise we are done. By definition of the Luxemburg norm there exists a positive constant $k \le 1$ such that $M_{\alpha,\psi}(f/k) \le 1$, and since ψ is an increasing function,

$$M_{\alpha,\psi}(f) \leq 1.$$

Now, by the Cauchy integral formula

$$|f'(z)| \leq \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(re^{i\theta})|}{|re^{i\theta} - z|^2} r \, d\theta,$$

for all $|z| < \frac{1}{2}$ and any $\frac{1}{2} < r < 1$. Integrating from $r = \frac{3}{4}$ to $r = \frac{7}{8}$ we get

$$|f'(z)| \le 64 \int_{\left\{\frac{3}{4} < |s| < \frac{7}{8}\right\}} |f(s)| \, dA(s),$$

for any $|z| < \frac{1}{2}$. Using the monotonicity of ψ , the Δ_2 condition and Jensen's inequality, we see that there exists a universal constant $K_1 > 0$ such that

$$\psi(|f'(z)|) \le K_1 \int_{\{\frac{3}{4} < |s| < \frac{7}{8}\}} \psi(|f(s)|) \, dA(s), \tag{3.2}$$

for all z such that $|z| < \frac{1}{2}$. Moreover, if $K_3(\alpha)$ is a positive constant such that $(1 - |s|^2)^{\alpha} \ge K_3(\alpha)$ for all $\frac{3}{4} < |s| < \frac{7}{8}$, it follows from (3.2) that

$$\psi(|f'(z)|) \le \frac{K_1}{K_3(\alpha)} \int_{\{\frac{3}{4} < |s| < \frac{7}{8}\}} \psi(|f(s)|) \, dA_\alpha(s) \quad \forall z \in D(0, \frac{1}{2}).$$

Hence $\psi(|f'(z)|) \le K_1/K_3(\alpha)$ because $M_{\alpha,\psi}(f) \le 1$. This implies that there is a constant $K_4(\alpha, \psi) > 0$ such that

$$|f'(z)| \le K_4(\alpha, \psi) \quad \forall z \in D(0, \frac{1}{2}).$$
 (3.3)

On the other hand, an application of Schwarz's lemma yields

$$|f'(z) - f'(0)| \le 4K_4(\alpha, \psi)|z| \quad \forall |z| < \frac{1}{2},$$
(3.4)

and, if we put

$$R = \frac{1}{8K_4(\alpha, \psi)} |f'(0)|$$

then, $R < \frac{1}{8}$ by (3.3), and from (3.4) we deduce that $|f'(z) - f'(0)| < \frac{1}{2}|f'(0)|$, |z| < R. This implies that f is one-to-one on the disk D(0, R). We can use a standard modification of the Koebe one-quarter theorem to get $D(0, \sigma) \subset f(D(0, R))$, where $\sigma = |f'(0)|^2 / [32K_4(\alpha, \psi)].$

Therefore

$$\begin{split} \int_{f^{-1}(\Sigma_{\varepsilon})} \psi(|f(z)|) \, dA_{\alpha}(z) &\geq \int_{f^{-1}(\Sigma_{\varepsilon} \cap \{R/2 < |w| < R\}) \cap D(0,R)} \psi(|f(z)|) \, dA_{\alpha}(z) \\ &\geq K_{5}(\alpha) \psi\left(\frac{R}{2}\right) \int_{f^{-1}(\Sigma_{\varepsilon} \cap \{R/2 < |w| < R\}) \cap D(0,R)} dA(z) \\ &\geq \frac{K_{5}(\alpha)}{K_{4}^{2}(\alpha, \psi)} \psi\left(\frac{R}{2}\right) \\ &\qquad \times \int_{f^{-1}(\Sigma_{\varepsilon} \cap \{R/2 < |w| < R\}) \cap D(0,R)} |f'(z)|^{2} \, dA(z) \\ &= K_{6}(\alpha, \psi) \psi(|f'(0)|) |f'(0)|^{2} \varepsilon, \end{split}$$

where we have used the fact that $|z| < R < \frac{1}{8}$, condition (3.3), the Δ_2 condition and the fact that f is injective on the disk D(0, R). This finishes the proof.

COROLLARY 3.3. Let ψ be a function as in Theorem 1.1 and let $\varepsilon > 0$. Then there exists $\delta > 0$, depending on α and ψ , such that

$$\int_{f^{-1}(\Sigma_{\varepsilon})} \psi(|f(z)|) \, dA_{\alpha}(z) \ge \delta \frac{|f'(0)|^2}{\|f\|_{\alpha,\psi}} \psi\left(\frac{|f'(0)|}{\|f\|_{\alpha,\psi}}\right) \varepsilon,$$

for any function $f \in A^{\psi}_{\alpha}$ with f(0) = 0 and $||f||_{\alpha,\psi} > 1$.

PROOF. If *f* is a function in A_{α}^{ψ} satisfying f(0) = 0 and $||f||_{\alpha,\psi} > 1$, we set $g(z) = (1/||f||_{\alpha,\psi})f(z)$, for all $z \in \mathbb{D}$. Then, applying Theorem 3.2 to the function *g* yields

$$\int_{f^{-1}(\Sigma_{\varepsilon})} \psi\left(\frac{|f(z)|}{\|f\|_{\alpha,\psi}}\right) dA_{\alpha}(z) \geq K_{6}(\alpha,\psi)\psi\left(\frac{|f'(0)|}{\|f\|_{\alpha,\psi}}\right) \frac{|f'(0)|^{2}}{\|f\|_{\alpha,\psi}^{2}}\varepsilon.$$

Since $\psi(rt) \le r\psi(t)$ for all $r \in (0, 1)$ and $t \ge 0$, the proof is complete.

Let us recall that it is a standard fact that if ψ is a function as in Theorem 1.1 and $t_0 > 0$ is fixed, then (see [5, p. 49])

$$\psi(t) \le \frac{\psi(t_0)}{t_o^{K_\Delta}} t^{K_\Delta} \quad \forall t \ge t_0.$$
(3.5)

PROOF OF THEOREM 1.1. Let f be a univalent function in A_{α}^{ψ} satisfying f(0) = 0 and |f'(0)| = 1. Note that if $||f||_{\alpha,\psi} \le 1$ then Theorem 1.1 is a simple consequence of Lemma 2.1. So, we can assume that $||f||_{\alpha,\psi} > 1$. It follows from the distortion in (i) of Theorem B that

$$|f'(0)| \ge \frac{1}{4}(1-|z|^2)^2 |f(z)| \quad \forall z \in \mathbb{D}.$$

Thus, $(1 - |z|^2)^{2K_{\Delta}} |f(z)|^{K_{\Delta}} \le 4^{K_{\Delta}}$, for all $z \in \mathbb{D}$, and integrating against the measure $dA_{\beta}, \beta = \alpha - 2K_{\Delta} > -1$, we obtain

$$\|f\|_{\alpha,K_{\Delta}} \le C_2,\tag{3.6}$$

 C_2 being a constant depending on α and K_{Δ} . Moreover, since ψ is continuous and $\psi(0) = 0$, we can choose $t_0 > 0$ such that

$$\psi(t_0) < \frac{1}{C_1(\alpha)} \left(\frac{1}{8C_2}\right)^{K_\Delta},\tag{3.7}$$

where $C_1(\alpha)$ is the constant that we found in Lemma 3.1. Using again (i) in Theorem B

$$|f(z)| \ge \frac{|z|}{(1+|z|)^2} \quad \forall z \in \mathbb{D}.$$

In particular, $|f(z)| \ge \frac{1}{8}$, whenever $|z| > \frac{1}{2}$. Putting $M = 1/(8t_0)$, we can write

$$\frac{|f(z)|}{M} \ge t_0 \quad \forall |z| > \frac{1}{2}.$$

Now, estimates (3.5) and (3.7) yield

$$\psi\left(\frac{|f(z)|}{M}\right) \leq \frac{\psi(t_0)}{t_0^{K_\Delta}} \frac{|f(z)|^{K_\Delta}}{M^{K_\Delta}} \leq \frac{|f(z)|^{K_\Delta}}{C_2^{K_\Delta} C_1(\alpha)},$$

for any $|z| > \frac{1}{2}$. Thus,

$$\int_{\{|z| > \frac{1}{2}\}} \psi\left(\frac{|f|}{M}\right) dA_{\alpha} \le \frac{(1/C_2)^{K_{\Delta}}}{C_1(\alpha)} \int_{\mathbb{D}} |f|^{K_{\Delta}} dA_{\alpha} \le \frac{1}{C_1(\alpha)}$$

by (3.6). Now, from Lemma 3.1 we get

$$\int_{\mathbb{D}} \psi\left(\frac{|f|}{M}\right) dA_{\alpha} \leq 1,$$

which, by definition of the Luxemburg norm, means that

$$\|f\|_{\alpha,\psi} \le M.$$

This inequality and Corollary 3.3 lead to

$$\int_{f^{-1}(\Sigma_{\varepsilon})} \psi(|f(z)|) \, dA_{\alpha}(z) \geq \frac{\delta}{M^2} \psi\left(\frac{1}{M}\right) \varepsilon \|f\|_{\alpha,\psi},$$

and the proof of Theorem 1.1 is complete.

4. Proof of Theorem 1.2

Let *f* be a conformal map on \mathbb{D} such that f(0) = 0 = 1 - |f'(0)| and let $f(\mathbb{D}) = \Omega$. In this section we will assume that Q_n , Ω_n , z_n , and so on are as in the construction of the covering of the domain Ω in Section 2. The proof of Theorem 1.2 will based upon the following lemma.

LEMMA 4.1. Let φ be as in Theorem 1.2 and let $\alpha \ge 0$ and $\varepsilon > 0$. Then, there exists a constant $C = C(\alpha, \varphi, \varepsilon) > 0$ such that, for any $n \in \mathbb{N} \cup \{0\}$,

$$\int_{f^{-1}(Q_n)} \varphi(|f(z)|) \, dA_\alpha(z) \ge C \int_{f^{-1}(\Omega_n)} \varphi(|f(z)|) \, dA_\alpha(z)$$

for every univalent function f in \mathbb{D} satisfying f(0) = 0 and |f'(0)| = 1.

PROOF. We first notice that, for any $\alpha \ge 0$ and $n \in \mathbb{N} \cup \{0\}$, there exists a constant $C(\alpha, \varepsilon) > 0$ such that

$$(1 - |z|^2)^{\alpha} \ge C(\alpha, \varepsilon)(1 - |z_n|^2)^{\alpha},$$
 (4.1)

for every $z \in f^{-1}(Q_n)$. When n = 0 we replace z_n by 0 and, analogously there exists a constant $C(\alpha, \varepsilon) > 0$ such that

$$(1 - |z|^2)^{\alpha} \le C(\alpha, \varepsilon)(1 - |z_n|^2)^{\alpha}, \qquad (4.2)$$

for any $z \in f^{-1}(\Omega_n)$ (see [10]).

Thus, from (4.1) and (4.2) we see that it will be sufficient to show that

$$\int_{f^{-1}(Q_n)} \varphi(|f(z)|) \, dA(z) \ge C \int_{f^{-1}(\Omega_n)} \varphi(|f(z)|) \, dA(z), \tag{4.3}$$

[12]

for all $n \in \mathbb{N} \cup \{0\}$. With this aim in mind, let us consider first the case n = 0. Since φ is an increasing function,

$$\begin{split} \int_{f^{-1}(\Omega_0)} \varphi(|f|) \, dA &\leq \sum_{j=0}^{\infty} \varphi((1+\varepsilon)^j) \operatorname{Area}(f^{-1}(\Omega_0 \cap A_j)) \\ &\leq C(\varepsilon) \sum_{j=0}^{\infty} \varphi((1+\varepsilon)^j) e^{-\beta_{\Omega}(0,\Omega_n \cap A_j)} \omega_{\Omega}(0,\,\Omega_n \cap A_j) \\ &\leq C(\varepsilon) \sum_{j=0}^{\infty} \varphi((1+\varepsilon)^j)(1+\varepsilon)^{-j(1+C\varepsilon)}, \end{split}$$

where we have used part (ii) of Proposition D in the second inequality and Proposition C in the last one. Set

$$S(\varepsilon) = \sum_{j=0}^{\infty} (1+\varepsilon)^{-j(1+C\varepsilon)},$$

where C is the constant given in Proposition C. Since φ is concave, we can write

$$\int_{f^{-1}(\Omega_0)} \varphi(|f|) \, dA \leq C(\varepsilon) S(\varepsilon) \varphi\left(\frac{1}{S(\varepsilon)} \sum_{j=0}^{\infty} (1+\varepsilon)^{-jC\varepsilon}\right),$$

and thus there is a constant $C(\varepsilon, \varphi) > 0$, depending only on ε and φ , such that

$$\int_{f^{-1}(\Omega_0)} \varphi(|f|) \, dA \le C(\varepsilon, \varphi). \tag{4.4}$$

Then (4.4) and Lemma 2.1 show that (4.3) holds for n = 0.

Suppose now that n > 0. Since φ is an increasing function, assertions (ii)–(iv) in Proposition D and Proposition C imply that

$$\begin{split} \int_{f^{-1}(\Omega_n)} \varphi(|f|) \, dA &\leq C(\varepsilon) \sum_{j=0}^{\infty} \varphi((1+\varepsilon)^j) e^{-\beta_{\Omega}(0,\Omega_n \cap A_j)} \omega_{\Omega}(0,\,\Omega_n \cap A_j) \\ &\leq C(\varepsilon) \sum_{j=0}^{\infty} \varphi((1+\varepsilon)^j) e^{-\beta_{\Omega}(0,\,Q_n)} \omega_{\Omega}(0,\,Q_n) e^{-\beta_{\Omega}(w_n,\Omega_n \cap A_j)} \\ &\times \omega_{\Omega}(w_n,\,\Omega_n \cap A_j) \\ &\leq C(\varepsilon) \sum_{j=0}^{\infty} \varphi((1+\varepsilon)^j) e^{-\beta_{\Omega}(0,\,Q_n)} \\ &\times \omega_{\Omega}(0,\,Q_n)(1+\varepsilon)^{-|j-n|(1+C\varepsilon)}. \end{split}$$

Also, from assertion (i) in Proposition D we get

$$\int_{f^{-1}(Q_n)} \varphi(|f|) \, dA \ge C(\varepsilon)\varphi((1+\varepsilon)^{n-1})e^{-\beta_{\Omega}(0,Q_n)}\omega_{\Omega}(0,Q_n)$$

Hence, there is a constant $C(\varepsilon) > 0$ such that

$$\int_{f^{-1}(\Omega_n)} \varphi(|f|) \, dA$$

$$\leq C(\varepsilon) \sum_{j=0}^{\infty} \varphi((1+\varepsilon)^j) \frac{(1+\varepsilon)^{-|j-n|(1+C\varepsilon)}}{\varphi((1+\varepsilon)^{n-1})} \int_{f^{-1}(Q_n)} \varphi(|f|) \, dA$$

We claim that there exists a constant $C(\varepsilon) > 0$ (not depending on *n*) such that

$$\sum_{j=0}^{\infty} \varphi((1+\varepsilon)^j)(1+\varepsilon)^{-|j-n|(1+C\varepsilon)} \le C(\varepsilon)\varphi((1+\varepsilon)^{n-1}).$$
(4.5)

Indeed, for each n > 0 we set

$$S_n(\varepsilon) = \sum_{j=0}^{\infty} (1+\varepsilon)^{-|j-n|(1+C\varepsilon)}.$$

Due to the concavity of φ we can write

$$\sum_{j=0}^{\infty} \varphi((1+\varepsilon)^{j})(1+\varepsilon)^{-|j-n|(1+C\varepsilon)}$$

$$\leq S_{n}(\varepsilon)\varphi\left(\frac{1}{S_{n}(\varepsilon)}\sum_{j=0}^{\infty}(1+\varepsilon)^{j-|j-n|(1+C\varepsilon)}\right)$$

$$= S_{n}(\varepsilon)\varphi\left(\frac{(1+\varepsilon)^{n}}{S_{n}(\varepsilon)}\sum_{j=0}^{\infty}(1+\varepsilon)^{j-n-|j-n|(1+C\varepsilon)}\right)$$

and, by the definition of $S_n(\varepsilon)$,

$$S_n(\varepsilon) = \sum_{j=0}^{n-1} (1+\varepsilon)^{-(n-j)(1+C\varepsilon)} + \sum_{j=n}^{\infty} (1+\varepsilon)^{-(j-n)(1+C\varepsilon)}$$
$$\geq \sum_{k=0}^{\infty} (1+\varepsilon)^{-k(1+C\varepsilon)} = K_1(\varepsilon).$$

Notice that we also have $S_n(\varepsilon) \leq 2K_1(\varepsilon)$, and since

$$\sum_{j=0}^{\infty} (1+\varepsilon)^{j-n-|j-n|(1+C\varepsilon)} = \sum_{j=0}^{n-1} (1+\varepsilon)^{-(n-j)(2+C\varepsilon)} + \sum_{j=n}^{\infty} (1+\varepsilon)^{-(j-n)C\varepsilon}$$
$$\leq \sum_{k=0}^{\infty} (1+\varepsilon)^{-k(2+C\varepsilon)} + \sum_{k=0}^{\infty} (1+\varepsilon)^{-kC\varepsilon} = K_2(\varepsilon),$$

we obtain that there are positive constants $K_1(\varepsilon)$ and $K_3(\varepsilon)$, not depending on n, such that

$$\sum_{j=0}^{\infty} \varphi((1+\varepsilon)^j)(1+\varepsilon)^{-|j-n|(1+C\varepsilon)} \le K_1(\varepsilon)\varphi(K_3(\varepsilon) \ (1+\varepsilon)^n).$$
(4.6)

On the other hand, if $N(\varepsilon)$ is a positive integer, depending only on ε , such that $K_3(\varepsilon) \le N(\varepsilon)$, then subadditivity of the function φ allows us to write

$$\varphi(K_3(\varepsilon) (1+\varepsilon)^n) \le N(\varepsilon)\varphi((1+\varepsilon)^n)$$

= $N(\varepsilon)\varphi((1+\varepsilon)^{n-1} + \varepsilon(1+\varepsilon)^{n-1})$
 $\le 2N(\varepsilon)\varphi((1+\varepsilon)^{n-1}),$

where we have used the fact that φ is increasing. The last estimate and (4.6) give (4.5), from which (4.3) follows as wished. The proof of Lemma 4.1 is complete.

PROOF OF THEOREM 1.2. We will see that Theorem 1.2 is, in fact, a corollary of Lemma 4.1. Indeed, since $\bigcup Q_n \subset \Sigma_{\varepsilon}$ and $\bigcup f^{-1}(\Omega_n) = \mathbb{D}$, we can write

$$\begin{split} \int_{f^{-1}(\Sigma_{\varepsilon})} \varphi(|f(z)|) \, dA_{\alpha}(z) &\geq \int_{f^{-1}(\cup Q_n)} \varphi(|f(z)|) \, dA_{\alpha}(z) \\ &= \sum_{n=0}^{\infty} \int_{f^{-1}(Q_n)} \varphi(|f(z)|) \, dA_{\alpha}(z) \\ &\geq C(\alpha, \varphi, \varepsilon) \sum_{n=0}^{\infty} \int_{f^{-1}(\Omega_n)} \varphi(|f(z)|) \, dA_{\alpha}(z) \\ &\geq C(\alpha, \varphi, \varepsilon) \int_{f^{-1}(\cup \Omega_n)} \varphi(|f(z)|) \, dA_{\alpha}(z) \\ &= C(\alpha, \varphi, \varepsilon) \int_{\mathbb{D}} \varphi(|f(z)|) \, dA_{\alpha}(z). \end{split}$$

This finishes the proof.

REMARK 4.2. In general, Theorem 1.2 is not true for $\alpha \in (-1, 0)$. In fact, in [10] we gave a counterexample with $\alpha < 0$ and $\varphi(x) = x$.

As an immediate consequence of Theorem 1.2 we can state the following result.

COROLLARY 4.3. Let $\varphi : [0, \infty) \to [0, \infty)$ be a concave modulus function, $\alpha \ge 0$ and $\varepsilon > 0$. Then there exists a constant $\delta > 0$, depending on α , φ and ε , such that: (a) if $f \in A^{\varphi}_{\alpha}$ is a conformal map with f(0) = 0 and $|f'(0)| \le 1$ then

$$\int_{f^{-1}(\Sigma_{\varepsilon})} \varphi(|f(z)|) \, dA_{\alpha}(z) \ge \delta |f'(0)| \|f\|_{\alpha,\varphi};$$

[14]

[15]

(b) if $f \in A^{\varphi}_{\alpha}$ is a conformal map with f(0) = 0 and |f'(0)| > 1 then

$$\int_{f^{-1}(\Sigma_{\varepsilon})} \varphi(|f(z)|) \, dA_{\alpha}(z) \geq \frac{\delta}{|f'(0)|} \|f\|_{\alpha,\varphi}.$$

PROOF. Let us consider the function g(z) = 1/(|f'(0)|)f(z), and use Theorem 1.2, bearing in mind that $\varphi(\lambda x) \ge \lambda \varphi(x)$ for every $\lambda \in (0, 1)$ and any $x \ge 0$.

References

- R. Castillo and J. Ramos Fernández, 'Angular distribution of mass by Besov functions', *Bull. Belg. Math. Soc. Simon Stevin* 14 (2007), 303–310.
- [2] P. L. Duren and A. Schuster, *Bergman Spaces* (American Mathematical Society, Providence, RI, 2004).
- [3] J. B. Garnett and D. E. Marshall, *Harmonic Measure* (Cambridge University Press, New York, 2005).
- [4] F. Gehring and B. Palka, 'Quasiconformally homogeneous domains', J. Anal. Math. 30 (1976), 172–199.
- [5] Y. He, ' B_a spaces and Orlicz spaces', *Function Spaces and Complex Analysis*, Report Series, 2, Department of Mathematics, University of Joensuu, 1999, pp. 37–62.
- [6] H. Hedenmalm, B. Korenblum and K. Zhu, *Theory of Bergman Spaces* (Springer, New York, 2000).
- [7] D. E. Marshall and W. Smith, 'The angular distribution of mass by Bergman functions', *Rev. Mat. Iberoamericana* 15 (1999), 93–116.
- [8] S. Mazur and W. Orlicz, 'On some classes of linear spaces', Studia Math. 17 (1958), 97–119.
- [9] M. Ortel and W. Smith, 'The argument of an extremal dilatation', *Proc. Amer. Math. Soc.* **104** (1988), 498–502.
- [10] F. Pérez-González and J. Ramos Fernández, 'The angular distribution of mass by weighted Bergman functions', *Divulg. Mat.* 12 (2004), 65–86.
- [11] _____, 'On dominating sets for Bergman space', *Contemp. Math.* **404** (2006), 175–186.
- [12] Ch. Pommerenke, Boundary Behavior of Conformal Maps (Springer, Berlin, 1992).
- [13] J. Ramos Fernández, 'Supremum over inverse image of functions in the Bloch space', C. R. Acad. Sci. Paris, Ser. I 344 (2007), 291–294.
- [14] M. M. Rao and Z. D. Ren, *Theory of Orlicz Spaces*, Pure and Applied Mathematics, 146 (Marcel Dekker, New York, 1991).
- [15] S. Sharma, R. Jagdish and A. Renu, 'Composition operators on Bergman–Orlicz type spaces', *Indian J. Math.* 40 (1998), 227–235.
- [16] S. Stević, 'On generalized weighted Bergman space', Complex Var. Theory Appl. 49 (2004), 109–124.
- [17] X. Wang and A. Xu, 'Orlicz–Bergman space and their composition operators', Sichuan Daxue Xuebao 40 (2003), 24–28.
- [18] K. Zhu, Operator Theory in Function Spaces, Pure and Applied Mathematics, 139 (Marcel Dekker, New York, 1990).

FERNANDO PÉREZ-GONZÁLEZ, Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna, Tenerife, Spain e-mail: fernando.perez.gonzalez@ull.es

JULIO C. RAMOS FERNÁNDEZ, Departamento de Matemáticas, Universidad de Oriente, 6101 Cumaná, Edo. Sucre, Venezuela e-mail: jramos@sucre.udo.edu.ve