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Abstract

The purpose of this paper is to prove strong type inequalities with pairs of related weights for commutators
of one-sided singular integrals (given by a Calderén-Zygmund kernel with support in (—oco, 0)) and the
one-sided discrete square function. The estimate given by C. Segovia and J. L. Torrea is improved for
these one-sided operators giving a wider class of weights for which the inequality holds.
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1. Introduction

Many operators in Real Analysis have one-sided versions for which the class of
weights is wider than the one of Muckenhoupt. It is well known that in Ergodic
Theory there are many situations that require one-sided operators. In this paper we
study one-sided singular integrals and the one-sided discrete square function. A one-
sided singular integral is a Calderén-Zygmund singular integral whose kernel K has
support in (—00, 0) or (0, 00).

In [1], Aimar, Forzani and Martin-Reyes have studied these operators. They proved
that the maximal operators which control them are the one-sided Hardy-Littlewood
maximal operators M+ and M ~, and that the good weights for these operators are the
one-sided weights introduced by Sawyer [12].
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For one-sided singular integrals it is possible to improve many weighted inequalities
in two ways, by putting on the right hand side a smaller operator or by allowing a
wider class of weights for which the inequalities hold (see, for example, [1, 4, 10]).

In this paper we study inequalities with pairs of related weights for commutators of
one-sided singular integrals and the one-sided discrete square function (studied by de
la Torre and Torrea in [15]). Our starting point is the work of Segovia and Torrea, [13].

Throughout this paper the letter C will denote a positive constant, not necessarily the
same at each occurrence and M will denote the Hardy-Littlewood maximal function,
Mf(x) =sup,. o, 1/(Ch) fxx_‘;" {fl. If 1 < p < 00, then its conjugate exponent will be
denoted by p’ and A, will be the classical Muckenhoupt’s class of weights (see [9]
for finite p and [3] for the definition of Ay ). Finally, given an interval I = (x, x + h)

(h>0),thenI*=(x+h,x+20), I " =& —h,x), " " =x+2h,x+3h),....
2. Definitions and statement of the results

DEFINITION 2.1. We shall say that a function K in L] _(R \ {0}) is a Calderon-
Zygmund kernel if the following properties are satisfied:

(a) There exists a finite constant B, such that | fe <xl<N

K(x)dx! < By, forall ¢ and
all N with0 < £ < N, and furthermore, there exists the limit lim, o+ |, i<t KO dx.

(b) There exists a finite constant B, such that |K (x)| < B,/|x|, for all x # 0.
(c) There exists a finite constant B; such that |K (x — y) — K(x)| < Bs|y||x|72, for
all x and y with |x]| > 2|y|.

Given a Calder6n-Zygmund kernel K, the singular integral associated to K is
defined by

TF(x) = f K(x = y) f() dy.
R

in the principal value sense. A one-sided singular integral T+ (respectively T~) is a
singular integral associated to a Calderén-Zygmund kernel K with support in (—00, 0)
(respectively (0, 00)); therefore, in that case,

T*f() = lim / K(x — ) f()dy.
Lind x+€
An example of such kernels is K (x) = sin (log |x])/(x 10g |x|) x(-c00.0)(X) (se€ [1]).

DEFINITION 2.2. For f locally integrable, we define the one-sided discrete square
function applied to f by

172
St = (Zmnf(x) - An-lf(xnz) .

nel
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where A, f(x) = (1/2%) [ f(y)dy.

It is not difficult to see that S* f(x) = [[U* f(x)|l,2, where U is the sequence
valued operator

@1 U f = [ He =3 f0)dy,
where "

(2.2) H(x) = {%X(—znn)(x) - 5}_—1x<-z~—1,0)(x)]"d
(see [15]).

DEFINITION 2.3. Let T* be a one-sided singular integral with kernel K and let
S* be the one-sided discrete square function. For an appropriate b, we define the
commutator of T* and S* by

T, f(x) = / (b(x) —b(y) K(x — ) f()dy =b(x)T* f(x) — T*(bf)(x)
and

Sy f(x) =

’

22

f(b(X) - bONHx —y) f(y)dy
R
where H 1s as in (2.2).

DEFINITION 2.4. The one-sided Hardy-Littlewood maximal operators M* and M~
are defined, for locally integrable functions f, by

1 [+ 1 [
M =sipy [ 11 and s =swg [ st
x x—h

h>0 h h>0 h

The good weights for these operators are the one-sided weights, A} and A

1 b c ) p-1
) s (c—a)r f “ <~/b w"”) <00 l<p=oo

(AD) M o) < Co(x) ae.

There exist positive numbers C and & such that for all numbers a < b < ¢ and all
measurable sets E C (b, ¢),

)
|E] w(E)
+
- c—afc<ﬁw)‘
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It is known (see [8]) that A} = P2 A?. The classes A7 are defined in a similar
way. (See [7, 8, 12] for more definitions and results.)

It is proved in [1] and [15] respectively that if w € A}, 1 < p < 00, then T* and
S* are bounded from L?(w) to L?(w) and that, if @ € A], then T* and S* are of
weak-type (1, 1) with respect to w.

DEFINITION 2.5. Let b € L'(R) and v € A,. We say that b € BM O, if

1
b = — [ b=b ,
|16l sm0, Sl:P o) /;I <o

where I denote any bounded interval and b, = (1/|11) f , b. (Observe thatif v = 1
then we get the classical BMO space.)

Now we are ready to establish our main results.

THEOREM 2.1. Let 1 < p < 00, @ € Ay, B € A, v = (a/B)'? € Ay and
b € BMO,. Let K be a Calderén-Zygmund kernel with support in (—00, 0) and let
T be the one-sided singular integral associated to K. Then, there exists C > 0 such
that [ |T, fIPB < C [a | f1Pe, for all bounded f with compact support.

THEOREM 2.2. Let 1 < p < 00, @ € A,, B € A}, v = («/B)/? € Ay and
b € BMO,. Then, there exists C > 0 such that [, |S; fIPB < C [i|f1Pa, for all
bounded f with compact support.

REMARK. The result of Theorem 2.1 for two-sided Calderén-Zygmund singular
integrals is due to Segovia and Torrea [13]. They proved the boundedness of Calderén-
Zygmund singular integrals from L?(a) to L?(B) for both a, 8 € A,. (Their result is
highly more general, it is applied to many other operators. For the Hilbert transform,
see Bloom [2]).) The improvement in Theorem 2.1 for one-sided singular integrals is
that it takes into consideration a wider class of weights. Taking 8 € A}, one improves
not only in the left hand side of the inequality, but also in the right hand side, by
noticing the fact that @ = v? 8 gives

/RIT,ffI”ﬂ < c/ﬂ flPa = C/n |£vI°B.

An example that our class of weights is wider is the following: Set a(x) = 1 for
x <landa(x) =x"forx > 1, where —1 <s < p—1;set B(x) =1forx <1and
B(x) =xP~'forx > 1. Then 8 € A; since it is nondecreasing, but 8 ¢ A,. On the
other hand, @ € A, and v = (a/B)'/? € A; C Ax. We suspect that Theorems 2.1
and 2.2 hold for & € A}, for this is what is needed in their proofs (see, for instance,
the last step in the proof of Theorem 2.1). However, one of the key points to prove
those theorems is Lemma 3.3, and there, what is needed is, precisely, that @ € A7.
That is why we require o € A,,. :
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3. Preliminaries

We introduce some further definitions and results that we need to prove the main
results.

DEFINITION 3.1. Let g > 0O be a locally integrable function (that is, g is a weight).
We define the maximal operator M by

1 x+h
M £(x) = sup —o— / Ifls.
h>0 8 Jx

L

It is proved in [7] that for a weight ¥ and s > 1, M; is bounded from L°(u) to
L’(u)ifand only if u € A} (g):

b 1/s c /s’
(AF () sup [ = f u — f u''g" ] <o
s a<b<c _/:g a _/;,Cg b

DEFINITION 3.2. Let f be a locally integrable function. The one-sided sharp
maximal function is defined by

1 x+h 1 x+2h +
for(x) = SUPE/. (f(y) - E/ f) dy.
h>0 x x+h

It is proved in [6] that

x+2h
/ (a— fO)*dy

+h

] 1 x+h
(3.1 Su+(x) < supinf —/ (f) —a)tdy+ —
1>0 a€R h . h
< Cll fllsmo-

Another result that will be used often is the following ([6, Theorem 4]): if € A}
and M* f € LP(w), then f((M™ f)Pw < CfR(f,,_+)”w.

DEFINITION 3.3. Let 1 < r < 0o. We say that a weight w belongs to the class
RH} if there exists C such that for any a < b

b b
/ o < CM(@xXas) B)) " f o,

The definition of RH_ is the expected one. (See [5] and [11] for more definitions
and results.)

Itis proved in [8] that w € A, if and only if there exists r > 1 suchthatw € RH*.
Something more can be said: if w € A} then 0" e A,; as a consequence, there
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exists 8 > O such that »'” € RH,,. If wetake s = 1+ p/(p'(1 +8)) =
(p+8)/(1+9), thenw € A;, for all s < g < p (see the proof of Proposition 3 in
(5D.

In order to prove the main theorems we still need four preliminary results that we
are going to establish and prove now.

LEMMA 3.1. Let 1 < p < oo andlet B € A]. Then, there exists § > O such that
forallrwithp' <r <p'(1+8), 77 € A",

PROOF. Since B € A}, there exists § > O such that 777 = g'~7" € RH,,. Letr

be such that p’ < r < p’(1 + 8). By Holder’s inequality we have 777 € RH,,,,.

Let us prove that 8~"/7 € A-. Considera < b < ¢ < d such thatd — ¢ =

¢ — b = b — a. Then, Holder’s inequality and the facts that 877/ ¢ RH, . (see[11,
Lemma 2.5])and 8 € A; give
d 1/r b yr
1 f ,B_'/p) < 1 / ﬂ—r(l—r’)/P)
b—al. b—al,
1 d s 1 b i/p
<Cl— -p'lpyrip’ /
sc(za [ o) (=)
1 c 1/p’ 1 b 1/p
<C -p'/p / < C.
- (b —a A ﬁ ) (b —aj, 'B) N
By [11, Lemma 2.6], this finishes the proof of Lemma 3.1. O

LEMMA 3.2. Let 1 < p < oo andlet B € A;’. Then there exists § > O such that
forallrwithp’ < r < p'(1+38), B €Ay, (B7P).

PROOF. As before, there exists § > 0 such that 8777 € RH,, and, as we have
noticed above, B € A}, forall g intherange s = 1 + p/(p'(1 +6)) < g < p.
Therefore, for r such that p’ < r < p’(1 + 8), we have 8 € ALP/,.

We have to prove that 8 € A7, (87/7), that is,

b c -p/r o
f B (/ ﬂ”") (c— b < C,
foralla < b < c.

So, leta < b < c. Then, since —p/r’ < 0, we have

(32) (/cﬂ”/p>—P/f - (/cﬁr,/p)“l’/r’.
a b
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On the other hand, using Holder’s inequality with exponents (r, r'), we get

3 1 c U 2l 14 ( 1 c . )P/’( 1 c . )P/'/
1_(c-b‘/,:ﬂ g P) = c—b/bﬂ ! c—b/bﬂ/p )

This implies that

c -p/r c p/r
33 ([#7)" <c-v([5)".
b b

Putting together inequalities (3.2) and (3.3) and using the fact that 8 € A}”ﬂ, Jrs WE
obtain

b ¢ -p/r b c p/r
/ B </ ﬂr’/p) (c— b)(p—r’)/r’ < f B (f ﬁ-flp) (c— b)(p—r’)/"—P
a a a b

< Clc—a)"™*"/"(c— b)e~"/"P,

Ifc— b > b— awehave
Clc— a)!*P/"(c — b)P="Y"=F < C(c — b)1HP/He=")r—F = C,

and we would have finished the proof.

In the case that ¢ — b < b — a we partition the interval [a, ¢] by points xg = a <
Xy <- <X, <b<x, <xppy=c,suchthatx;,y —x; =c—>b,i=0,1,...,n.
Therefore, for i < n, we have

Xigl Xis2 p/r
B(c— b)(p—r’)/r’ < (f ﬁr’/p)
Xi X

and, since b —x, < c— b,

rl

b c r/
/ Blc— b)(p—r’)/r’ < (/ ﬂr’/p> .

Thus,
b o n Xit1 ,
/ Ble—b)e " < / Blc—b)e=""
a i=0 i
n Xit2 plr c p/r
<> ([Ter) < (2f o)

i=0 VX a

which finishes the proof of Lemma 3.2. O
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LEMMA 33. Let 1 < p < o0, @ € Ay, B € A}, v = (a/B)'/? € Ay and
b € BMO,. Then, there exists € > 0 so that, forall rwithp' <r <p’+e¢,

[o-sirarr<c | g
1 I+

PROOF. By [13, Lemma 2], there exists ¢ > 0 such that for all r in the range
p <r<p+ea’” €A, Letus fixsuch r and take s’ > 1suchthata~"? € RH;,.
It then follows that

1 ) 175
/lb b, |r —r/p <( /l ) (_/a—”/ﬂ>
1] 1] 1]
1/s
b__ rs -r/p
<C(|1|/' ') m/
v(l) / »
cl—) — .
= (m) i J,”

The last inequality is a consequence of John-Nirenberg’s inequality (see the proof of
Proposition 6, (14, Chapter III]).

Now, we use Holder’s inequality and the facts that v € Ao, C AL and a7 €
A, C A}, to obtain

) il el fy) m e
3.5 =) — b b
-3) (III nJ,® nJ.Y)
‘] g 1 /p /p
C fp -r —-r
= (|11/1+°‘ ) )" m/
1
C— =rlp
= m/ﬂ3

Putting together inequalities (3.4) and (3.5) we obtain the desired result. O

LEMMA 3.4. Suppose that we are under the same hypotheses of Lemma 3.3. Let
xe€R h>01leNandlet] = (x,x+2'h). Fork e N, letI, = (x +2kh, x +2¢'h).
Then, there exists C > 0 independent of x, h, | and k such that

by — by} < Ck max /
—1<j <k— 2|1|

PROOF. Let k € N, k > I. We shall estimate |b, — b,,|. Clearly,

k-1
(3.6) by — byl < by = byl + ) Iby, — by,

j=l
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For the first summand on the right hand side, we observe that if b € BMO,, then there
exists C such that

1
3.7 ;)—(J_),/, |b—b,+| <C,

for any interval J. In fact, this sort of estimate, for all J, characterizes that b € BMO,,,
as well as this other one

1
v(J) Jyus+

Consequently, since I, = I'*, we get

1 1
b —b,| < C—v(l)< Ck —

For the rest of the sum, we note that 7,

(3.8)

|b—by| < C.

D I;, then the above remark and the fact that

j+1
vV E Ay give
k-1 k-1 k-1
1 v(l;) v(l;-1) |1l
|bj_bj+l|§C —U(I):C
,4?, b JZ, I ,‘;, v Gl 14
= 1 1
<C v < Ck max —fv. O
,g,: [ 1l Jy_, I-sj=k-2 |[;] J),

4. Proof of the results

PROOF OF THEOREM 2.1. The following pointwise estimate is the key to prove
Theorem 2.1. We claim that there exist §; > 0, 8, > 0 and ¢ > 1 such that for all r

in the range
rY 1
— ) <r<min{-p'(1+4§), (1+82)
q q q

the following inequality holds
@D (G el < C{( IRUATLOTO
+ (M, v ) +M+(vM+f>(x)},

for all bounded f with compact support.
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Let us prove this claim. We have

x+2h

(4.2) (T, fwsx) < C sup inf T, f(y) — cldy.

X

Letx € Rand h > Obe fixed. Set ] = (x,x+h),J = (x,x +8h), fi = x4,
L=f—fiand C; = f; K(x +2h — 2)(b; — b(2)) f2(z) dz. Observe that

T f(y) = / (b(y) = by +by = bO)K(y — 1) f(t) d
R

= (b(y) — b)) T* f(y) — f (Bt — b,)K (y — 1) f () dt
R
= () = bAT*F(5) = T — b ) = T*((b — b f)).
Thus,

x+2h x+2h
“y - f T ) ~Cldy < f 16(y) = by 1T F () dy

1 x+2h
+E/ IT*((b - bs) )| dy

x+2h
e [ IT*((b — ) f)(3) — C,l dy
=14+IH+1II.

By Lemmas 3.1-3.3, there exists §; > 0 such that for all r in the range p’ < r <
p'(1+8)), itholds that 8~7/# € A7, B € A},.(87/7) and

/Ib_bllra—r/p < C/ ﬂ—’/P'
1 I+

Letg > 1,closeenoughto 1,suchthat 89 € A*, 8 € AT, and (p/q) < p'(1+8,)/q.

r/q
Therefore, since B € A}, there exists 8, > O such that, for all 7 in the range

(p/qY < (p/q) (1 +86,),itholds that 8 € A;/q,,(ﬁ""/”). Let r be such that

(3) <r< minllp’(l +8)), (3) (1 +52)}.
q q q

Then, by Hélder’s inequality and the above remarks,

1 [x+8h 1/r | [r+eh o
4.4) I< (‘,;/ b — lera_’/"> (-};/ |T+f|'a'/”)
1 x+16h 1/r 1 x+8h o 1r
<c(if, o) G wreser)
x+8h x
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x+8h -yr x+8h
sc(f ﬂ”"’) (f IvT*‘fI”ﬂ"”’)

, 1Y
< (M, (T 1)

v

To control II, we observe that, since

’i/<p'<(’i) <r<min{1p(1+81) ( )(1+52)}
q q q q

we have p’ < rq < p’(1+6,). Then, Holder’s inequality, the fact that T+ is bounded
from L9(dx) to L9(dx), Lemma 3.3 and the fact that 879"/7 € A give

1 [rF . /9
45 < (; f IT*((b = b)) dy

1 x+8h 1/q
SC<hf b= st v)

x+8h 1/qr 1 [r+eh 1/qr

<C |b— b, |9 a™9P _/ If 127 a7 7P
h J,

x+16h /qr 1 [x+eh 1/q7
< C'( ﬁ—qr/p) (_/ va|4r’ﬂqr’/p>

x+8h h x

x+8h —-1/qr | [xt8h /qr

r Y pqr
< C( ng /p) (,ﬁf val" ﬂ" /p>
X

<c( ,,q,,,,<|fv|"”)(x>)

Next, we use condition (c¢) of the kernel to obtain

x+2h
46) II= ;ll— / /(b(z) —b))(K(y —2)— K(x +2h—2))f(2)dz|d

xh x +2h — y
h b(z) — b dzd
h/ /x+8h (Z—(x+2h))2| (2) — byl if (D1dzdy

1 r*+% = x+251h |b(z) — by]
<C- h —_— dzd
DY / If @l dzdy

+2%h (z— &+ 2h))2

2k+l

Ch}:(zk 25 2 / b() ~ bslIf ()] dz

ad 2k+l

CZ(zk 2)22k+1h/|b(z) byl lf (@) dz
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o 2k+1 1
+ C;(—)zzm,,' ~bil | F@ldz=IV+V.

To estimate IV, we introduce a modified version of Lemma 3.3. If I = (x, x + h),
we denote by 17 the interval (x + h/2, x + k). It is very easy to prove that Lemma 3.3
holds changing b, by b;:. Consequently, arguing as in the estimate of II, and using
this version of Lemma 3.3, we get

i 2k+1 1 x4+2k+h
H
< ¢ (M}, oI )(x))
Now, let I; i be such that
1 1

max V=
2sj=k-2 |1 | Hjwl Jy

Then, for all s € I;,, we have

1 1 x+2k+lh
(4.8) 2"713], If @ldz < 2T+1—E/ If @)]dz

1 X+2k+lh
< Cm/ If @) dz < CM*f (s).

This conclusion and Lemma 3.4 give us

o k+1 1
4.9 v<C_C —_—k— d
49) < ;( i), / f @)ldz

2k+l 1
<C v(s)M*f (s)ds
Z (2 —2)? |Ij ®l J16
k+1

< CM*(vM*f)(x)Z (2" 7 = = CM*(vM*f)(x).

In the last inequality we have used

1

II] (k)l L

2 x+2 W+
+ +

Collecting all these inequalities, we complete the proof of (4.1).

https://doi.org/10.1017/51446788700009344 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700009344

[13] Two weight inequalities for commutators 89

Next, we are going to prove that we can apply [6, Theorem 4], that is, we have to
prove that M* (7,5 f) € L?(B). Since B € A}, it suffices to show that ;) f € LP(B).
If b is bounded, then b € L C BMO and, by a result in [4],

[imsve<c[ire<oo
R R
In the general case, let b, = bif —-m <b<m,b, =mifb>mandb, = —mif

b < —m. Then, it is not difficult to see that b,, € BMO, and ||b,|lsmo, < Cllbllamo,,
with C independent of m. Then, for each b,,, we have

T fPB<C [ IfIFB,
) )

with C independent of m. Using now the dominated convergence theorem, we get
that {b,f} converges to bf in L'(dx), as m tends to infinity and, since T+ is of
weak type (1, 1) with respect to the Lebesgue measure, {T*(b,f )} converges to
T*(bf ) in measure (dx). Therefore, there exists a subsequence that converges almost
everywhere. We shall continue denoting this subsequence by {T* (b,.f )}. On the other
hand, {b,, T*f } converges to bT*f almost everywhere. Then, by Fatou’s Lemma,

f|T,,+f|"ﬁ=/ lim |77 17 8
R Rm—)w
<timinf [ 15 Pp<C [ 1PB <o
As a consequence, [6, Theorem 4] gives that
/ I fIPB < /(M‘L(T;ff))pﬂ < C/((7},+f)#,+)”ﬂ-
R R R

Now, using (4.1), we get

, \P/a"
[imrve<c [ (Marom)™ s

L \P/T
+C f (M, (T 1) B+ C / (M* (M) B
R R
=I+11+11I.

Since € A, (B%7/7), it follows that

I<c / UF VI8 = C / f Pa
R R
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and
I < Cf(IvT““f "7 B = Cf IT*f IPa < C/ If IPa,
R R R

sincecx € A, C A7
Finally, using that 8 € A;" and using again thata € A, C A], we get

I < C/(vM+f)”ﬂ = C/(M+f)”a < Cf If IPa. O
R R R

PROOF OF THEOREM 2.2. This proof follows the same pattern as the preceding one.
As above, the essential step is the pointwise boundedness of the one-sided sharp of
the operator. In this case we claim the following: Leté; > 0,8; > 0 and g > 1 be as
in the proof of Theorem 2.1. Assume also that g is close enough to 1 to ensure that
a € Ap,, and that §, is such that the conclusion of [13, Lemma 2] holds for ¢ = p’é;.
Then, for all r in the range

(E) < r < min {1p'(1 + 4y), (B) 1+ 52)} ,
q q q

the following inequality holds

1/qr

(410) (S} ns(x) < C{(M;,/,,(val"”)(x))
1

(M, avst 1) 4 Moy 1‘1)‘/‘1)<x)} :

for all bounded f with compact support.

Let us prove the claim. Letx € Rand k2 > 0. Leti € Zbe suchthat 2’ < h < 2!,
SetJ = (x,x+2*), fi=fxnfa=f —fiand C; = S*(b—b;)f2(x). As above,
we have

x+2h x+2i43
@.11) ;[ ISEF () = Cyldy < Z/ 16(y) — by 1 IS*f ()] dy

1 x+2|’+3
+ Z/ IS*((b = b)) dy

h
=I+1I141II.

x42i43
+ —f IS*((b = b)) — Cyldy

Clearly, I and II are estimated as in the proof of Theorem 2.1.
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Let U* be as in (2.1). Then

1 x42i3
(4.12) =5 f U+ (b = b)Y = WU (B ~ b)) (%) | dy

1 x4+243
< 7 _/ (U (b~ by)f2)(¥) — UT((b — b)) f2)(x)||» dy.
If H is as in (2.2), then

(4.13) NU*((b ~ b)) f)(y) — U (b — b)f)X)e

< f 1b() = by If DINH( — ) — H(x — D)l d?
x+2'*3
x+250

Z f b(t) = byl If OINH — 1) ~ Hx — Dlle dt
k=i43 V¥

+2k

x+24+!
N le_/ f OWHG = 1) = H = Dllade

k=i+3
=IV+V.

By Holder’s inequality with exponents (g, ¢') and (r, r'),

/9
(4.14) IV < Z (/ |b— by, % —q/paq/leq)

k=i43

i/q
% ( |H(y - t)~ H(x — t)Ilﬁzdt>
e

1/qr o 1/qr
< |b—b, " —qr/p) ( If v|7" g1 p)
> ([ - ,k

k=i+3

, 1/q
X ( (IH(y—t)—H(x—t)llszt) .
I

Then, by Lemma 3.3 and the fact that 87977 ¢ A7,

O i/qr xp2k+2 1/qr
(4.15) [ \b— by, |V <C / BlP
x+2 x4k
X+2k+l —l/ql"
< C(2k)l/q f ﬁqr’/p .
x+2*

Putting together inequalities (4.14) and (4.15), we obtain

(4.16) IV=c¢ Z @4l (M,.,,,,,(tfvl"”)(x))l/qﬂ

k=i4+3
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, 1/q'
X(f IlH(y—t)—H(x—t)IIszt) .
Iy

It is proved in [15, Theorem 1.6] that the kernel H satisfies

i/q

A\ 2
4.17) ( ||H(y—t)—H(x—t)ll‘,’zdt) =Cor-
I

Inequalities (4.16), (4.17) and the fact that 3 ;. ., ,(2%)"/92/9' /2% = C, give

i+3
/q
IV < ¢ (M}, (f V7))

Now we observe that Lemma 3.4 yields

1
4.18 by, — bs} < Clk — 1AV Rl
(4.18) by, — byl = C( ’)3I,n3/3(2|1| v=Cck l)ll(k)l

v,
o)

since I, = (x + 2124~ x 4 2i2k-i+1),
On the other hand, for all z € I; ),

1/q 1 x+2F+1
(4.19) (/1: lf ‘q) < C(MHle (m/z If |q>

< C@YH (M*(If 1)) .

1/q

Taking into account inequalities (4.18), (4.19) and using again Holder’s inequality and
(4.17), we get

g
Ve S k- (/w)
k2+3 |IJ (k)l Ii Iy

1/q'
(/ IH(y 1) — Hx — D% dr)

k\1/qni/q
<Y w-pE2 L[ mrarme) de

k
v 2 il Ji,q

2ky1/q9i/q’
< Y a-nE i o )

k=i+3

= CM*(v(M*(If 1)) (x).

Our next task will be to prove that [6, Theorem 4] can be applied in this setting.
Assuming it for the moment, we obtain

[ IS FIPB < C fm ((SFFIns)’ B,
R
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which ensures the desired result having into consideration inequality (4.10) and the
choice of r, ¢ and s.

Let us prove now that {6, Theorem 4] can be applied. If b € L*, the result in [15]
gives

/as,,*f PB < C/ 1bS*f P8 + C/ IS*(BF )P B
R R R
< cnbui.’o[; FPB+ Cfg b 1PB < cubuf;fmv B < co.

Thus, the above argument works and we obtain

/RISZ'fI”ﬁ < C/RLfI”a-

In the general case, take b,, as in the proof of Theorem 2.1, and obtain

/RIS;;fI”ﬂ <c[ira

with a constant C notdepending onm, since || b, ||ano, < Cll bl smo,. Now, an argument
similar to the one used in the proof of Theorem 2.1 shows that, a subsequence of {S; f}
converges to S f a.e., so by Fatou’s Lemma again,

/|s,,+f B < liminff ISEfPB < cf f Pe
R R R

which finishes the proof of Theorem 2.2. O
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