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Abstract

The purpose of this paper is to prove strong type inequalities with pairs of related weights for commutators
of one-sided singular integrals (given by a Calder6n-Zygmund kernel with support in (—oo, 0)) and the
one-sided discrete square function. The estimate given by C. Segovia and J. L. Torrea is improved for
these one-sided operators giving a wider class of weights for which the inequality holds.
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1. Introduction

Many operators in Real Analysis have one-sided versions for which the class of
weights is wider than the one of Muckenhoupt. It is well known that in Ergodic
Theory there are many situations that require one-sided operators. In this paper we
study one-sided singular integrals and the one-sided discrete square function. A one-
sided singular integral is a Calderon-Zygmund singular integral whose kernel K has
support in (—oo, 0) or (0, oo).

In [1], Aimar, Forzani and Martin-Reyes have studied these operators. They proved
that the maximal operators which control them are the one-sided Hardy-Littlewood
maximal operators M+ and M~, and that the good weights for these operators are the
one-sided weights introduced by Sawyer [12].
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For one-sided singular integrals it is possible to improve many weighted inequalities
in two ways, by putting on the right hand side a smaller operator or by allowing a
wider class of weights for which the inequalities hold (see, for example, [1,4,10]).

In this paper we study inequalities with pairs of related weights for commutators of
one-sided singular integrals and the one-sided discrete square function (studied by de
la Torre and Torrea in [ 15]). Our starting point is the work of Segovia and Torrea, [13].

Throughout this paper the letter C will denote a positive constant, not necessarily the
same at each occurrence and M will denote the Hardy-Littlewood maximal function,
Mf(x) = supA>0 l/(2/i) f*** \f\. If 1 < p < oo, then its conjugate exponent will be
denoted by p' and Ap will be the classical Muckenhoupt's class of weights (see [9]
for finite p and [3] for the definition of A^). Finally, given an interval / = (x, x + h)
(h > 0), then 1+ = (x + h,x + 2h), I~ = (x - h,x), I++ = (x + 2h,x + 3h),....

2. Definitions and statement of the results

DEFINITION 2.1. We shall say that a function K in L ^ K \ {0}) is a Calderon-
Zygmund kernel if the following properties are satisfied:

(a) There exists a finite constant Bx such that | fe<M<N K(x) dx\ < Bi, for all e and
allAfwithO < e < N, and furthermore, there exists the limit lime_o+ /£<. , , K(x)dx.
(b) There exists a finite constant B2 such that \K(x)\ < B2/\x\, for all x £ 0.
(c) There exists a finite constant S3 such that \K(x - y) - K{x)\ < B3\y\\x\~2, for

all x and y with |;c| > 2\y\.

Given a Calderon-Zygmund kernel K, the singular integral associated to K is
defined by

Tf(x)= I K(x-y)f(y)dy,

in the principal value sense. A one-sided singular integral 7*+ (respectively T~) is a
singular integral associated to a Calderon-Zygmund kernel K with support in (-oo, 0)
(respectively (0, oo)); therefore, in that case,

r+ /Qc) = lim / K(x-y)f(y)dy.

An example of such kernels is K(x) = sin (log |JC|)/(JC log |x|)X(-oo,0)(-O (see [1]).

DEFINITION 2.2. For / locally integrable, we define the one-sided discrete square
function applied to / by

neZ
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[3] Two weight inequalities for commutators 79

where Anf(x) = (1/2") /;+2" f(y)dy.

It is not difficult to see that S+f(x) = \\U+f(x)\\e2, where U+ is the sequence
valued operator

(2.1) U+f(x) = f H(x- y)f(y)dy,

where

(2.2) H(x) = \-LX(_2nfi)(x) - -LX(_r-K0)(x)\

(see [15]).

DEFINITION 2.3. Let T+ be a one-sided singular integral with kernel tf and let
S+ be the one-sided discrete square function. For an appropriate b, we define the
commutator of T+ and S+ by

= /
JX

K(x - y)f(y) dy = b(x)T+f(x) - T+(bf)(x)
J X

and

L(b(x)-b(y))H(x-y)f(y)dy

where H is as in (2.2).

DEFINITION 2.4. The one-sided Hardy-Littlewood maximal operators M+ and M
are defined, for locally integrable functions / , by

i px+h i j>x

M+f(x) = sup - / | / | and M~ f(x) = sup - / | / | .
h>o h Jx h>o h Jx_h

The good weights for these operators are the one-sided weights, A+ and A~

i fb ( r \ p l

(A+) sup / coy I col~p I < oo, 1 < p < oo;
a<b<c (C Qy Ja \Jb J

(A^) M~co(x) < Cco(x) a.e.

There exist positive numbers C and 8 such that for all numbers a < b < c and all
measurable sets E c (b, c),
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It is known (see [8]) that AJ, = (Jp 2 l A+. The classes A~ are defined in a similar
way. (See [7,8,12] for more definitions and results.)

It is proved in [1] and [15] respectively that if to e A+, 1 < p < oo, then T+ and
S+ are bounded from L"{co) to Lp(co) and that, if co e Af, then T+ and 5+ are of
weak-type (1,1) with respect to co.

DEFINITION 2.5. Let b e L'(R) and v e A^. We say that b e BMOV if

=sup—— / \b-b,\ < oo,

where / denote any bounded interval and b, = (1/|/|) / , b. (Observe that if v = 1
then we get the classical BMO space.)

Now we are ready to establish our main results.

THEOREM 2.1. Let 1 < p < oo, a e Ap, p e A+, v = {a/P)xlp e Ax and
b e BMOV. Let K be a Calderon-Zygmund kernel with support in (—oo, 0) and let
T+ be the one-sided singular integral associated to K. Then, there exists C > 0 such
that /R \Tj~f\pP < C /R \f\pa,for all bounded f with compact support.

THEOREM 2.2. Let I < p < oo, a e Ap, 0 € A+
p, v = (a/P)l/p € A^ and

b € BMOV. Then, there exists C > 0 such that fK\S^f\pP < C fu\f\
pa, for all

bounded f with compact support.

REMARK. The result of Theorem 2.1 for two-sided Calderon-Zygmund singular
integrals is due to Segovia and Torrea [13]. They proved the boundedness of Calderon-
Zygmund singular integrals from Lp(a) to Lp(fi) for both a, 0 6 Ap. (Their result is
highly more general, it is applied to many other operators. For the Hilbert transform,
see Bloom [2].) The improvement in Theorem 2.1 for one-sided singular integrals is
that it takes into consideration a wider class of weights. Taking p € A+, one improves
not only in the left hand side of the inequality, but also in the right hand side, by
noticing the fact that a = vpp gives

[\Tb
+f\"P<C [ \f\»a = C [ \fv\<>p.

Jfl J«. JR

An example that our class of weights is wider is the following: Set a(x) = 1 for
x < 1 and a(x) = xs for x > 1, where - 1 < s < p — 1; set P(x) = 1 for x < 1 and
P(x) = xp~l for x > 1. Then P € A+ since it is nondecreasing, but P <£ Ap. On the
other hand, a € Ap and v = (a/P)l/p € A2 C Ax. We suspect that Theorems 2.1
and 2.2 hold for a € A*, for this is what is needed in their proofs (see, for instance,
the last step in the proof of Theorem 2.1). However, one of the key points to prove
those theorems is Lemma 3.3, and there, what is needed is, precisely, that a G A~.
That is why we require a e Ap.
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3. Preliminaries

We introduce some further definitions and results that we need to prove the main
results.

DEFINITION 3.1. Let g > 0 be a locally integrable function (that is, g is a weight).
We define the maximal operator M+ by

*>°fxX 8

It is proved in [7] that for a weight u and 5 > 1, M+ is bounded from Ls(u) to
L*(u) if and only if u e A+(g):

1 Cb \ I 1 Cc \

7^/ M ) (7^"/ M 1 " V ' ) < oo.

DEFINITION 3.2. Let / be a locally integrable function. The one-sided sharp
maximal function is defined by

/#,+(*) = sup - / /(>0 - - / / </y.

It is proved in [6] that

(3.1) /# i +(j t)<supinf- / (f(y)-a)+dy + - (a-f(y))+dy

h>0 «eR h Jx h Jx+h

< C\\f\\mo.

Another result that will be used often is the following ([6, Theorem 4]): i f w e A+
and M + / € L"((o), then / R ( M + / ) " w < C /

DEFINITION 3.3. Let 1 < r < oo. We say that a weight co belongs to the class
RH+ if there exists C such that for any a < b

b pb

of < C(M(coX(a,b))(b)y-1 / co.
J a

The definition of RH~ is the expected one. (See [5] and [11] for more definitions
and results.)

It is proved in [8] that co e AJ, if and only if there exists r > 1 such that co 6 RH+.
Something more can be said: if co e A+ then col~p 6 A~,; as a consequence, there
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exists <5 > 0 such that col-p' e RH^+S. If we take s = 1 + p/(p'(l + 8)) =
(p + 8)/(l + 8), then co e A+, for all s < q < p (see the proof of Proposition 3 in

[5]).
In order to prove the main theorems we still need four preliminary results that we

are going to establish and prove now.

LEMMA 3.1. Let I < p < oo and let ft e A+. Then, there exists 8 > 0 such that
for all r with p' < r < p'(\ + 8), p~r/p e A;.

PROOF. Since 0 e A+ there exists 8 > 0 such that $-plp = pl~p' e RH^+S. Let r
p

be such that p' < r < p'{\ + 8). By Holder's inequality we have P~p'/P e RHr/p,.
Let us prove that f}~r/p e Ar". Consider a < b < c < d such that d — c =

c-b = b-a. Then, Holder's inequality and the facts that p~p'lp e RH~/p, (see [11,
Lemma 2.5]) and fi e A+ give

i/p

/ i rb \1/p

By [11, Lemma 2.6], this finishes the proof of Lemma 3.1. •

LEMMA 3.2. Let 1 < p < oo and let ft 6 A+. Then there exists 8 > 0 such that
for all r with p' < r < p'{\ + 8), 0 e A + ^

PROOF. AS before, there exists 8 > 0 such that p~p'lp e RH[+S and, as we have
noticed above, f} e A1\ for all q in the range s = 1 + p/(p'(l + 8)) < q < p.
Therefore, for r such that p' < r < p'(l + 8), we have ft e A*+p/r.

We have to prove that 0 e Ap/,(P
r'/p), that is,

Lbf(f>"')~ "1 <C,

for all a < b < c.
So, let a < b < c. Then, since —p /r' < 0, we have

(32, (/>)""(/>)
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On the other hand, using Holder's inequality with exponents (r, /•'), we get

p/r

This implies that

p/rac \

pr'lp\
j

Putting together inequalities (3.2) and (3.3) and using the fact that P e A~[+p/r, we
obtain

/

b / rc K-p/r1 pb / rc \p/r

P[ P"P) (c-QW < I pl p-r/p) (c-b^-^-r

< C(c - a)1+p/r(c - vf-^""-'.

If c — b > b — a we have

C(C - a)l+p/r(c - b){p-r')/r'-p < C(c - by+p/r+(p-r')/rt-p = C,and we would have finished the proof.
In the case that c — b < b — a we partition the interval [a, c] by points x0 = a <

xi < • • • < xn < b < xn + ] < xn+2 = c, such that xi+\ — x,, = c — b, i = 0, 1, . . . , n.
Therefore, for i < n, we have

/••ti+l / /••tl+2 \ Pi1"

and, since b — xn < c — b,

rb / rc \P/r

I P{c - h)*-'"' < (I P"") .

Thus,

rb

I Pic- b)^-^' <J2['+' Pic- 6)0 -r')/r>

Pi'

which finishes the proof of Lemma 3.2. •
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LEMMA 3.3. Let 1 < p < oo, a e Ap, fi e A+, v = (a/P)i/p e Aoo and
b € BMOV. Then, there exists e > 0 so that, for all r with p' < r < p' + e,

I \b-b,\ra-r/p < c f P~r/P-
Ji Ji*

PROOF. By [13, Lemma 2], there exists £ > 0 such that for all r in the range
p' < r <p' + e,a-r/p eAr. Let us fix such r and take s' > 1 such that a~r/p e RHS,.
It then follows that

(3-4) T^

The last inequality is a consequence of John-Nirenberg's inequality (see the proof of
Proposition 6, [14, Chapter III]).

Now, we use Holder's inequality and the facts that v e A^ C AJ, and <x~'lp e
Ar c A*, to obtain

Putting together inequalities (3.4) and (3.5) we obtain the desired result. •

LEMMA 3.4. Suppose that we are under the same hypotheses of Lemma 3.3. Let
x e R, h > 0,1 e N and let I = (x,x+2'h). Fork e M,letlk = (x + 2kh,x + 2k+lh).
Then, there exists C > 0 independent ofx, h, I and k such that

\b,
1 f

— b,.\ < Ck max — / v.

PROOF. Let it e N, it > /. We shall estimate \b, - b,k\. Clearly,

t-i

(3-6) \b, -blt\< \b, -h\ +

https://doi.org/10.1017/S1446788700009344 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009344


[9] Two weight inequalities for commutators 85

For the first summand on the right hand side, we observe that if b 6 BMOV, then there
exists C such that

(3-7) - i - [\b-bj+\<C,

for any interval J. In fact, this sort of estimate, for all J, characterizes that b e BMOV,
as well as this other one

(3.8) -j- I \b-bJ+\<C.
(J) J

Consequently, since // = / + , we get

\b, -b,.\< C—v(I) < Ck max — / v.
lll~ | / | K ' - ll<j<k2\I\J

For the rest of the sum, we note that I~+l D Ij, then the above remark and the fact that
v e Aoo give

4--v 1 f 1 r
< C22 / v < Ck max — / v. D

4. Proof of the results

PROOF OF THEOREM 2.1. The following pointwise estimate is the key to prove
Theorem 2.1. We claim that there exist 81 > 0, <52 > 0 and q > 1 such that for all r
in the range

the following inequality holds

for all bounded / with compact support.
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Let us prove this claim. We have

(4.2) (T+/)#i+(jt) < C sup inf \ [ \Tb
+f(y) - c\ dy.

h>o c e R n Jx

Let x 6 R and h > 0 be fixed. Set / = (x, x + h) , J = (x, x + Sh), / , = fxj,
fi = f-fi and Cj = /„ K(x + 2h- z)(bj - b(z))f2(z) dz. Observe that

Tb
+f(y) = f{b(y) -bj+bj- b(t))K(y - t)f(t) dt

JR

= (Hy) - bj)T+f(y) - I\b(t) - bj)K{y - 0/(0 dt
JR

= (b(y) - bj)T+f(y) - T+((b - bj)fx)(y) - T+«b - bj)f2)(y).

Thus,

(4.3) i jT + \Tb
+f(y)-Cj\dy<±f*+ \b(y) - bj\ \T+f(y)\dy

*+2h

i r*

hJ
= i + i i + i n .

By Lemmas 3.1-3.3, there exists <5, > 0 such that for all r in the range p' < r <
p'(l + 8t), it holds that p~r/" e A;, 0 € A+

plr,{jpi>") and

/'\b-b,\ra-r/p <C f P~r/P-
Ji Ji*

Letq > 1, close enough to 1, such that P" € A+,/3 € A+
p!q and (p/q)' < p'(\+8i)/q.

Therefore, since P e Ap~/q, there exists 82 > 0 such that, for all r in the range
(p/q)' < (p/q)'(\ + 82), it holds that P € Al/qr,(P

qr'/p). Let r be such that

— I < r < min { — p ' ( l + <$i)t I — I (1 + 82) \ .
q) l̂  \q) J

Then, by Holder's inequality and the above remarks,

(4.4) l - \ ~ J \b-bj\ra-r/p\ l - t \T+f\r'ar'/p

t-x+Sh \ 'A'
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To control II, we observe that, since

V-<p' < (?•) < r < min I V d + «!).(-) (l + «2)}.

we have p' < rq < p'{\ + 8\). Then, Holder's inequality, the fact that T+ is bounded
from Lq{dx) to Lq{dx), Lemma 3.3 and the fact that p-qr/p e A; give

(4.5) n< - / ir+Kfe-woooi'dy)
1/9

l/qr'

i/qr'

i/qr'

Next, we use condition (c) of the kernel to obtain

r*+2h

(4.6) III _ \_ rx

~hjx

(Hz) - bj)(K(y - z) - K(x + 2h- z))f2(z) dz dy

JT+2/l />0O x + 2h - y

r̂1 r ,f
(z-(x

x+2h

+2'h (z- (x
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7k+l 1
| 6 '

To estimate IV, we introduce a modified version of Lemma 3.3. If / = (x, x + h),
we denote by I2 the interval (x 4- ft/2, x + h). It is very easy to prove that Lemma 3.3
holds changing b/ by bp. Consequently, arguing as in the estimate of II, and using
this version of Lemma 3.3, we get

2 1 f
(4.7) iv<c£^-^—^ \Hz)-blk\\f(z)\dz

Now, let Ij (t) be such that

2<i

Then, for all s e Ij(k), we have

1 f l f
max —— / v = ——- / v.
<isk-2\Ij\Jw \IHk)\Jlm

This conclusion and Lemma 3.4 give us

00 it2*+ 1

YJ{2k_2)1 = CM+(vM+f)(x).

In the last inequality we have used

i r 2 r+2im+'
/ vM+f < —-— \ vM+f.

Collecting all these inequalities, we complete the proof of (4.1).
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Next, we are going to prove that we can apply [6, Theorem 4], that is, we have to
prove that M+(Tb

+f) e LP(P). Since p e A+, it suffices to show that Tb
+f e LP(P).

If b is bounded, then b e L°° c BMO and, by a result in [4],

f \Tb
+f\pP<C f \f\"p<oo.

JO. J®.

In the general case, let bm = b if — m < b < m, bm = m if b > m and bm = —m if
b < —m. Then, it is not difficult to see that bm e BMOV and \\bm\\BMOV <
with C independent of m. Then, for each bm, we have

[ \Tb
+J\"l3<C f \f\op,

with C independent of m. Using now the dominated convergence theorem, we get
that [bmf] converges to bf in Ll(dx), as m tends to infinity and, since T+ is of
weak type (1,1) with respect to the Lebesgue measure, {T+(£„,/)} converges to
T+(bf) in measure (dx). Therefore, there exists a subsequence that converges almost
everywhere. We shall continue denoting this subsequence by {T+(bmf)}. On the other
hand, [bmT+f} converges to bT+f almost everywhere. Then, by Fatou's Lemma,

[\Tb
+f\pP= f \xm\Tb

+J\"p

< liminf / \Tb
+f \"P<C f |/ \'

As a consequence, [6, Theorem 4] gives that

f \Tb
+f\pf$ < f(M+(Tb

+f)YP < C / W /
J» JR JR

Now, using (4.1), we get

oo.

+

= I + II + III.

Since p e A+/qr,{Pq/lp), it follows that

I < C

CI(Mplp{\vT+f\r'))""P + C jjiM+(vM+f))"P
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90 M. Lorente and M. S. Riveros [14]

and

II < cJ(\vT+f\r'y/r'p = C I \T+f\»a < cf \f\pa,

since a e Ap c A+.
Finally, using that P e A+ and using again that a e Ap c A+, we get

I E < C f(vM+f)pp = C f (M+f)pa < c f \f\pa. D
Jn J«. J®.

PROOF OF THEOREM 2.2. This proof follows the same pattern as the preceding one.
As above, the essential step is the pointwise boundedness of the one-sided sharp of
the operator. In this case we claim the following: Let ̂  > 0, <52 > 0 and q > 1 be as
in the proof of Theorem 2.1. Assume also that q is close enough to 1 to ensure that
a e Ap!q and that h\ is such that the conclusion of [13, Lemma 2] holds for e = p'S\.
Then, for all r in the range

the following inequality holds

(4.10) { ( )

( / r ' ) ( ^ ) ) ' / r +M+(v(M+\f\")l">Kx)

for all bounded / with compact support.
Let us prove the claim. Let x € R and h > 0. Let i € I be such that T < h < 21+l.

Set 7 = {x,x + 2i+i)Jx =fxj,fi =f " / . and Cj = S+(b-bj)f2{x). As above,
we have

(4.11) -J \Stf(y)-Cj\dy<-J \b(y) - bj\ \S+f(y)\dy

i r+2M

+ - / \S+{{b-bj)f,)(y)\dy

i
T
h Jx

+2'*y

\S+({b-bj)f2){y)-Cj\dy

= I + II + III.

Clearly, I and II are estimated as in the proof of Theorem 2.1.
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Let U+ be as in (2.1). Then

(4.12) m = - y \\\U+({b-bj)f2){y)\\p-\\U+({b-bJ)f2){x)\\l2\dy

- * y
If / / is as in (2.2), then

(4.13) || U+((b - bj)f2){y) - U+((b - bj)

\b{t) - bj\ \f(t)\\\H(y - t) - H(x

\b{t)-bh\\f(t)\\\H{y-t)-H{x-t)\\edt

\bh - bj\ / \f(t)\\\H(y - 0 -

= IV + V.

By Holder's inequality with exponents {q, q') and (r, r'),

(4.14) I V - E ( / \b-bh\
qoTqlpaqlp\f\q\

x (J\\H(y-t)-H(x-t)\\^dt\ "

^ E ( f \b - bltra-"rA ( f \fv\
t=,+3 \J'k ' \3h

Mqr'

Then, by Lemma 3.3 and the fact that p-qr/p e A;,

/ r + 2 - \ ' ^ r /,*+*•'

(4.15) / \b - b.f'ct-"^ ) <C[ p-qr/

\A+2* J \Jx+2k*'a x+2ki

+2*

Putting together inequalities (4.14) and (4.15), we obtain

, l/qr'
(4.16) IV < C J ] (2k)x"> (M+//p(1/ v

k=i+3

https://doi.org/10.1017/S1446788700009344 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009344


92 M. Lorente and M. S. Riveros [16]

* (j \\H(y - t) - H(x - t)\\*2dt\

It is proved in [15, Theorem 1.6] that the kernel H satisfies

(4.17) (j \\H(y - t) - H(x - t)\\'dt\ " < C^- .

Inequalities (4.16), (4.17) and the fact that ££(+3(2*)l/*2'/*72* = c, give

IV<c(M+ (ifv^Xx))1^ .

Now we observe that Lemma 3.4 yields

(4.18) \bh -bj\ < C(k-i) max — f v = C(k - i) j v,

since Ik = (x + 2'2*-, x + 2'2*-'+1).
On the other hand, for all z 6 /• m,

OP

Taking into account inequalities (4.18), (4.19) and using again Holder's inequality and
(4.17), we get

v<cY(k- /)—!— f v( f \fA
k=t+3 VjltfJim \Ju J

Our next task will be to prove that [6, Theorem 4] can be applied in this setting.
Assuming it for the moment, we obtain
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which ensures the desired result having into consideration inequality (4.10) and the
choice of r, t and s.

Let us prove now that [6, Theorem 4] can be applied. If b e L°°, the result in [15]
gives

I \Stf \"P<C [ \bS+f \"P + C [ |S+(fc/)|"£
Jx Jx Jn.

< C||*||So f \f\"P + C f \bf VP < C||Z>|ISo f \f \"P < oo.
Jx J* Jx

Thus, the above argument works and we obtain

I \Stf\"P<cf \f\"a.
Jx Jx

In the general case, take bm as in the proof of Theorem 2.1, and obtain

f\Slf\"p<cf\f\"a

with a constant C not depending on m, since ||fem HBMO,, < C\\b\\BMo,- Now, an argument
similar to the one used in the proof of Theorem 2.1 shows that, a subsequence of {S^mf}
converges to 5^"/ a.e., so by Fatou's Lemma again,

I |5+/ \'P < liminf I \S*J \"P<C [ \f \'a,
J% Jx Jx

which finishes the proof of Theorem 2.2. •

Acknowledgements.

We want to thank J. L. Torrea for his helpful comments and indications.

References

[1] H. Aimar, L. Forzani and F. J. Martin-Reyes, 'On weighted inequalities for one-sided singular
integrals', Proc. Amer. Math. Soc. 125 (1997), 2057-2064.

[2] S. Bloom, 'A commutator theorem and weighted BMO', Trans. Amer. Math. Soc. 292 (1985),
103-122.

[3] R. R. Coifman and C. Fefferman, 'Weighted norm inequalities for maximal functions and singular
integrals', Studia Math. 51 (1974), 241-250.

[4] M. Lorente and M. S. Riveros, 'Weighted inequalities for commutators of one-sided singular
integrals', Comment. Math. Univ. Carolin. 43(2002), 83-101.

https://doi.org/10.1017/S1446788700009344 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009344


94 M. Lorente and M. S. Riveras [18]

[5]

[6]

R J. Martin-Reyes, 'New proofs of weighted inequalities for the one-sided Hardy-Littlewood
maximal functions', Proc. Amer. Math. Soc. 117 (1993), 691-698.
F. J. Martin-Reyes and A. de la Torre, 'One sided BMO spaces', J. London Math. Soc. 49 (1994),
529-542.

[7] F. J. Martin-Reyes, P. Ortega and A. de la Torre, 'Weighted inequalities for one sided maximal
functions', Trans. Amer. Math. Soc. 319 (1990), 517-534.

[8] F. J. Martin-Reyes, L. Pick and A. de la Torre, 'A+ condition', Canad. J. Math. 45 (1993),
1231-1244.

[9] B. Muckenhoupt, 'Weighted norm inequalities for the Hardy maximal function', Trans. Amer.
Math. Soc. 165 (1972), 207-226.

[10] M. S. Riveros and A. de la Torre, 'Norm inequalities relating one-sided singular integrals and the
one-sided maximal function', J. Austral. Math. Soc. (Series A) 69 (2000), 403-414.

[11] , 'On the best ranges for A+ and RH*', Czechoslovak Math. J. 51 (2001), 285-301.
[12] E. T. Sawyer, 'Weighted inequalities for the one-sided Hardy-Littlewood maximal functions',

Trans. Amer. Math. Soc. 297 (1986), 53-61.
[13] C. Segovia and J. L. Torrea, 'Vector-valued commutators and applications', Indiana Univ. Math.

7.38(1989), 959-971.
[14] J. Stromberg and A. Torchinsky, Weighted Hardy spaces, Lecture Notes in Math. 1381 (Springer,

Berlin, 1989).
[15] A. de la Torre and J. L. Torrea, 'One-sided discrete square function', Studia Math. 156 (2003),

243-260.

Analisis Matematico
Facultad de Ciencias
Universidad de Malaga
29071 Malaga
Spain
e-mail: lorente@anamat.cie.uma.es

FaMAF
Universidad Nacional de Cordoba

CIEM (CONICET)
5000 Cordoba

Argentina
e-mail: sriveros@mate.uncor.edu

https://doi.org/10.1017/S1446788700009344 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009344

