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APPROXIMATE DUAL AND
APPROXIMATE VECTOR VARIATIONAL INEQUALITY

FOR MULTIOBJECTIVE OPTIMIZATION
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Abstract

An approximate dual is proposed for a multiobjective optimization problem. The approximate
dual has a finite feasible set, and is constructed without using a perturbation. An approximate
weak duality theorem and an approximate strong duality theorem are obtained, and also an
approximate variational inequality condition for efficient multiobjective solutions.
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I. Introduction

Consider the finite dimensional linear space W, equipped with a partial or-
dering >s, defined by a closed pointed convex cone S, with interior intS ^ 0.

DEFINITION 1 (see [3]). For a given e eS,a point c e A c R" is said to be
an e-[weak] minimum of A if there exists no x e A satisfying 0^c-x-e GS
[€ intS1]. A point c e A is said to be an e-[weak] maximum if there exists no
x € A such that 0 ^ x-c-d € S [e int S]. When e = 0, an e-[weak] minimum
(e-[weak] maximum) is said to be a [weak] minimum ([weak] maximum). A
set W is said to e-upper dominate a set V if

(Vu € V)(3w eW)

A set W is said to e-strongly upper dominate a set V if

(Vv e V){3w eW)w + e-ve intS.
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The order-interval [-e,e] := {x e W:e >s x >s —e}. Denote its interior
by {-e,e). Denote by Wxm the space of all p x m real matrices A, and by
||A|| the norm of A in this space. Let D c Rw be a closed convex cone. Let
M:={Ae RPxm: \\A\\ = 1, A(D) c S). Then M is compact.

A function h: C —• W is S-convex if C c R" is convex, and

(Vx.y G C, Va € (0,1)) h(ax + (1 - a)>>) < 5 ah(x) + (1 - a)A(y)-

Consider a nonlinear multiobjective optimization problem:

(P) WMin f(x) subject to x e X := {x e E, -g(x) e £>},

where /:R" -> Rp, ^:R" ->• Rm are vector functions, E c R", and weak
minimum (WMin; and WMax later) are as in Definition 1.

DEFINITION 2. A vector valued Lagrangian for (P) is L(x,A) := f(x) +
Ag(x).

Following Sawaragi, Nakayama and Tanino [1], it will be assumed that
(i) E is nonempty compact,
(ii) / is continuous, and
(iii) g is continuous.
Under these assumptions, it is readily shown that X and f(X) are compact.

DEFINITION 3. The dual map O: M —• W is denned by

O(A):=WMinL(£,A),

for each A e M. A dual problem [1] to (P) is

WMax U <D(A).
A€A/

LEMMA 1. Under the above assumptions, for each A € M, the sets L(E,A)
and O(A) are compact.

PROOF. Since E is compact, and / and g are continuous, L(E, A) is com-
pact, for each A e M. Hence O(A) is nonempty and bounded. Consider a
sequence {y^} c O(A), {y^} ~* yo- If yo & O(A) then there exists v e L(E,A)
such that yo — v e intS. Since {y^} —> yo, there exists &o € N such that
yic — v e intS when k > ko, contradicting the weak minimum. So <J>(A) is
closed, and therefore compact.

LEMMA 2. The map O: Af —• Rp is upper semicontinuous, and O(Af) is
compact.

PROOF. Let {A*.} —> Ao in M, {vk} —» vo, {Vk)vk e L{E,Ak). For each
k, there exists xk e E such that vk — L{xk,Ak)- Since E is compact, there
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is a subsequence {xkj} c {xk} such that {xkj} -^ xo € E. Since / and
g are continuous, {vkj} —> L(xo,Ao) = i>o e L(£,Ao). Thus the mapping
L(E, •) is upper semicontinuous on M. To show also lower semicontinuity,
let {Afc} —• Ao in M, and let v0 € L(E,AQ); thus v0 = L{xo,Ao) for some
x0 G £; then {vfc} := {L(x0, Ak)} ->• v0, and (Vfc) v t € L(E,Ak).

Let {A*.} -> Ao, p* € O(A^) for each fc, {<pk} -> ^0- If ?>o £ ^(Ao) then
^o-^o G int5 for some VQ € L(is, Ao). Since {q>k} —* q>o, there exists a &o > 0
such that for each k > ko <pk - Vo G int5. Since L(E,-) is continuous at Ao,
for each k there exists vk e L{Ek) such that {W/t} —»• Vo, thus <pk-vk € intS,
and thus ^^ ^ WMinL(E,Ak). The contradiction shows that <I> is upper
semicontinuous. Since M is compact, O(A/) is compact [6].

REMARK. The conclusions of Lemma 1 and Lemma 2 still hold if O(A) is
changed to e - WMinL(£', A).

2. Approximate dual

We now introduce an approximate dual for the multiobjective problem
(P). No perturbation map is required.

LEMMA 3. Let A cRp be compact, and e e intS. Then there exists a finite
subset K c A such that K e-strongly upper dominates A.

PROOF. The family of open order intervals {{a-e,a + e):aeA} covers .4,
so there exists a finite subfamily {(a,•- e, a,• + e): i — 1,2,..., A:} which covers
A. Let K = {ai,a2,...,ak}. ifaGA, then a e (a, -e ,a , + e) for some /, and
a,\• + e - a € intS; thus K e-strongly upper dominates A.

REMARK. Similar results hold with upper replaced by lower.
Since / is continuous and X is compact, f(X) is compact. By Lemma 3,

there exists a finite subset U c f{X), such that U e-strongly lower dominates
f{X), and thus (Vv e f(X)) (3M e U) u - e - v € - in tS . So a primal
approximate problem may be defined as

(P#) WMin U.

For each A e M, define O*(A) to be the set of e-weak minima of L(E, A).
Then O*(A) ^ 0 . Set Q := \JAeM O*(A). By Lemma 2, the set Q is compact.
By Lemma 3, there exists a finite subset W c Q such that (V# e Q) (3u; e W)
w - e - q e - 5 . So an approximate dual problem may be defined as

(D#) WMax W.

Two obvious corollaries follow.
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COROLLARY 1. If UQ is a weak minimum of {¥*), then UQ is an e-weak
minimum of(P).

PROOF. If not, then there exists v e f{X) such that UQ - v - e G intS.
But, given v G f{X), there exists u' e U with u' -v-e e-intS. Combining
these, Mo - u' e int 5", contradicting the weak minimum.

COROLLARY 2. Ifw0 is a weak maximum of (D*) then w0 is an e-weak
maximum o/(DTs).

PROOF. If not, then there exists v e <b*{M) such that v - (wo + e) = int S.
Given this v, there exists w' eW such that w' + e - v e int 5". Combining
these, we obtain w' -wo€ int S, contradicting the weak maximum.

THEOREM 1 (APPROXIMATE WEAK DUALITY). For each u € U and each
weW,w-u-e£ 5\{0}.

PROOF. If w e W, then w € O*(A) for some A e M. Then

(VxeX)w-e- [f(x) + Ag(x)] GH:= Rp\int5.

THEOREM 2 (APPROXIMATE STRONG DUALITY). Let x* e X and A* € M

satisfying w* := /(JC*) G O#(A*) C\U r\W. Then x* is an e-weak minimum
off(X), and w* is an e-weak maximum ofQ>(M).

PROOF. If AT* is not an e-weak minimum of f(X), then there exists JC e X
such that / (*•) - e - f(x) e intS. Since /(JC*) e W and A*#(JC*) € - S ,
it follows that /(JC*) - e - [/(JC) + A*#(JC)] G int5, contradicting /(JC*) e
O*(A*).

If «;* = /(x*) is not an e-weak maximum of O(Af), there is w e UA€M
 (^(^)

such that to - /(JC*) - e e int5. Now u; = <J>(A) for some A e M . Since
Ag(x") G - 5 , w-[/(jc*)+A^(jc*)+e] G int S, and hence w is not an e-weak
maximum of L(E, A).

3. Approximate vector variational inequality

Let C G R" be a nonempty convex set, S c Rp a closed convex cone with
intS ^ 0, and f:C -> Rp a vector valued function. Denote by L(R",RP)
the space of all linear mappings from R" into R". Let G: C —>• L(R", Rp) be a
mapping. A generalized vector variational inequality is the problem of finding
JC0 G C and /I G G(JC0) such that

(VJC G C) ^(JC - jco) g - i n tS .
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THEOREM 3. Let C c R" be compact convex; let S c Rp be a closed convex
pointed cone with intS ^ 0; let f: C —^ Rp be S-convex, (Frechet) continuously
differentiable at XQ E C, and differentiable on C; let xo be a weak minimum
off(x) subject to x E C. Then, for each e E intS, there exists a finite subset
W <zC such that (Vw e W) f'(xo)(w -xo) + e<£ - in tS .

PROOF. Since C is a compact convex, and /'(*o) is a continuous linear
mapping, K := f'(xo)(C - Xo) is compact convex. By Lemma 3, for each
e E intS, there exists a finite subset W c C such that, for each XEC, there
is wx E W such t h a t [f'(xo)(wx - *o) + e]- f'{xo)(x - xo) E S. Deno te
by W the finite subset {wx e W':x e C}. From [2, Theorem 4], since / is
5-convex, (VJC e C) f'(xo)(x - x0) g -intS. Let Q := Rp\(- int5). Then
f'(xo){wx-x)+e E S+Q c Q. Hence (Vw E W) f'(xo)(w-xo)+e <£ - in tS .

Since f'{x)(C - x) is compact convex, for each x E C, Lemma 3 shows
that, for each x E C and each e E intS, there exists a finite subset M(x) c
f'(x)(C - x) such that (Vw E f'(x){C - x)) {3m' E M(x)) m-[m'-e]E S.
For each x E C and each m' E M{x), let u = u(x, m') be an element of C
such that f'(x)(u - x) E M(x); denote by U{x) the finite set {u(x, m'): m' E
M{x)}.

Consider now the generalized inequality system, for x E C:

(GI) (Vw E U{x))f'(x)(u -x)-e<£ - in tS .

THEOREM 4. Let / : C - » R P be S-convex and continuously differentiable on
C, where C c R " is a compact convex set; let e E intS. If XQ is a solution
(GI), then xo is a weak minimum of f{x) subject to XEC.

PROOF. Since / is S-convex and differentiable, (Vx e C) f(x) - /(JC0) -
f'(xo)(x - Xo) E S. Since f'(x)(C - x) is compact, Lemma 3 shows that, for
each x EC, there exists u E U{XQ) such that

f'(xo)(x - x0) - [f'(xo)(u - xo) -e]ES.

Since JC0 is a solution of (GI), f'(xo)(u - x0) E Q, where Q := R^\(-int5).
Adding these inclusions, f(x) - f(xo) ES + S + QcQ. Thus x0 is a weak
minimum of f{x) subject to x E C.
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