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PREFACE

Numerical models of glaciers and ice sheets include
parameters such as viscosity (often expressed using other
parameters), density, thermal conductivity, heat capacity,
geothermal heat flux and basal traction coefficients. (Even
basal topography can be considered a model ‘parameter’.)
Many of these parameters are difficult to measure directly.
We use the phrase ‘data assimilation’ to refer to a method
where more easily measured data, such as surface velocities,
are used to estimate the values of such parameters. The idea
behind data assimilation is to find the values of the
parameter of interest (e.g. a frictional coefficient along the
bed) that result in the best match between values calculated
by the model (surface velocities, perhaps) and measured
data. Thus, finding appropriate values for model parameters
can be accomplished by solving an optimization problem,
namely that of minimizing a measure of the difference
between calculated and measured values.

In this paper ‘adjoint methods’ are described in the
context of optimization problems. Application to an ideal-
ized data-assimilation problem from glaciology is described
in the final section. Although applications using real
glaciological data can be found in various published
research papers (e.g. Brinkerhoff and others, 2011) no
attempt is made to review them here.

INTRODUCTION

Suppose we have a problem involving a collection of
parameters p whose solution is u ¼ FðpÞ. We want to find
the values of the parameters p that minimize (or maximize) a
given (scalar) function gðuÞ. Since u is a function of the
parameters p, we can think of g as a function of p. (Formally
we could introduce a new function, egðpÞ ¼ gðFðpÞÞ, but we
believe the presentation is clearer, albeit less rigorous,
without it.) Most efficient algorithms used to optimize g
require knowledge of @g=@pk for each of the parameters pk
(components of p). Adjoint methods can be used to find these

derivatives. We write this collection of partial derivatives as a

column matrix @g=@p ¼ @g=@p1 @g=@p2 � � � @g=@pm½ �T:
The Jacobian matrix of the function F that maps the

parameters p to the solution u is defined as

@u

@p
¼

@u1
@p1

@u1
@p2

� � � @u1
@pm

@u2
@p1

@u2
@p2

� � � @u2
@pm

..

. . .
. ..

.

@un
@p1

@un
@p2

� � � @un
@pm

2
6666666664

3
7777777775

:

This Jacobian matrix can be used to approximate changes in
the solution u resulting from small changes in the parameters
p. For an individual component of the solution u,

�ui �
@ui
@p1

�p1 þ
@ui
@p2

�p2 þ � � � þ @ui
@pm

�pm:

The approximate changes for all components of u can be
written compactly (using matrix multiplication) as

�u � @u

@p
�p:

To find the desired derivatives, @g=@p, consider

g uð Þ¼ g u1, u2, . . . , unð Þ
¼ g u1 p1, . . . ,pmð Þ, u2 p1, . . . , pmð Þ, . . . , un p1, . . . , pmð Þð Þ:

Using the chain rule,

@g

@pk
¼ @g

@u1

@u1
@pk

þ @g

@u2

@u2
@pk

þ � � � þ @g

@un

@un
@pk

:

Note that the derivatives of the components of u with
respect to pk are the elements of the kth column of the
Jacobian matrix, @u=@p. We can write the desired deriva-
tives compactly using the transpose (also called the adjoint*)
of the Jacobian matrix

@g

@p
¼ @u

@p

T @g

@u
:

Use of the adjoint of a Jacobian matrix seems to be where
‘adjoint methods’ get their name.

The method can be illustrated by a simple example where
the function F mapping the parameters p to the solution u is
given explicitly.
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*The adjoint of a matrix Z whose elements are complex numbers is the

transpose of the matrix whose elements are the complex conjugates of the

elements of Z . For real-valued matrices, such as the Jacobian matrices in this

paper, the transpose and the adjoint are the same.
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Example 1:

Suppose u ¼ p2
1 þ p2
p1p2

� �
and gðuÞ ¼ u1 þ u2

2. We want to

find
@g

@p
¼

@g
@p1
@g
@p2

" #
.

To calculate @g=@p using the adjoint method we begin by
finding the Jacobian matrix

@u

@p
¼ 2p1 1

p2 p1

� �
and

@g

@u
¼ 1

2u2

� �
¼ 1

2p1p2

� �
:

Then

@g

@p
¼ @u

@p

T @g

@u
¼ 2p1 p2

1 p1

� �
1

2p1p2

� �
¼ 2p1 þ 2p1p

2
2

1þ 2p2
1p2

� �
:

To check this solution we find @g=@p directly using gðuÞ ¼
u1þ u2

2 ¼ ðp2
1þ p2Þþ ðp1p2Þ2, from which we find @g=@p1 ¼

2p1 þ 2p1p
2
2 and @g=@p2 ¼ 1þ 2p2

1p2.

A TYPICAL SITUATION

Often the problem to be solved (whose solution is u ¼ FðpÞ)
is expressed as a system of n equations, fðu,pÞ ¼ 0. For this
problem we still have a function gðuÞ, for which we want to
find optimal values of the parameters p and thus need

@g=@p ¼ @g=@p1 @g=@p2 � � � @g=@pm½ �T. In the preceding
section the chain rule was used to show that @g=@p ¼
@u=@pT@g=@u. To simplify the appearance of some of the
equations that follow, we begin by taking the transpose of
both sides of this equation and use the matrix identity

ðABÞT ¼ BTAT to obtain

@g

@p

T

¼ @g

@u

T @u

@p
:

As before, the elements of @g=@u are obtained by
differentiating gðuÞ, but now the elements of @u=@p must
be determined from fðu,pÞ ¼ 0. If we take the total
derivative of both sides of the equation fi ðu,pÞ ¼ 0 with
respect to pk we obtain

dfi
dpk

¼ @fi
@u1

@ui
@pk

þ @fi
@u2

@u2
@pk

þ � � � þ @fi
@un

@un
@pk

þ @fi
@pk

¼ 0:

Doing this for every combination of the n elements of u and
the m elements of p results in nm equations that can be
represented compactly as @f=@u @u=@pþ @f=@p ¼ 0:

@f1=@u1 @f1=@u2 � � � @f1=@un

@f2=@u1
. .
.

..

. . .
. ..

.

@fn=@u1 @fn=@u2 � � � @fn=@un

2
666664

3
777775

�

@u1=@p1 @u1=@p2 � � � @u1=@pm

@u2=@p1
. .
.

..

. . .
. ..

.

@un=@p1 @un=@p2 � � � @un=@pm

2
666664

3
777775

þ

@f1=@p1 @f1=@p2 � � � @f1=@pm

@f2=@p1
. .
.

..

. . .
. ..

.

@fn=@p1 @fn=@p2 � � � @fn=@pm

2
666664

3
777775
¼

0 0 � � � 0

0 . .
.

..

. . .
. ..

.

0 0 � � � 0

2
666664

3
777775
:

This equation can be solved for the @ui=@pk factors

@u

@p
¼ � @f

@u

�1 @f

@p

needed to obtain our goal

@g

@p

T

¼ @g

@u

T @u

@p
¼ @g

@u

T

� @f

@u

�1 @f

@p

 !
:

Here @g=@uT is a 1� n (row) matrix, @f=@u is n � n and
@f=@p is n �m. To avoid multiplying the two large matrices
we perform the multiplication in the order

@g

@p

T

¼ � @g

@u

T @f

@u

�1
 !

@f

@p

with the product �T ¼ @g=@uT@f=@u�1 found by solving the
adjoint problem

@f

@u

T

� ¼ @g

@u
:

Note that @f=@u is a Jacobian matrix; once again obtaining
the desired partial derivatives (@g=@p) uses the transpose (i.e.
adjoint) of a Jacobian matrix. Also note that this Jacobian
matrix is the one used in Newton’s method to (approxi-
mately) solve fðu, pÞ ¼ 0 (with fixed p) iteratively.

Example 2:

Suppose
f1ðu1, u2, p1, p2Þ ¼ u1 þ u2 þ p1
f2ðu1, u2, p1, p2Þ ¼ u3

1 � u2 þ p2
gðu1, u2Þ ¼ u2

1 þ u2
2

The system of equations f1ðu1, u2, p1, p2Þ ¼ 0 and
f2ðu1, u2, p1, p2Þ ¼ 0 has a solution, ðu1, u2Þ, that depends
on the parameters p1 and p2. Changing the values of the
parameters p1 and p2 causes the values of the variables u1
and u2 to change and thus the value of gðu1, u2Þ also changes.
We want to find @g=@pT ¼ @g=@p1 @g=@p2½ �.

To calculate @g=@pT using the adjoint method we begin
by finding the Jacobian matrix

@f

@u
¼ 1 1

3u2
1 �1

� �

along with
@f

@p
¼ 1 0

0 1

� �
and

@g

@u
¼ 2u1

2u2

� �
.

Next we write the adjoint problem ð@f=@uÞT� ¼ @g=@u

1 3u2
1

1 �1

� �
�1
�2

� �
¼ 2u1

2u2

� �

and solve it to find

�1
�2

� �
¼

2u2 þ 2u1�2u2
3u21þ1

2u1�2u2
3u2

1
þ1

" #
:

The desired derivatives are now found from

@g

@p

T

¼ � @g

@u

T @f

@u

�1
 !

@f

@p
¼ ��T @f

@p

¼ � 2u2 þ
2u1 � 2u2
3u2

1 þ 1

2u1 � 2u2
3u2

1 þ 1

� �
1 0

0 1

� �

¼ �2u2 �
2u1 � 2u2
3u2

1 þ 1
� 2u1 � 2u2

3u2
1 þ 1

� �
:

To appreciate the meaning of these derivatives we consider a
couple of specific value pairs for the parameters p1 and p2.
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First, if p1 ¼ 0 and p2 ¼ 0, the equation fðu,pÞ ¼ 0 has

solution u ¼ 0, so gðuÞ ¼ 0. Since g ¼ u2
1 þ u2

2 � 0 (always),
gðuÞ ¼ 0 must be a global minimum so we expect
@g=@p ¼ 0. Indeed, substituting u1 ¼ 0 and u2 ¼ 0 into our

expression, @g=@pT¼ �2u2 �
2u1� 2u2
3u2

1þ 1
� 2u1� 2u2

3u2
1þ 1

� �
,

confirms this.
To gain further appreciation of @g=@p, we consider a

graphical representation of our example problem. If we plot
solutions of f1ðu1, u2, p1, p2Þ ¼ u1 þ u2 þ p1 ¼ 0 in the
ðu1,u2Þ plane we obtain a line with slope �1 and vertical
intercept �p1. If we plot solutions of f2ðu1, u2, p1,p2Þ ¼
u3
1� u2þ p2¼ 0 in the ðu1, u2Þ plane we obtain a cubic curve

that crosses the vertical axis at p2 with slope 0. The solution to
the system of equations fðu,pÞ ¼ 0 is represented by the point
where the line and the cubic curve cross. The function g gives
the square of the distance from the origin, so circles centered
on the origin represent contours of constant g. Curves for
p1 ¼ �2, p2 ¼ 0 and g ¼ 2 are shown in Figure 1.

As can be seen from Figure 1, for this value of p the
solution of fðu, pÞ ¼ 0 is u ¼ ð1, 1Þ. If we increase p1,
the line with slope 1 will move down in the figure so
the solution point will follow the cubic curve, decreasing
its distance from the origin, so g decreases. If, however,
we increase p2, the cubic curve will move up so the
solution point will follow the line with slope �1 which is
tangent to the (dashed) circle representing a contour of
constant g. Thus we expect @g=@p1 < 0 and @g=@p2 ¼ 0.
Substituting the solution u1 ¼ 1 and u2 ¼ 1 into our

expression @g=@pT¼ �2u2�
2u1 � 2u2
3u2

1þ 1
� 2u1� 2u2

3u2
1þ 1

� �

gives @g=@pT¼ �2 0½ �, confirming this. The reader is en-
couraged to use the graphical representation to find other
parameter pairs where one of the components of @g=@p is

zero and use the expression for @g=@pT to confirm
their findings.

A NUMERICAL EXAMPLE

In this section we use finite differences to approximate the
boundary-value problem

c2u
00 þ c1u

0 þ c0u ¼ pðxÞ for 0 < x < 1,

uð0Þ ¼ a0,

uð1Þ ¼ a1,

where pðxÞ ¼ p0 þ p1x þ p2x
2 (a second-order polynomial).

After computing an approximate solution for particular
values of the parameters c2, c1, c0, p0, p1, p2, a0 and a1,
we use the adjoint method to calculate the rate of change of
a function of the solution, gðuÞ, as we vary these parameters.
Two different functions are considered: (1) g is the value of u

at the midpoint of the domain, gðuÞ ¼ u 1
2

� �
, and (2) g is the

average value of u, gðuÞ ¼
R 1
0 uðxÞ dx.

To apply the finite-difference method to our differential
equation we divide the domain ½0, 1� into n subintervals,

eachwith length�x ¼ 1
n . The endpoints of these subintervals

are x0, x1, . . . , xn, where xk ¼ k�x. We denote approxi-
mate values of u at each of these points as uk . The first

derivative, u0, at xk is approximated by uk
0 ¼ ukþ1� uk�1

2�x
.

The second derivative, u00, at xk is approximated by uk
00 ¼

uk�1� 2uk þ ukþ1
�x2

. Substituting these approximations into

the differential equation gives

c2
�uk�1� 2uk þ ukþ1

�x2

�
þ c1

�ukþ1� uk�1
2�x

�
þ c0uk ¼ p xkð Þ,

which can be rearranged to give

c2
�x2

� c1
2�x

� �
uk�1 þ � 2c2

�x2
þ c0

� �
uk

þ c2
�x2

þ c1
2�x

� �
ukþ1 ¼ p xkð Þ,

a linear algebraic equation that can be written for each of the
interior points k ¼ 1, 2, . . . , n � 1. At the endpoints of the
domain we assert u0 ¼ a0 and un ¼ a1. This collection of
equations can be written compactly as Au ¼ b, where A is a
tridiagonal matrix, and u and b are column matrices. The
matrix equation can be solved (e.g. using Gaussian elimina-
tion and back substitution) for u, giving an approximation to
the solution of the boundary-value problem.

Following the procedure in the preceding paragraph for
the (somewhat arbitrary) parameter values c2 ¼ 1, c1 ¼ �2,

Fig. 1. Curves for the problem presented in example 2, with
p1 ¼ �2, p2 ¼ 0 and gðuÞ ¼ 2.

Fig. 2. Solution to the boundary-value problem u00 � 2u0 þ u ¼
1þ x � 5x2 for 0 < x < 1, and uð0Þ ¼ 0, uð1Þ ¼ 0. The solid
curve is the exact solution; the black circles are an approximate
solution found using finite differences with n ¼ 20.
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c0 ¼ 1, p0 ¼ 1, p1 ¼ 1, p2 ¼ �5, a0 ¼ 0 and a1 ¼ 0
generates the approximation shown in Figure 2.

We can use the adjoint method to find the rate of change
of a function of u with respect to the parameters
c2, c1, c0,p0,p1, p2, a0 and a1. We consider first the simple

function gðuÞ ¼ un=2 � u 1
2

� �
, where an even value for n has

been chosen.
To utilize the procedure described in the preceding

section, the system of equations represented by the matrix
equation Au ¼ b is written in the form fðu,pÞ ¼ 0, by
subtracting the right-hand sides from both sides of each
equation. Here p ¼ ½c2 c1 c0 p0 p1 p2 a0 a1�. To find @g=@p
we need the three matrices @f=@u, @f=@p and @g=@u. Since
@f=@u and @f=@p require two columns to be displayed
clearly, they are shown in Figure 3. For gðuÞ ¼ un=2,

@g=@u ¼ ½0 0 0 � � � 0 0 1 0 0 � � � 0 0 0�T:
After solving the adjoint problem @f=@uT� ¼ @g=@u for �

we can calculate @g=@pT ¼ ��T@f=@p. The results for the
example problem whose solution is shown in Figure 2 are
given in Table 1.

The values of the partial derivatives found using the
adjoint method were verified by perturbing the parameters

one at a time. For each parameter (c2, c1, c0, p0, p1, p2, a0
and a1) an additional finite-difference approximation was
calculated with that parameter increased by 0.01, giving
new values of u. Calling these new values eu we can
approximate the partial derivative of g with respect to the

perturbed parameter by
gðeuÞ � gðuÞ

0:01
. As seen in Table 1,

these approximations are very close to the values found
using the adjoint method.

To calculate the partial derivatives of gðuÞ ¼
R 1
0 uðxÞ dx

we use (the composite) Simpson’s rule (which requires an
even value for n) to approximate this integral,

gðuÞ ¼ �x

3

�
u0 þ 4u1 þ 2u2 þ 4u3 þ 2u4 þ � � � þ 4un�3

þ2un�2 þ 4un�1 þ un
�
,

from which we have

@g

@u
¼ �x

3
1 4 2 4 2 � � � 4 2 4 1½ �T:

Again, @g=@pT ¼ ��T@f=@p, where � is the solution of the

adjoint problem @f=@uT� ¼ @g=@u. Results are given in
Table 1.

Fig. 3. Matrices used to calculate @g=@p for the numerical example involving a boundary-value problem.

Table 1. Partial derivatives for gðuÞ ¼ u 1
2

� �
and gðuÞ ¼

R 1
0 uðxÞdx using a finite-difference approximation to the boundary-value problem

c2u
00 þ c1u

0 þ c0u ¼ p0 þ p1x þ p2x
2 for 0 < x < 1, and uð0Þ ¼ a0, uð1Þ ¼ a1 with c2 ¼ 1, c1 ¼ �2, c0 ¼ 1, p0 ¼ 1,p1 ¼ 1, p2 ¼ �5,

a0 ¼ 0 and a1 ¼ 0

gðuÞ ¼ u 1
2

� �
gðuÞ ¼

R 1
0 uðxÞdx

Partial derivative Value from adjoint method Numerical verification Value from adjoint method Numerical verification

@g=@c2 0.04372056 0.04315389 0.02133546 0.02104484
@g=@c1 0.00762168 0.00763637 0.00424091 0.00424846
@g=@c0 –0.00262876 –0.00263144 –0.00157897 –0.00158068
@g=@p0 –0.12775518 –0.12775518 –0.08625040 –0.08625040
@g=@p1 –0.05862544 –0.05862544 –0.04027710 –0.04027710
@g=@p2 –0.03210644 –0.03210644 –0.02305057 –0.02305057
@g=@a0 0.82464012 0.82464012 0.71847410 0.71847410
@g=@a1 0.30311507 0.30311507 0.36777630 0.36777630
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A DATA-ASSIMILATION EXAMPLE FROM
GLACIOLOGY

Mathematical models of glaciers typically include param-
eters which are difficult to estimate directly from field
measurements. For example, some type of frictional co-
efficient is required at the base of the glacier where the ice
rests upon the earth. The basal traction (described math-
ematically using this frictional coefficient) affects the
velocity of the ice throughout the glacier. Thus, it is
plausible to use the more easily measured velocity at the
upper surface of the glacier to determine the frictional
coefficient. In this concluding section we present an
example problem, using a simplified geometry to demon-
strate the use of the adjoint method to accomplish this.

The example problem is related to a benchmark problem,
‘Experiment D’ of the Ice Sheet Model Intercomparison
Project for Higher-Order Models (ISMIP-HOM) (Pattyn and
others, 2008). In ISMIP-HOM Experiment D, a sheet of ice
with uniform thickness of 1000m rests on a plane inclined at
an angle � ¼ 0:1�. A domain of length 20 km with periodic
boundary conditions at each end is considered. A numerical
model is used to calculate the velocity of the ice, which
varies not only throughout the thickness of the ice but also
along the length of the domain, due to variations in basal
traction. There is no variation in the horizontal direction
transverse to the inclination.

In ISMIP-HOM Experiment D, the basal traction is
prescribed and ice velocities (and pressure) are calculated.
We call this a ‘forward problem’. Here we are interested in a
related ‘inverse problem’: given the surface velocity, find the
basal traction.

The model used is a finite-element approximation* of
Stokes’ equationsy

@

@x
2�

@u

@x
� p

� �
þ @

@y
�

@v

@x
þ @u

@y

� �� �
¼ ��g sin�,

@

@x
�

@v

@x
þ @u

@y

� �� �
þ @

@y
2�

@v

@y
� p

� �
¼ �g cos�,

along with conservation of mass,

@u

@x
þ @v

@y
¼ 0:

In these equations, x and y are the coordinate directions, x
along the incline and y perpendicular to it (almost vertical).
The components of velocity in the x- and y-directions are
given by u and v, respectively. Pressure is represented by the

variable p, while � ¼ 910 kgm�3 is the density of ice and

g ¼ 9:81m s�2 is the acceleration due to gravity. The
viscosity, �, varies according to Glen’s flow lawz

� ¼ 1

2
A� 1

n _��
n�1
n ,

with the effective strain rate

_�2 ¼ 1

2

@u

@x

� �2

þ @v

@y

� �2
" #

þ 1

4

@u

@y
þ @v

@x

� �2

,

and flow parameters A ¼ 10�16 Pa�n a�1 and n ¼ 3.
Stress-free boundary conditions apply at the upper

surface

@v

@x
þ @u

@y
¼ 0,

2�
@v

@y
� p ¼ 0,

while at the base v ¼ 0 and basal traction is modeled using
the boundary condition

�
@u

@y
¼ �2u:

In ISMIP-HOM Experiment D

�2 ¼ 1000þ 1000 sin
2�x

L

� �
,

where L is the length of the domain (20 km for the problem
presented here). This frictional coefficient is plotted as a
heavy black curve in the lower left panel of Figure 4. The
upper left panel of Figure 4 shows the velocity component,
u, at the (top) surface of the ice for a solution of the ‘forward’

problem (using �2 ¼ 1000þ 1000 sin 2�x=Lð Þ) plotted as a
heavy black line.

Now, for the inverse problem. Suppose we are given the
surface velocity component, u, plotted as a heavy black
curve in the upper left panel of Figure 4. We hope to use this

information to discover the basal friction coefficient, �2

(plotted as a heavy black curve in the lower left panel of
Fig. 4). To do so we pose the problem as an optimization

problem: find �2 such that the surface velocity component,
u, found by solving the ‘forward’ problem minimizes the
error given by

gðuÞ ¼
Z L

0

u � udð Þ2 dx,

where ud is the desired surface velocity. To discretize the

function �2 a trigonometric expansionx is used,

�2 ¼ p0 þ
XN=2

k¼1
p2k�1 sin

2�kx

L

� �
þ p2k cos

2�kx

L

� �
:

A variety of algorithms for solving optimization problems
exist (Press, 2007). Here we choose the Broyden–Fletcher–
Goldfarb–Shano (BFGS) algorithm (Press, 2007, p. 521–524),
which uses partial derivatives of the objective function, gðuÞ,
with respect to the parameters, pk , that can be varied. These
partial derivatives (@g=@pk ) are exactly what the adjoint

zGlen’s flow law is a nonlinear constitutive equation used to model the

relationship between stress and strain rates in ice. This relationship is

temperature-dependent, but the model used here assumes that the ice is

isothermal.
xFourier series, which are trigonometric expansions of this form with an

infinite number of terms, can be used to represent any differentiable periodic

function (Tolstov, 1962). Truncated Fourier series, such as that used here, are

often used to approximate functions of unknown form. An alternate

discretization of �2 would be an expansion in terms of the ‘test functions’

used in the finite-element method. This could result, for example, in

approximating �2 with a continuous piecewise linear function.

*The finite-element method is a technique for discretizing a boundary-value

problem, approximating its solution using the solution to a system of

algebraic equations. One step in the method is to partition the domain of the

problem into a set of ‘elements’. Here a uniform grid with 32 elements along

the x-axis and 16 elements along the y-axis was used.
yStokes’ equations represent Newton’s second law,

P
F ¼ ma, for a viscous

fluid when the inertial term, ma, is negligible. The equations presented here

have been simplified using the assumption that derivatives with respect to z

(the transverse direction) are zero.
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method described in the previous sections can provide.

Starting with a ‘guess’ for �2, an approximate solution to the
inverse problem is obtained by repeating the following steps:

1. Solve the ‘forward’ problem with the current estimate of

�2.

2. Evaluate the error, gðuÞ.

3. Evaluate the partial derivatives, @g=@pk , using the adjoint
method.

4. Calculate an improved estimate of �2 (i.e. the pk )
according to the BFGS algorithm.

The results of applying this process are shown in Figure 4.

The initial guess was �2 ¼ 1000; i.e. p0 ¼ 1000 and pk ¼ 0
for 1 � k � N where, here, N ¼ 30. The gray curves in the

left panels of Figure 4 show approximations of u and �2 as

the process progressed. The original guess of �2 ¼ 1000
(represented by a horizontal line in the lower left panel of
Fig. 4) resulted in the bottommost horizontal line in the

upper left panel of Figure 4. As the estimate of �2 improves,
the curves approach the desired values plotted as heavy
black curves. The upper right panel of Figure 4 shows the
error, gðuÞ, decreasing throughout the process. Further
improvement can be made by allowing more iterations of
the algorithm. The lower right panel of Figure 4 shows the
evolution of the coefficient (pk ) values. The upper curve
represents p0 which starts at 1000, dips down for a while but
returns to a value very near 1000. The curve that increases
from zero to near 1000 represents p1. The remainder of the
curves, which remain near zero, represent p2 through p30. In

the optimal solution these values are all zero, but the largest,
p9, was 36.9 when the process was terminated. Again,
further improvement can be made by allowing more
iterations.

ACKNOWLEDGEMENTS

Most of the ideas in the Introduction were taken from
section 3 of Ericco (1997). Most of the ideas in the section
entitled ‘A typical situation’ were taken from section 8.7 of
Strang (2007). For the ‘A data-assimilation example from
glaciology’ section the finite-element and adjoint methods
were implemented using the FEniCS and dolfin-adjoint
software packages. Thanks to Jesse Johnson who served as
committee chair for my thesis (Granzow, 2013), which
includes source code for computer programs that produced
Figures 2 and 4. Thanks also to scientific editor Weili Wang
and reviewers Fuyuki Saito and Stephen Price. This paper
was written while the author was supported by NASA
Research Opportunities in Space and Earth Sciences
(ROSES) grant NNX11AR23G.

REFERENCES

Brinkerhoff DJ, Meierbachtol TW, Johnson JV and Harper JT (2011)
Sensitivity of the frozen/melted basal boundary to perturbations
of basal traction and geothermal heat flux: Isunguata Sermia,
western Greenland. Ann. Glaciol., 52(59), 43–50 (doi: 10.3189/
172756411799096330)

Errico RM (1997) What is an adjoint model? Bull. Am. Meteorol.
S o c . , 78 ( 1 1 ) , 2 577–2591 ( do i : 1 0 . 1175 / 1520 -
0477(1997)078<2577:WIAAM>2.0.CO;2)

Fig. 4. Solution of an inverse problem. The component of the ice velocity in the direction parallel to the bed (u; m a�1) at the (top) surface of
the ice is shown in the upper left panel. This velocity evolves towards the desired solution (the heavy black curve) as the basal friction (�2,
plotted in the lower left panel) is changed. The upper right panel shows the error, gðuÞ, decreasing as the coefficients, pk , in the

trigonometric expansion of �2 (shown in the lower right panel) change.

Granzow: Instruments and methods 445

https://doi.org/10.3189/2014JoG13J205 Published online by Cambridge University Press

https://doi.org/10.3189/2014JoG13J205


Granzow GD (2013) An investigation of viscosity using measured
velocities on Helheim Glacier. (Master’s thesis, University of
Montana)

Pattyn F and 20 others (2008) Benchmark experiments for higher-
order and full-Stokes ice sheet models (ISMIP-HOM). Cryo-
sphere, 2(2), 95–108 (doi: 10.5194/tc-2-95-2008)

Press WH (2007) Numerical recipes: the art of scientific computing,
3rd edn. Cambridge University Press, Cambridge

Strang G (2007) Computational science and engineering. Wellesey-
Cambridge, Wellesey, MA

Tolstov GP [transl. A. Silverman] (1962) Fourier series. Prentice-
Hall, Englewood Cliffs, NJ

MS received 29 October 2013 and accepted in revised form 16 February 2014

Granzow: Instruments and methods446

https://doi.org/10.3189/2014JoG13J205 Published online by Cambridge University Press

https://doi.org/10.3189/2014JoG13J205

