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RANK 2 SYMMETRIC HYPERBOLIC

KAC-MOODY ALGEBRAS

SEOK-JIN KANG* AND DUNCAN J. MELVILLE

Introduction

Affine Kac-Moody algebras represent a well-trodden and well-understood

littoral beyond which stretches the vast, chaotic, and poorly-understood ocean of

indefinite Kac-Moody algebras. The simplest indefinite Kac-Moody algebras are

the rank 2 Kac-Moody algebras g(α) {a > 3) with symmetric Cartan matrix

/ 2 -a\

\- a 2 /'
which form part of the class known as hyperbolic Kac-Moody

algebras. In this paper, we probe deeply into the structure of those algebras

the e. coli of indefinite Kac-Moody algebras. Using Berman-Moody's formula

([BM]), we derive a purely combinatorial closed form formula for the root multipli-

cities of the algebra g(fl), and illustrate some of the rich relationships that exist

among root multiplicities, both within a single algebra and between different algeb-

ras in the class. We also give an explicit description of the root system of the

algebra g(α). As a by-product, we obtain a simple algorithm to find the integral

points on certain hyperbolas.

For alternative approaches to the analysis of rank 2 hyperbolic Kac-Moody

algebras, the reader should see [BKM, Section 4], which constructs them as

§/2-modules, and [LM], which shows that the root systems of these algebras coin-

cide with those of quasi-regular cusps on Hubert modular surfaces defined over

certain real quadratic fields.

The structure of the paper is as follows. In Section 1, we introduce

Berman-Moody's root multiplicity formula for general symmetrizable Kac-Moody

algebras. In Section 2, we specialize to the rank 2 hyperbolic Kac-Moody algebras
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4 2 SEOK-JIN KANG AND DUNCAN J. MELVILLE

and develop a purely combinatorial formula (2.14) for the root multiplicities.

We show how, in many cases, one can obtain the multiplicity of a root in one

algebra from the multiplicity of the same root in a different algebra, which may

have much simpler calculations. Section 3 extends this notion considerably by pro-

ving a stability theorem on the root multiplicities of g(α) as a increases and ex-

plaining the connections between the algebras g(#) and the free Lie algebra of

rank 2. The stability theorem holds for arbitrary symmetrizable Kac-Moody

algebras.

In Section 4, we consider the root system of the algebra g(α). Recalling that

real roots and imaginary roots correspond to the integral points on the hyperbo-

las: x — axy + y = k (k ^ Z, k < 1), we show how all the roots of a given

length are Weyl-conjugate to roots in a small and easily defined region. Thus we

can easily list all the roots, with multiplicity, by use of some simple recurrence re-

lations. This procedure finds all the integral points on these hyperbolas far more

easily than the traditional number-theoretic algorithm.

In Section 5, we analyze some of the monotonic and symmetric relationships

between the root multiplicities of the algebra g(α) for a fixed value of a. We raise

some questions concerning possible relationships among the root multiplicities for

given algebras. We conjecture that the multiplicities of roos of a given height t in-

crease monotonically to a maximum at (m, m) for t even, and (m — 1, m + 1) for

t odd. The paper closes with a collection of tables illustrating the main results and

the conjecture.

1. Berman-Moody's formula

We first recall some of basic definitions in Kac-Moody theory and Berman-

Moody's formula. Let / be an index set. A matrix A = (# t ;) ί > ; G j is called a general-

ized Cartan matrix if it satisfies: (i) aH — 2 for all i ^ /, (ii) aυ ^ Z < 0 for i Φ j ,

(iii) au = 0 if and only if aH — 0. In this paper, we assume that A is symmetriz-

able, i.e., there is an invertible diagonal matrix D such that DA is symmetric. A

realization of A is a triple (ή, Π, Π v ) , where § is a complex vector space of dimen-

sion 2 I /1 — rank A, Π = {a{ \i ^ /} and Π v = {h( \ i e /} are linearly indepen-

dent subsets of ί) and ί), respectively, satisfying dj(ht) = a^ for i, j ^ /.

DEFINITION 1.1. The Kac-Moody algebra g = gG4) with Cartan matrix A is the

Lie algebra generated by the elements eif f^i ^ I) and ΐ) with the following defin-
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ing relations:

[h, hί] = 0 for h, W e \

[h, e,] = ajih)e,, [A, /,] = - af(h)f{ for; e /,
( 1 1 ) [ejtf,] =δ{ihlίori,jel,

(adeiΫ~au(ei) = (adf,)ι-a"(f,) = 0 for * Φ j .

The elements of Π (resp. Π ) are called the simple roots (resp. simple coroots) of g.

For each i ^ /, let r( ^ Aut(f) ) be the simple reflection on f) defined by r((X) =

Λ - λ(ht)at. The subgroup if of GL(l}*) generated by the r/s (/ e J) is called

the Wej// group of g.

Let Q = ®ieIZaif Q+ = ®tGlZ^oaiy and Q_ = - Q+. We define a partial

ordering > on ^ by /! ^ ^ if and only if λ — μ G Q+. The Kac-Moody algebra

g = gO4) has the roof 5/>αcβ decomposition g = 0 αeQ gα, where gα — {J: ^

g I [Λ, d = a{h)x for /* ^ ί)} is the a-root space. An element a ^ Q is called a

roof if a Φ 0 and gα Φ 0. The number mult(α) '-= dimgα is called the multiplicity

of the root α. A root a > 0 (resp. α < 0) is called positive (resp. negative). It is

known that all the roots are either positive or negative. We denote by Δ, Δ+, and

A the set of all roots, and negative roots, respectively. For a — Σ<e/ /c,tfj e Q,

the number ht(α) " = Σ , e/&,- is called the height of α.

A g - m o d u l e V i s t } - d i a g o n a l i z a b l e if V = @λ^* Vλ, w h e r e Vλ = {v e V\hmv

= λ(h)υ for all Λ G }̂ is the λ-weight space. If V̂  =£ 0, then >ϊ is called a weight

of V. The number multy(/i) : = dimV^ is called the multiplicity of λ. When all the

weight spaces are finite-dimensional, we define the character of Vto be

(1.2) chV= Σ (dimy>'.

An fy-diagonalizable module V is integrable if all the f{ (i ^ I) are locally nilpotent

on V. A g-module V is called a highest weight module with highest weight Λ ^ ^

if there is nonzero vector v0 ^ Vsuch that (i) et'v0 — 0 for all i ^ I, (ii) h'V0 =

λ(h)v0 for all A ^ f), (iii) Z7(g) * vQ = V. The vector v0 is called a highest weight

vector. We denote by V(λ) the irreducible highest weight module over g.

Let S c / and g s = g(As) be the Kac-Moody algebra with Cartan matrix

As = (dij)itjGs We denote by ΔSf ΔSt and Ws the set of roots, the set of positive

(resp. negative) roots, and the Weyl group of gs, respectively. Let Δ (S) = Δ \ΔS,

and W(S) = {w e W\ Φw c Δ+(S)}, where Φw = {a ^ Δ+\ w~\a) < 0}. We

also define g0 = g s -+- t), and g± = 0α e^±( 5) gα. Then we have the triangular de-
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composition:

/-I O\ (S) /TN (S) /TN (S)

(1.3) g = g_ Θ g 0 θ g + .

Let C be the trivial g-module. The homology modules Hk{%_ , C) are
(S)

obtained from the g0 -module complex

Ak( (5)x dk Λk-l, (Sk

>Λ (g_ ) —>Λ (g_ ) —• •

Λ (g_ ) -> Λ (g_ ) —• C - * 0,

with the differentials dk: A (g_ ) —* A (g_ ) defined by

dk{xx A Λ xk) = Σ (— ϊ)s+t([xs, xt] A xλ A Λ Xg Λ Λ z;t A Λ xk)
s<t

for xi ^ g_ . For simplicity, we write Hk($_ ) for Hk(q_ , C). The g0 -module

structure of the homology modules Hk(Q_ ) is determined by the following formula

known as Kostant's formula.

PROPOSITION 1.2 ([GL], [Li]).

(1.5) #*(9-S)) = θ Vs(wp-p),
weW(S)

where Vs(λ) denotes the irreducible highest weight g0 -module with highest weight λ,

and p is an element oft) satisfying p{h^) = 1 for all i €Ξ /. •

We now recall the root multiplicity formula for g obtained in [Ka2]. Applying

the Euler-Poincare principle to (1.4) yields:

(1.6) Σ (— l)fcchylΛ(gls)) = Σ (— 1
Λ:=0 k=0

Let

00 OO

H = Σ (—1) + 1#*(g_ s) = Σ (— l)k+1 Σ Vs(wρ — p)

(1.7)

= Σ (-l)Hw)+Ws(wp-p),
weW(S)

an alternating direct sum of g0 -modules. For τ ^ Q_, we define the dimension of

the T-weight space of H to be

(1.8) dim//, = Σ (- D
k=l

https://doi.org/10.1017/S0027763000005419 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005419


HYPERBOLIC KAC-MOODY ALGEBRAS 4 5

Let P(H) = {τ e Q_ \ άimHτ Φ 0} and let {τt \ i > 1} be the enumeration of

P(H) given by the height and lexicographical ordering. For r ^ Q_, we define a

set

(1.9) T(τ) = i(n) = (n,) ,^ I n, e Z>0, Σ n,r, = τ},

and a function

(1.10) β ( r ) = Σ
(n)eT(τ)

Then we have:

THEOREM 1.3 ([Ka2]). Let a be a root in Δ~(S). Then

(1.11)

where β is the classical M'όbius function and τ\ a if a — kz for some positive integer

oc r 1
k, in which case — — k and — = ~r. ,—,

If S = 0, then we have W(S) = W, and

(1.12) H= Σ (- l ) / ( e ) X. p .

Hence P(//) = {^p — p | Z(; ̂  M . Let {rt = Wφ — p \ i > 1} be the enumeration

of the set P(H) given by the height and lexicographical ordering. Then we have

(1.13) dim# r ,= Σ ( -
w eW

/ ( M ; ) > 1

Therefore the formula (1.11) reduces to Berman-Moody's formula:

COROLLARY 1.4 ([BM]).

(1.14) dimgα = Σ μ ( - ) - Σ —rrT-yx Π ( ( - 1 ) )

2. The hyperbolic Kac-Moody algebras

In this section, we study the structure of rank 2 hyperbolic Kac-Moody
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algebras a(a) with symmetric Cartan matrix ( ) using Berman-Moody's

\ — a Δ /

formula. Let / = {0,1} be the index set for the simple roots of g(fl), and take S =

φ. Then g(tf)o5) = f) = Ch0® Chv the Cartan subalgebra, and Δ~(S) = Δ~.

Moreover, W(S) = W, the full Weyl group, and we have an explicit description of

W:

(2.1) w= {l, ^o(
riro) ;» r\(rQr\)}> ( V Ί ) ' + 1 » ( r i r o ) ; + 1 l i ^ o}.

Hence, by (1.12), we have

H= £ ( - 1 ) ' < W > + 1 C _

(2.2) Σ (C , e c )

where we let A/B denote A ΘB.

We introduce a sequence L4w}w>0 defined as follows:

M Λ = », A, = l ,

An+2 = ΛAW+1 — Λw + 1 for w > 0.

When we want to emphasize that the sequence ίAw}w^>0 depends on a, we will

write {i4w(α)}w>0. Since the sequence {An}n>0 will play a crucial role in writing

the root multiplicity formula for g(tf), we investigate some of the basic properties

of the sequence }

The first few terms of the sequence L4w)M>0 are

Ao — 0, Ax — 1, A2 = 1 + α, A3 = α + α2,
A4 = - α + a2 + α3, .

When a = 3, we have Aw = F2n — 1, where ίFw}w-, 0 is the Fibonacci sequence de-

fined by

(2.4) FO = F^1, Fn+2 = Fn+ι + Fn(n^0).

To see this, let A'n- An + 1. Then A'o = 1, ΛΊ = 2, and for » > 0

~An + 2

On the other hand, (2.4) yields
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* 2 » + 4 ~ ^2w+3 •" ^2w+2 ~" ̂ ^ 2n+2 '

—. op p
°Γ2n+2 Γ2n'

Since Fo = 1 and F2 = 2, we have An = F 2 w for all w > 0, which proves our

assertion. The relation between the Fibonacci sequence and the hyperbolic

Kac-Moody algebra g(#) was first noticed by Feingold ([F]).

Let us find a closed form expression for the sequence {Ajw>0. Let F(x) =

Σiζ=0Anχ
n be the generating function for the sequence {An)n>0. Then multiplying

(2.3) by χn+2 yields

An+2χ
n+2 = axAn+ιx

n+1 - χ2Anχ
n + χn+2 in > 0).

Summing up over n > 0 gives

Fix) -Ao- A& = axiFix) - Ao) - χ2Fix) + iχ2 + x3 + •),

which yields

(1 - ax + χ2)Fix) = x + x2 + x3 + - - = 1 f χ .

Let

/o ex α + V α2 - 4
(2.5) 7 = 2

be a zero of 1 — ax + x . Then

f ω = x

Γ

(1 - x) (1 - αx + x)
1

 + >•'
( i - r ) 2 ι ~ x ' ( l + r H i - r ) 2 r ~ x

r L_
(i + 7-)(i-r)2--x

~r Σ x « + I f, (χ\n

d-r)
2«=o (n-y)(i-r)

2»-o\r/
2

y.- OO

r
 Γ Σ (TX)"

(i + r)( i-r) »-»
n+2

7(
o v (l - yΫ r"(i + r) (i - rΫ d + r) d - r)—?)*•
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~> Λ nίΛ I \ I 2W + 1

= y i ~ r (i + r) + r »
^ " ' ( X ) 2

Therefore, we obtain

(2.6)
rn~\\ + r)d-r)2

Now we derive the root multiplicity formula for g(β). For^ > 0, by induction

/y (/y Λ* i Λ /-j A /-v Δ sy

0 ^ 1 0 ' r Γ^ 2/+1 0 2J 1'

(2.7) * ° ) + 1 _ _ _ _ 2 ; + 1

(^ΊV P ~~ P = ~~ A2j+ι(x0 ~ A2j+2av

It follows from (2.2) and (2.7) that

Σ , >Q (C-A2j+1a0-A2.ai Θ C-A^-A^a)
(2.8)

and hence for τ = — maQ — nav we have

(2.9) dim^ τ =

For it j > 0, define

(2.10)

1 if (m, n) = (A2j+V A2j) or (A2jy A2j+ι),

- 1 if (m, n) = (A2j+2, A2j+1) or (A2j+1, A2j+2),

0 otherwise.

- A2j+1a0 — A2μx if i = 4;,

- i42; α 0 - A2j+1ax if t = 4; + 1,

~ i42;+2^o - A2j+ι<*ι i f ί = 4/ + 2,

~ Λy+i«o ~~ Λy+2«i i f ^ = 4; + 3.

Then we have an enumeration of all the weights of H : P(H) = {TJ \ i > 0}, where

(2.11)

For r G Q_, set

1 if i = 0,1 (mod 4),

- 1 if t Ξ 2,3 (mod 4).

(2.12)

and define

Γβ(r) = {(n) = {n)i>01 w, e Z> 0 , Σ ^r t- = τ>,
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(2.13) Ba(τ)= Σ (

<n)eTβ(τ)

Then, by Berman-Moody's formula, we obtain

PROPOSITION 2.1

(2.14) d i m g « = Σ

Next we examine more closely the formula (2.13) for Ba(τ). Let a = — na0

— (n + ; )« ! be a root of g(α) and write Ba(n> n + /) for Ba(a). By symmetry of

the root system, we may suppose without loss of generatity that j ^ 0. We noted

above that any weight τk e P(H) is of the form

τk = — AJCXQ ~ Ai+ιax

or τk= - Ai+1a0 - Afav

Let

(g = {c = (c^ c^ c

Ό

if c\,...) I c\ are non-negative integers,; ^ (0,lK j ^ 0).

For given α, w, and;, define

Ϊ, n, j) = ic ^ %{ Σ (c°Ai+ί + c)A) = n, Σ (c f% + c]At+ι) = n + ;}.
ί=0 ί=0

Then all partitions of a in Ta(a) are of the form

ί=0

Weights in the partition count with negative multiplicity precisely when i is odd,

and so we have

PROPOSITION 2.2

Ba(n,n+j)= Σ (-1V

(2.16)
2~ι v

= v ( _
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EXAMPLE 2.3. Let a = 3 and consider a = — 4α 0 — 5av That is, n = 4,

j = 1. For a = 3, Ao = 0, Ax = 1, A> = 4 and A, =.12 > 5. Thus, for any

c G #(3,4,1), cΛ = cA = 0 for all A; > 2, and we have the additional two condi-

tions that

o , Λ o , l Λc0 + 4cx + ̂  = 4,
( 2 1 7 ) 1 , 0 ^ A ! .

Hence,

#(3,4,1) = {(4,5,0,0,...), (0,4,1,0,.. .), (3,1,0,1,...)}

corresponding to the partitions

- 4α 0 - baλ = 4 ( - α0) + 5(— αx)

= 4 ( - αx) + ( - 4α 0 - αx)

= 3 ( - α0) + ( - ax) + ( - α0 - 4ax).

Thus, suppressing trailing zeroes in the multinomials, we have

(2.19) ^ « . » =

= 14 - 1 - 4 = 9.

Since no other root τ divides a = — 4α 0 — 5α l t we have immediately from (2.14)

that dimgα = 9. D

EXAMPLE 2.4. This example gives a foretaste of the stability theory in the

following section. Let a = — naQ — (n + j)av Suppose a > n + j . Then A2 = a

+ 1 > n + j . Thus, any partition can involve only Ao and Av Hence,

<g(a,n,j) = {(n, n+j, 0,0, . . .)},

and

D / -i- -\ 1 (2nJrj\

Ba(n,n+j)=w+j( n j .

For j Φ 0, if gcd(n, n+j) = 1, then α = — wα0 — (« +j)aι has no divisors

other than itself and
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For example, if j = 1, and a > n + 1, than

(2.21)

Thus the multiplicity of, say, a— — 5α 0 — 6αx in the Kac-Moody algebra

{a > 6) is dimq(a)a = y r ί j = 42 (see Table 5 in Section 6). In the next

section, we will see that this is actually the same as the multiplicity of 5α0 + 6a x

in the free Lie algebra of rank 2.

If j = 0 and n is an odd prime p, (2.14) reduces to

(2.22)

Since dimgα is an integer, this shows that ( 1 = 2 (mod 2p). D

EXAMPLE 2.5. Suppose j = 0, n > 3 and a = n — 1. Then Ao = 0, Aλ = 1,

A2 = a + 1 = n and Ak > n for k > 3. Thus, any partition of a = — n α 0 — n α x

can involve only Ao, Av and A2. Hence, if c ^ ^(n — 1, n, 0), ck = ck = 0 for

A: > 2. The corresponding partitions of a are:

— na0 — naι = n(— a0) + n{— αx)

( 2 ' 2 3 ) = (n - 1) ( - α0) + ( - α 0 " Λ«I)

= (w - 1 ) ( - α : ) + ( - na0 — ax).

Thus,

« ( w - 1, n, 0) = {(w, n, 0 ,0, . . . ) , (w - 1,0,0,1,...), (0, w - 1,1,0,...)},

and

4
= BH(n, n) - 2.

252 1
For example, if n = 5, we have β 4 ( 5 , 5 ) = ~^rκ 2 = 2 3 - F . Hence, the
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multiplicity of the root a = — 5α 0 — 5a x in g(4) is dimgα = 23 ~E ~ ~E — 23.

By a similar argument, it is easy to see that, for n sufficiently large, we

obtain formulas relating Bn_k(n, n) and Bn(n, n). The first few are:

For n > 3, Bn_x(n, n) = Bn(n, n) - 2

For n > 4, Bn_2(n, n) = Bn(ny n) - 2n + 1

For n > 5, £w_3(w, w) = Bn(n, n) - n(n + 1) + 6

(2.25) ^ ^ n(n + l)(n + 2) , o πFor it > 7, Bn_4(n, n) = Bn(n, n) g h 30

For n > 9, βw_5(w, w) = βn(w, w ) ^

+ 140. D

3. Stability of root multipicities

In this section, we prove the stability of the root multiplicities of the

Kac-Moody algebras g(α), and discuss the relation with the free Lie algebra with

2 generators. We start with the discussion on free Lie algebras. Let X = {x\ i =

1,2,3,. . .} be a totally ordered set (possibly countably infinite) and let R be an

(additive) partially ordered abelian semigroup with a countable basis such that

each element a of R can be expressed as a sum of elements of R which are less

than or equal to a in only finitely many ways. Let G be the free Lie algebra on the

set X. We make G an i?-graded Lie algebra as follows. Let s& — {μ{ \ i = 1,2,3,

. . .} be a collection of elements in R such that μt < μ ; for i < j . We allow only

finitely many repetitions. Define άegx{ — μit and

deg[[ [xh, Xi),* -]xir] = μh + μi% + * + μiγ.

Then G becomes an i?-graded Lie algebra G = 0α e/e Ga, where Ga is the sub-

space of G spanned by all the brackets [[• [xiif x^,'' ']xir] such that μiχ + μΪ2

We recall the dimension formula for Ga obtained in [Kal]. Let P — {τ{ \ i =

1,2,3,. . .} be the set of distinct elements in sS, and let H be the subspace of G

spanned by the elements of X. Then H has the decomposition H — Φ , = 1 Hτ. For τ

eί, let

(3.1) T0(τ) = {(n) = (n, )^! | nt e Z^o, Σ n^ = r},
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and define

(3.2) B0(τ)= Σ (Σ"i~1)ln(dϊmHτ)
n>.

Then by generalizing the proof of the Witt formula given in [Se], we obtain

PROPOSITION 3.1 ([Kal]).

(3.3) dϊmGa=Σ
τ\a

Fix the index set / = {1,2,, •• , n) and let $ be the free Lie algebra gener-

ated by the elements e{ (i = 1, *, n). Since deget = a{ for / = 1, * , n> % is a

Q+-graded Lie algebra % = Θ α G ρ + ξία, where $a is the subspace of 5 spanned by

all the brackets [[• [eiif et^f- * -]eir] such that aiχ + α<2 + + α, r = α. For τ

= Σ ^ i ίi«ι e ©+> let Aί(r) = Σ?=i ί<, and define

ht(r)

Then Proposition 3.1 implies

COROLLARY 3.2

(3.5) dim%a= Σ
τ\a

Proof. For τ = Σ ί = 1 tfiίi ^ Q+, the only partition of r is

τ=tM) + +tn(an)

Now the result follows immediately from Proposition 3.1. EH

EXAMPLE 3.3 Let 3* be the free Lie algebra generated by the elements e0 and

ev For τ = ma0 + mav we write τ = (rn, n). By (3.4), we have

BJv. o-

Therefore, if a = 5α0 -f 6α υ then

dim3fβ = BJ5,6) =Jϊ(1}) = 42
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If a = 4α0 + 6α0, then

= B.(4,6) - \
10

10 I 4
\ \ = 20.

•
We now discuss the stability of root multiplicities for general symmetrizable

Kac-Moody algebras. Let A = ( # ί ; ) ί J € Ξ / and A" = (α ; ) iJeI be generalized Cartan

matrices of the same size. We define A < A if | a{j \ < \ a\j | for all i Φ j . We

write Λ > 0 if 1 fly I > 0 for all i Φ j .

PROPOSITION 3.4. Suppose A < A', and let a ^ Q be a root of the Kac-Moody

algebra g = Q(A). Then a is also a root of the Kac-Moody algebra gr = gG40, and we

have dimgα < dimg^.

Proof. We may assume that a ^ Q+. We denote by e'if ft-(i^ D the Cheval-

ley generators of Q\ Let g+ (resp. g+) be the subalgebra of g (resp. er) generated by

the elements e{ (resp. eft for i e /. Since | a{j \ < I af

{j \ for all i Φ j (A < A0, by

Gabber-Kac Theorem ([GK]), there is a surjective Lie algebra homomorphism

ΦAΆ : 9+ ~* 9+ defined by e\ ^ et. Therefore dimgα < dimg^ for all a e Q+. •

COROLLARY 3.5. If a < a', them dimg(α)α < dimg(αθα. D

THEOREM 3.6. Let a = Σ ί e / k{a{ G Q+, and let g = gG4) ^ ί/w Kac-Moody

algebra associated with a generalized Cartan matrix A = (aif) tJeI. Then dimgα is the

same for all A > 0. Moreover, ifA>0, we have

(3.7)
τ\a

where B^iτ) is defined by (3.4).

Proof. We will consider dimg_α. We take S = φ and apply Berman-Moody's

formula. By Kostant's formula, we have

#i(flJ = θ Cr = θ C_α,

H2($J = φ Cr.rp_p = θ C.α_(i-β )Λ/

Therefore
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P(H) = { - a, \i e /} U { - a, - ( 1 - au)at \ i, j el.iΦ j) U

Since A > 0, for any r = Σ ί G / ίfQff that divides α, there is only one partition of

— r into a sum of the elements in P(H) :

~ T = tx{~ α ^ + H- f Λ ( - αΛ),

and dimi/_α = 1 for all i ^ /. Hence we obtain

/α\ τ (Σ ^ - D! _ (a\ τ
dimgα = Σ μ ( — ) ~ γry} =Σμ (-) -BJτ).

Remark. We can summarize the above discussion as follows. By Proposition

3.4, we have a projective system ίg+C4), 0^^}. It follows from Corollary 3.2 and

Theorem 3.6 that the projective limit of the above system is the free Lie algebra %

generated by the elements e{ {i = 1 , . . . , n). We may consider % as the subalgebra

of the Kac-Moody algebra g(A) generated by the elements e{ (i = 1 , . . . , n),

where the Cartan matrix A = (ai}) is given by a{j — — °° for all i Φ j . That is,

in the rank 2 case, we may consider % as g+(°°).

In the following example, we illustrate the stability of root multiplicities for

the root a = 5α0 + 6av Compare with Example 2.4 and Example 3.3.

EXAMPLE 3.7.

(a) Let a = 3. Then by (2.3) we have

4(3) - 0, 4(3) = 1, 4(3) = 4, 4(3) =12, ,

a n d h e n c e

# ( 3 , 5 , 6 ) = { ( 5 , 6 , 0 , 0 , - • • ) , ( 1 , 5 , 1 , 0 , - • • ) , ( 4 , 2 , 0 , 1 , - •) , ( 0 , 1 , 1 , 1 , - •)},

c o r r e s p o n d i n g t o t h e p a r t i t i o n s

— 5α0 — 6αx = 5(— α0) + 6(— αx)

= ( - α0) + 5 ( - aj + (~ 4α 0 - aλ)

= 4 ( - a0) + 2 ( - αx) + ( - α 0 - 4αx)

= ( - a0) + ( - 4α 0 - aλ) + ( - α 0 - 4 a x ) .

It follows that

•«-π ( 5 " ) + ( - » ' H i l l
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Therefore dimg(3)α = J33(5,6) = 23.

(b) If a = 4, then we have

4,(4) = 0, 4(4) = 1, AM) = 5, AM) =20, ,

and

# ( 4 , 5 , 6 ) = {(5,6,0,0,•••), (0,5,1,0,-••), (4,1,0,1, •)}.

Therefore

dimβ(4). = B.C5.6) = i ( 5

Π

6 ) + ( - I ) ' \ ( ^

(c) If UJ = 5, then we have

Λ ( 5 ) = 0, ^ ( 5 ) = 1, A2(5) = 6, i43(5) = 3 0 , ,

and

#(5,5,6) == {(5,6,0,0,- ••), (4,0,0,1,- '•)}.

Therefore

dim9(5)α = 5,(5,6) = -ί- ( 5

Π

6 ) + ( - I ) 1 ! ( 4 > o

5

o α ) = 41

(d) If a = 6, then we have

4,(6) = 0, 4 ( 6 ) = 1, 4 ( 6 ) = 7, 4 ( 6 ) = 4 2 , ,

and

£(6,5,6) = {(5,6,0,0,-••)}•

Therefore

1 / 11
dim8(6)β = B4(5,6> = I f ( 5 6 ) = 42.

• 5,6.

Clearly, for a ^ 6, we have

i, 5,6) = {(5,6,0,0,-••)},
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and hence dimg(α)α = Ba(5,6) = 42 (see Table 7 in Section 6). D

4. The root system of the algebra

In this section, we study the root system of the algebra g(tf), and give an ex-

plicit description of the real roots and imaginary roots. As a by-product, we

obtain a simple algorithm to find the integral points on certain hyperbolas.

A root a of a Kac-Moody algebra gC4) is called real if a = w(a{) for some

w G W and i ^ I. A root that is not real is called imaginary. We denote by Δ ,

Δr+, Διm, and Δ™ the set of real roots, positive real roots, imaginary roots, and

positive imaginary roots, respectively. We recall some of the fundamental prop-

erties of the imaginary roots.

PROPOSITION 4.1 ([K]).

(a) The set Δ+ is W- invariant.

(b) For a ^ Δ+, there exists a unique β ^ Δ+ such that β — w(ά) for some

w e W and β{h,) < 0 for all i e /. •

For a Kac-Moody algebra g(A) with a symmetrizable generalized Cartan mat-

rix A— (β/pίje/, there is a nondegenerate symmetric bilinear form ( | ) on fy

such that au = —?—Ί—γ- for all i9 j ^ /. If A is symmetric, we take (a{ \ a{) = 2

for all i e / so that aυ = (a{ \ a) for all i, j ^ /.

A generalized Cartan matrix A is said to be of finite type if all of its principal

minors are positive, of affine type if all of its proper principal submatrices are of

finite type and detA = 0, and of indefinite type otherwise. A is of hyperbolic type if

it is of indefinite type and all of its proper principal submatrices are either of fi-

nite type or of affine type. The corresponding Kac-Moody algebra Q(A) is called a

finite, affine, indefinite, or hyperbolic Kac-Moody algebra, respectively. The fol-

lowing proposition gives a nice description of the root system of hyperbolic

Kac-Moody algebras.

PROPOSITION 4.2 ([K],[M]). Let gC4) be a hyperbolic Kac-Moody algebra with a

symmetric generalized Cartan matrix. Then we have:

(a) Δτe= {a^ Q\ (a\a) =2},

(b) / = { α e ( 3 \ {0} I (α I a) < 0}. D
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We now focus on the structure of the algebra g(tf). We assume a > 3. Then

the algebra g(#) is of hyperbolic type. We identify an element a = xaQ + yax

e Q with an integral point (x, y) e Z x Z We call a= (x, y) e Z x Z a posi-

tive integral point if x, y G Z> 0 . Define a symmetric bilinear form ( | ) on t) by

(α01 «o) = («i I α i ) = 2>

(α01 ax) = — α.

Then for α = Cr, y) e Z x Z, we have (α | α) = 2Cr2 — axy + y2). Therefore,

as an immediate consequence of Proposition 4.2, we obtain:

COROLLARY 4.3. For a > 3, the root system of the algebra q(a) is given by

(a) Δre = (Or, y) e Z x Z U 2 - axy + y2 = 1},

(b) Δ i m = {(j;, y) <EZxZ\χ2 - axy+ y2 < 0} .

In particular, there is a one-to-one correspondence between the set of real

roots of Q(O) and the set of all integral points on the hyperbola M : x — axy +
2 2 2

y = 1. Since there are no integral points on the union of lines x — axy + y =

0, the imaginary roots of g(tf) correspond to the integral points on the hyperbolas

ίtk: x — axy + y = — k for A > 1. In other words, for each /c > 1, there is a

one-to-one correspondence between the set of all imaginary roots a with lenghth

(α [ a) = — 2/c and the set of all integral points on the hyperbola #£k.

To describe the root system of the algebra g(α), we introduce a sequence

t#J»>o defined by

(42) B« = °> Bί=1>
Bn+2 = aBn+1 - Bn for n > 0.

If 0 = 3, then we have Bn = F ^ . ^ for all w > 1, where {Fn} is the Fibonacci

sequence defined by (2.4). By a similar method used in Section 2, we obtain a

closed form expression for the sequence {Bn}n>0:

1 2w

(4-3) Bn=
 T (>0)

γ (1 - r )

where 7 = ^ is a zero of 1 — ax + x . We can directly check that the

points (Bn, Bu+1) lie on the hyperbola X1: χ2 — axy + y2 = 1 for all n > 0.

Since the hyperbola $? is asymptotic to the line y = p?, it follows that
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(4.4) Bn+1 = \γBn] for all n > 0,

where \x] denotes the smallest integer > x.

For j > 0, induction, we have

r^r^)1 (a0) = - B2j+1a0 - B2jav

r^r^Yiao) = B2j+1a0 + B2j+2av

(4.5)

(γ Y \ (/y ) — — /< /y — f< /y

and

•j/ (/y /y } ( sy j f< /y —I— f< sy
'Q\rVO' yW-V 1J2j+2UL0 "^ •U2j + l U l >

Y (Y If i (/y i — — jR /y — /< /y
r Λ W V"i; — &2ja0 n2j+iaV

(4.6)
(^o^) ( α ^ = - B2j+2a0 - B2j+ιalf

Hence we obtain:

PROPOSITION 4.4 (cf. [BKM], [F]). For a > 3, the set of all positive real roots of

the algebra g(α) is

Δτ:={(Bn,Bn,ι)ΛBn+1,Bn)\n>0). D

The correspondence established in [LM] between the root the systems of rank

2 Kac-Moody algebras and quasi-regular cusps reveals more of the geometric na-

ture of the root system. In particular, one should see [LM, Theorem 4.1], which

characterizes the real roots as a support polygon.

We now consider the set of imaginary roots of g(tf). For a positive integer k,

let Δ1™^ be the set of all positive imaginary roots a of Q(O) with length (a\ a) —

— 2k. That is, Δ™k is the set of all positive integral points on the hyperbola fflk:

x — axy + y — — k. For any a ̂  Δ+tk, by Proposition 4.1, there is a unique

β = (m, n) G Δ1™ such that β — w(ά) for some we W e f F d

β(h0) = 2m - an < 0,
(4.7)

/}(*> = - am+ 2n < 0.

Since the bilinear form ( | ) is W-invariant, we also have β ^ Δ™k. Let Ωk be the
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set of all positive integral points β — On, n) on the hyperbola $tk that lie

ax —
between the lines y — x and y = -«-, and let Ωk be the mirror image of the set Ωk

with respect to the line y — x. Then, by Proposition 4.1 and the symmetry of the

root system, we have

(4.8) Δftk= (WΏk) U (W'~Ωk).

The hyperbola Xk and the line y = ~τr meet at the point Pk = ( , -,
i a — 4

A. Also, the tangent line to the hyperbola tfCk at the point Pk is the line
I a 2 - A

x = , On the other hand, the line y — x meets the hyperbola #£k at the

vV-4

point ( /—ZΓo"> /—— p )• Hence we obtain

Ωk = [(m, n) Z>0 x Z

2\fk I k

>01 -γψ— ^ m < J
(4.9) ' V« - 4

am — V{a2 — 4)m2 — 4/c \

2 Jn =

THEOREM 4.5. For a > 3, the set of all positive imaginary roots of the algebra

with length — 2k is

Δ™k = {(mBj+ι - nBjy mBj+2 - nBj+1),

(mBj+2 - nBj+ι, mBj+1 - nB), (nBj+ί - mBjf nBj+2 - rnBj+1),

(nBj+2 — rnBj+1, nBj+1 — mB) \ (rn,n) ^ Ωk). D

Remark. Theorem 4.5 provides us with a simple algorithm to find all the in-

al points on the hyperbola

trated in the following example.

tegral points on the hyperbola fflk : χ2 — axy + y = — k (k > 1), as is illus-

EXAMPLE 4.6. Let a = 3. Thus we have Bn = F2n_x (n> 1), where {Fn} is

the Fibonacci sequence defined by (2.4).

(a) If k = 1, then we have
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2yfk
= - 7 F = O.89 ,and / - — o - = l .

Hence m — 1 is the only integer in the interval —r= < M < 1. For m — 1, we

have n — 1. Therefore Ωλ = {(1,1)}, and hence the set of all integral points on

the hyperbola χ2 — 3xy + y2 = — 1 is

(b) If k = 2, then

24k
= 1.26-••, and / — z ^ = 42 = 1.14-

/α - 4

Thus Ω2 — φ, and hence there is no integral point on the hyperbola x ~ 3xy +

y2=-2.

(c) lίk = 100, then

20
Hence m = 9 and m = 10 are all the integers in the interval —^ < rn < 10. If

27-45
m = 9, then w = ^ ^ Z+, and if m = 10, then w = 10. Therefore Ωί00

= {(10,10)}, and hence the set of all integral points on the hyperbola x — 3xy

+ y2 = - 100 is

{(10BJ+1 - 10β ; , 10Bj+2 - 10Bj+1), (10Bj+2 - 10Bj+1, 10Bj+1 - 10J5;),

(lOBj - 10BJ+1, IOBJ+1 - 10Bj+2), (10Bj+1 - 10Bj+2, lOBj - !0Bj+1) \j > 0}.

(d) If k = 121, then

24k
= - 7 F = 9.83 ,and -—*=

Hence m = 10 and m = 11 are all the integers in the interval —?=- < m < 11. If
V5

m = 10, then n = 13, and if m = 11, then n = 11. Therefore fl121 = {(10,13),

(11,11)}, and hence the set of all integral points on the hyperbola x — 3xy — y

= - 121 is
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- 13BJf 10Bj+2 - 13Bj+1), (10Bj+2 - 13BJ+ι, 10BJ+1 - 132?,),

; - 10J5,+1, 13B,+1 ~ lOBj+2), (13BJ+ι - 10Bj+2, 13B, ~ 10BJ+1),

- 115,, UBj+2 - l l £ m ) , (HB i + 2 - 11J3,+1, l\Bj+ι - IIB),

l9 UBj+1 - UBtJ, (llBj+1 - UBj+2, 115, - 11BJ+1) \

D

5. Root multiplicity relationships

In this section, we explain some of the relationships among the root multiplici-

ties of the hyperbolic Kac-Moody algebras g(<z). In Section 3, we considered how

the multiplicity of a given root varied with the algebra; here, we will restrict to a

single algebra at a time and examine relationships between the multiplicities of

different roots of that algebra.

§5.1. Column symmetry

We look first at the symmetry apparent in the columns of Tables 1-4. That

is, fix an algebra g = g(fl), fix n and consider the multiplicities of the roots

— na0 — (n + j)^ as j varies in Z. We begin with a result of Kac [K, Proposition

3.6].

PROPOSITION 5.1 ([K]). Let V be a finite-dimensional module over &l2, and let λ

be a weight of V. Denote by M the set of all t ^ Z such that λ + ta is a weight of V,

where a is the simple root of 8/2. Let mt = multF(/ί + ta). Then

(a) M is the closed interval of integers [— p, q], where p, q e Z+ and p — q

(b) The function t*-*rnt is increasing on the interval | — p, -̂ /{(/*) and is

symmetric with respect to t = ~κ λ(h). •

With a and n fixed, let V = Θ ; e Z g_(Mα0+(W+»αi). Then K is a finite-

dimensional module over the subalgebra g0 of g(α) generated by eίt fίf hv That is,

9o — %h- Let λ = — na0 — nav Then λ(h ) = n(a — 2) and we can use part (b)

of Proposition 5.1 to find the location of the maximal values of multG + taj.

The result divides into three cases according as a and n are even or odd.

(1) If a is even, then ~ ~w λ(hx) = — ~κn{a — 2) €= Z and hence the maximal
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root multiplicity occurs for the root λ — ~κ n(a — 2)aγ = — naQ —

1
"9" anav

(2) If a is odd and n = 2m is even, then — TΓλ(hλ) = — m(a — 2) ^ Z and

the maximum root multiplicity occurs for the root λ — rn(a — 2)a1 —

— 2ma0 — amav

(3) If a is odd and n = 2m + 1 is odd, then - -w λ(h,) = — w (2m + 1)

(a — 2) £ Z , and the closest integers to — -* λ(hj are — y (2m + 1)

(α — 2) ± ^ . Therefore the maximum multiplicity occurs for the roots

λ - \ {(2m + I) (a - 2) ± Da, = - (2m + l)α0 - \ {(2m + l)α ± l)av

Also by part (b) of Proposition 5.1, we obtain the corresponding symmetries

for the root multiplicities. That is,

(1) multίn, -Kna + j) = multίn> -wna — jY

(2) mult(2m, ma + j) = mult(2m, ma — j),

(3) mult(2m + 1,\ {(2m + \)a + 1} +>)

= mult(2m + 1, \ {(2m + \)a - 1} - )

EXAMPLE 5.2 Let a = 3, n = 2m + 1 = 5. Then the maximum multiplicity

occurs for the roots — 5α0 — ~κ {5*3 ± l}αx , which are — 5α0 — 8α : and — 5α0

— 7 ^ . This can be seen in Table 1 where the corresponding values of j are j = 2

and j = 3. The column of the table is symmetric about these maxima. D

Another view of the column symmetry is provided by considering directly the

action of the Weyl group. Let rit i = 0,1 be the simple reflections defined by

r^a) = a — a(h)a{ where α;(/^) = αί7. Let a = koao + k^ in g(α), for some

fixed a. Then

(5.1) Tyifit) =a- (2k, - ako)av
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In particular, for a = — na0 — {n + f)cxv as the roots are arranged in Tables

1-4, we have

r^a) = a - ( 2 ( - n — j) — a(— n))ax

{ 5 2 ) = -na0- ((a-Dn-fla,.

Hence mult(w, n + j) = mult(n, (a — l)n — j).

For example, for a — 3, n = 5, we have

mult(5,5 + j) = mult(5,10 ~ j) = mult(5,5 + (5 - » ) .

as can be seen in Table 1.

Proposition 5.1 gives us that/? — q = λ(h), but does not specify the integers

themselves. In order to determine the actual values of p and q, and thus the length

of the root-chain, we consider root lengths.

Let a = — na0 — (n + j)aλ be a root in g = g(α), for some fixed a > 3.

Then

( # , Of) 2 i / - v2 / i -\

— ό — = w + \n + j) — an{n 4- )
(5.3) Δ

= (2 - a)n(n+j) +j2.

As discussed in Section 4, Moody ([M]) showed that for hyperbolic

Kac-Moody algebras a is an imaginary root if and only if — k — ^ 0, and, for

g(#), a is a real root if and only if — k — = 1.

We may suppose without loss of generality, that j ^ 0. Then a is an imagin-

ary root (and exists, i.e. has non-zero multiplicity) if

4- / 2 A

(5.4) j < n(γ — 1), where γ = ?> ( a s ̂ n Section 2).

We also have that a is a real root if and only if

(5.5) (ot^d_= {2

 2

This is equivalent to the condition that
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(β-2) + / (a2 -4) + 4
2

(5.6) j = n [ ^ 2 — ]
e Z

If the right-hand side is integral, then there is a real root (with multiplcity 1)

— na0 — (n + j)ax, for j = [n(γ — 1)J 4- 1 (where lx\ indicates the greatest

integer less than or equal to x) and so p — [n(γ — 1)J + 1.

If the right-hand side of (5.6) is not integral, then the last root in the chain is

imaginary and p = [n(γ — 1)J.

3 +y/5
EXAMPLE 5.3 Fix a = 3. Then γ — ^ , and the right hand side of (5.6)

becomes n iχ Thus, for n = 3,

and there is a (real) root with j — [3 ί s )J + 1 = 5. That is, a — — 3a0 —

8aλ is a real root of g(3). For n = 5,

l + /5 + -A-
\ 2 5
\

and so the last root has j = ίn(γ — 1)J = Lδ ί 2 /-I = 8. That is, a =

— 5a0 — 13αx is a root, but — 5α 0 — 14α : is not. D

§5.2. Multiplicity monotonicity

As consequence of the symmetry displayed above, we show that, as roots get

"larger," their multiplicity increases. More precisely, for the roots a —

(rn, n) and β = (k, /), we define a < β if and only if m < k and n < I. Then, in

the fundamental chamber, we have that if a < β, then mult a < multβ. In general,

we have mult(m, n) < mult(m + 1, n + 1).

As in the previous subsection,we fix a > 3, and consider the roots of the

algebra g(tf). Making the identification of the point (rn, n) with the root ma0 +
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F i g l .

nah from Section 4 we have that the imaginary roots of qiά) are the integral

points inside the cone PUQURUSoί Fig 1. (See also Tables 8 and 9 for ex-

amples.)

Further, the analysis of the previous subsection showed that the root multipli-

cities on a vertical line (that is, for a fixed rri) are symmetric about the line y = y

x, increasing monotonically as they approach this line. By symmetry of the root

system, the root multiplicities in the horizontal direction are therefore monotonic

2
and symmetric about the line y — —x. A consequence of this observation is that,

ci

if a = (m, n) is a root in the fundamental chamber Q U R, then any root in the

region defined by the intersection of Q U R, x > m and y > n, has multiplicity at

least equal to that of a. Thus we have

PROPOSITION 5.4. Suppose a> β are in Q U R, with a < β. Then mult a <

mult β. D

Notice that Proposition 5.4 implies that if a = (nlf knj and β = (n2, kn2)

with n2 > nv (i.e., a and β both lie on the line y = kx), and — < k < ~κ, then

mult a < mult β. The Weyl reflection rx rotates (integral points on) a line y = mx

1 2
to (integral points on) a line y — (a — m)x. In particular, if — < k < —, so that a
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root a — (n, kn) e S, then rxa ^ Q I) R. The remaining case is similar, and we

obtain

COROLLARY 5.5 Let a = (nlf knλ), β = (n2, kn2) with n2 > nv Then multα

<mult/3. D

This observation was pointed out to us by V. Kac.

Now we may prove our general result.

PROPOSITION 5.6. If a — (m, n) and β = (m + 1, n + 1) are roots of g(α),

a > 3, then mult a < mult β.

Proof We may suppose without loss of generality than m> n. From above,

if m > nγ, we must that m = lnγ\ + 1 and a is real root. Thus a has multiplicity

1 and multβ > multα = 1. From now on we will suppose that a (and hence β)

is an imaginary root.

If a ^ Q U i?, then β ^ Q U R, and by Proposition 5.4 we are done. Hence,

we may suppose a £ Q U R. By the hypothesis that m > n, a e S.

Consider the Weyl reflection rx and the root permutation σ defined for a =

(rn, n) by:

rx{a) = (rn, am — n)>
(5.7)

σ(a) = (n, m).

Both σ and rx preserve the root multiplicities. Geometrically, σ is the reflection in

a
the line y = x, and rx reflects a root vertically about the line y — ~κ x.

Define the following sequences:

(5.8) *° = « ' ^ '

Recall the sequence {Bn} from (4.2) and introduce the sequence {Cn) defined by:

Bo = 0, Bι = I, Bn+2 = aBn+1 - Bn (n > 0),

C0 = l, d = l, CB + 2 = αCM + 1 - CB ( « > 0 ) .
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Then

α. = (BM — Bj.ni, Bi+1n — Bm),
(510)

βj = (Bjn - BHlm + Cjy Bj+ιn - B^m + C,+ 1), > 1.

Note that both {Bn} and {Cj are positive and increasing for a > 3. Hence, α ;

< βj for all j (and so σα ; < σ/3; ).

2

Let η = (p,q) e 5, and consider ^σry = (q, aq — p). Since η ^ S, q < —p.

Hence -^ q < p, aq — -^ q < p and aq — p < -w q. That is, ^σr? e Q U i? U S. In

fact, if q > Λp, then aq — p > q and ^#7? e Q, and, if a — \P — Q

< — p, then aq — p > — q and ^σr^ e i?.

Let 5 be the smallest non-negative integer such that jS5 £ Q U if. Note that,

although a0 e 5, it is possible that β0 G i?. Then, for / < 5, we have βj G S.

CLAIM. //β ; e 5, ί ^ n ai e 5.

Proo/. Geometrically, /3; = α ; + (C ; , C i + 1 ). Thus the slope of the line

to
C'+i %

joining α ; to βf (recall α ; < β}) is Λ > 1 > — for a > 3. Hence βj is closer
2

the line y = — x than α ; , and, if jŜ  ^ S, then so is c^.

If as e Q U i?, then we have α 5 < j8s, α s , βs <Ξ Q Ό R, and, by Proposition

5.4, we are done.

Now suppose as £ Q U R. That is, as ^ S. Note that, in general, for η =

(̂ > #) e S, rλση % η, but σ^σ^ < η, or, equivalently, rxσi7 < σry. To see this, re-

call that since r^ση = (^, aq — p), we have q ^ p, but aq — p may be greater

2
than #, However, aq ~ p < p, since # < —/). Hence, (r :σ) η < σ η.

Let r be the smallest such that ar ^ Q U R. Then

^ / \ r—s ^ r—s ^ r—Sn

ar < {^σ) as < σ as < σ βs.

That is, either ar < βs, or σar < βs. In either case, we have mult a < mult/3. •
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COROLLARY 5.7. If a = (m, n) and β — (m + j, n + j) are roots of §{a), a >

3 with j a non-negative integer, then mult a < mult β. Q

§5.3. Multiplicity questions

In this final section we raise some questions concerning further possible re-

lationships among the root multiplicities for given algebras.

The analysis of Section 4 revealed a connection between the root multiplicity

and the root length. Specifically, we showed that an imaginary root of $(ά) of

length — 2k lies on the hyperbola #Ck and is FΓ-conjugate to some root in Ωk. If

I Ωk I = 1, all roots of length — 2k must have the same multiplicity. If | Ωk | > 1,

this need not be the case and there may be roots of the same length, but with

different multiplicities. For example, the roots (9,17) and (11,11) of g(4) both

have length — 484, but have multiplicities 18900 and 18901, respectively.

A natural question is whether relationship between length and multiplicity is

monotonic. That is, does the multiplicity always increase as (the magnitude of) the

length increases? Geometrically, this would imply that the multiplicity of any root

"inside" a hyperbola is greater than or equal to the multiplicity of any root on the

hyperbola. In general, this is not true. We do not know of any counterexamples for

the algebras g(3) and g(4), but in g(5), the root a = (3,7) has length — 2k =

— 94 and multiplicity 9, while the root β = (4,4) has length — 96 and multiplic-

ity 8. There are similar examples for a — 6 and 7. In view of the apparent ex-

ponential increase in multiplicity with respect to length, it would be very interest-

ing to discover precisely the conditions required for this to happen.

Note for comparison the mysterious formulas of [FF] and [FFR] for HA1 ,

[KMW] for Elo, and [KM] for HA^ , which showed that, for roots of low level in

certain hyperbolic Kac-Moody algebras, the multiplicity depends only on the

length of the root and increases monotonically with the root length.

In the previous section, we showed that root multiplicities increase monotoni-

cally along the lines y = x + j , j ^ Z, j > 0. It is also interesting to consider the

lines perpendicular to these, the integral points of which represent roots of a

given height t. It can easily be seen that, for the roots in the tables, the multiplici-

ties increase monotonically to maximum at (m, m) for t even, and (m ~ 1,

m -f 1) for t odd. We believe that this may be true in general. That is, we have
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the following conjecture:

CONJECTURE 5.8. Let rn, n be non-negative integers with m < n — 2. Then, for

any g(#), a > 3, mult(m, n) < mult(m + 1, w — 1). D

6. Root multiplicity tables

In this section we present some tables of root multiplicities of the rank 2

Kac-Moody algebras q(a) to illustrate the relationships explained in the text.

In Tables 1-7, we consider the roots of the form na0 + (n + j)aλ in various

different settings. First, in Tables 1-4, we consider the root multiplicities in a

given algebra as n and./ vary. That is, we have a fixed a = 3 , . . . , 6 in each table.

For comparison, Table 5 then gives the root multiplicities for the same roots in

the free Lie algebra of rank 2. Tables 6 and 7 rearrange the roots to illustrate the

stability theorem of Section 3. Here we fix j = 0 and j = 1, respectively, and

allow a and n to vary. The stability theorem and the precise relationships indi-

cated in (2.24) and (2.25) can be seen clearly.

Tables 8 and 9 present a different view of the algebras. In these tables we

give the multiplicities for roots written in the form ma0.+ naQ for g(tf), a — 3

and 4, with the regions P, Q, R, S from Fig 1, and some of the hyperbolas Xk su-

perimposed. The reader will easily be able to see Proposition 5.6 and the force of

Conjecture 5.8.

The root multiplicities were calculated using the Kacmoody algorithm of AJ.

Coleman of Queen's University. The program itself was written by R. McCann and

I. Wilmott, and modified by R. McCann and M. Roth. The algorithm is based upon

Berman-Moody's formula (1.14).
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Root multiplicities for a = 3

j\n
0
1
2
3
4
5
6
7
8
9
10

1
1
1
1
0
0
0
0
0
0
0
0

2
1
2
1
1

0
0
0
0
0
0
0

3
3
4
4
3
2
1

0
0
0
0
0

4
6
9
9
9
6
4
1

0
0
0
0

5
16
23
27
27
23
16
9
4
1

0
0

6
39
60
73
80
73
60
39
23
9
3
0

7
107
162
211
240
240
211
162
107
60
27
9

8
288
449
600
720
758
720
600
449
288
162
73

9
808
1267

1754

2167

2407

2407

2167

1754

1267

808
449

10
2278

3630

5130

6555

7554

7936

7554

6555

5130

3630

2278

Table 1

Root multiplicities for a — 4

j\n
0
1
2
3
4
5
6
7
8
9
10

1
1
1
1
1

0
0
0
0
0
0
0

2
1
2
2
2
1
1
0
0
0
0
0

3
3
5
6
6
6
5
3
2
1

0
0

4

8
13
16
20
20
20
16
13
8
5
2

5
23
36
50
63
72

75
72
63
50
36
23

6
64
106
151
202

243
276
283
276
243
202

151

7
195
321
480
660
840
995
1100

1137

1100

995
840

8
590
995
1521

2169

2860

3550

4115

4510

4635

4510

4115

9
1850

3144

4928

7185

9810

12590

15238

17441

18900

19409

18900

10
5861

10088

16070

23990

33605

44498

55717

66284

74886

80600

82543

Table 2
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Root multiplicities for a = 5

j\n

0
1
2
3
4
5
6
7
8
9
10

1
1
1
1
1
1
0
0
0
0
0
0

2
1

2
2
3
2
2
1
1

0
0
0

3
3
5
7
8
9
9
8
7
5
3
2

4

8
14
19
26
30
35
35
35
30
26
19

5

25
41
61
84
108
130
147
156
156
147
130

6
73
125
190
276
370
475
566
650
698
720
698

7
232
395
625
928
1300

1725

2175

2612

2993

3275

3425

8
734
1277

2059

3150

4540

6250

8177

10262

12300

14175

15645

9
2400

4207

6930

10800

16005

22628

30612

39725

49525

59400

68625

10
7935

14073

23511

37361

56536

81950

113869

152243

195928

243339

291685

Table 3

Root multiplicities for a — 6

j\n
0
1

2
3
4

5
6
7
8
9
10

1
1
1
1
1
1
1
0
0
0
0
0

2
1
2
2
3
3
3
2
2
1
1

0

3
3
5
7
9
11

12
12
12
11
9
7

4
8
14
20
29
36
45
50
56
56
56
50

5
25
42
65
94
128
165
203
238
266
284
290

6
75
131
206
312
441
602
774
966
1143

1311

1436

7
243
421
686
1059

1557

2189

2951

3283

4769

5737

6664

8
785
1387

2297

3641

5489

7967

11085

14904

19305

24228

29389

9
2616

4654

7857

12660

19558

29050

41594

57540

77028

99932

125804

10
8815

15855

27111

44450

69943

106162

155545

220728

303534

405426

526177

Table 4
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Root multiplicities for free Lie algebra of rank 2

An
0

1

2

3

4

5

6

7

8

9

10

1

1

1

1

1

1

1

1

1

1

1

1

2

1

2

2

3

3

4

4

5

5

6

6

3

3

5

7

9

12

15

18

22

26

30

35

4

8

14

20

30

40

55

70

91

112

140

168

5

25

42

66

99

143

200

273

364

476

612

775

6

75

132

212

333

497

728

1026

1428

1932

2583

3384

7

245

429

715

1144

1768

2652

3876

5537

7752

10659

14421

8

800

1430

2424

3978

6288

9690

14520

21318

30624

43263

60060

9

2700

4862

8398

13995

22610

35530

54477

81719

120175

173583

246675

10

9225

16796

29372

49742

81686

130750

204248

312455

468611

690690

1001400

Table 5

Root multiplicities of Q(O), for j — 0

a\n

3

4

5

6

7

8

9

10

1

1

1

1

1

1

1

1

1

2

1

1

1

1

1

1

1

1

3

3

3

3

3

3

3

3

3

4

6

8

8

8

8

8

8

8

5

16

23

25

25

25

25

25

25

6

39

64

73

75

75

75

75

75

7

107

195

232

243

245

245

245

245

8

288

590

734

785

798

800

800

800

9

808

1850

2400

2616

2683

2698

2700

2700

10

2278

5861

7935

8815

9121

9206

9223

9225

Table 6

a\n

3

4

5

6

7

8

9

10

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

4

C
Jl

C
Jl

C
Jl

5

5

5

C
Jl

Rool

4

9

13

14

14

14

14

14

14

ί multiplicities

5

23

36

41

42

42

42

42

42

6

60

106

125

131

132

132

132

132

Df g(fl), for; = 1

7

162

321

395

421

428

429

429

429

8

449

995

1277

1387

1421

1429

1430

1430

9

1267

3144

4207

4654

4809

4852

4861

4862

10

3630

10088

14073

15855

16522

16732

16785

16795

Table 7
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Roots of g(3)

10.00

7.50

5.00

2.50

0.00
0.00

10.00

7.50

5.00

2.50

0.00

2.50 5.00

Table 8

Roots of g(4)

7.50 10.00

. , . . , , ή .

fi I6

: ff/y

- /ι/\

1b

20
/

/

20

16

13

/

5

/72

63

50

36

/

13

6

1 1

1 ̂ 4

202"

151

106

X/
36

16

/ ^

... i--

660 x

,480

321

105

106

50

20

6

<Σ95

321^

151

63

AT

5.,.

ai44

18^0

995

480

202

72

20

.-3

31

15

61

2

1

61

44

21

o

13

5

6

>

0.00 2.50 5.00 7.50 10.00

Table 9
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